Skip to main content
Log in

A gradient descent implementation of the adaptive robust narrowband constrained LMS beamformer

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

Classical adaptive beamforming strategies have been shown to exhibit a substantial performance degradation if an error exists in the estimation of the angle of arrival (AOA). The optimization problem can be modified to incorporate an improved constraint allowing for robustness to AOA imperfections. In this paper, we propose a gradient descent implementation of the robust adaptive beamformer whereby a direct relation is established between the Lagrange multiplier and the adaptation step size. This allows for the heuristic approximation of one of the parameters while establishing a valid range for the other. Computer simulations have been used to confirm the findings of this study and illustrate the performance of the developed algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Frost, O.L.: An algorithm for linearly constrained algorithm adaptive array processing. Proc. IEEE 60(8), 926–935 (1972)

    Article  Google Scholar 

  2. Litva, J., Lo, T.K.: Digital Beamforming in Wireless Communications. Artech House Pub., Boston (1996)

    Google Scholar 

  3. Foutz, J., Spanias, A., Banavar, M.K.: Narrowband Direction of Arrival Estimation for Antenna Arrays. Synthesis Lectures on Antennas. Morgan & Claypool Pub., San Rafael (2008)

    Google Scholar 

  4. Li, J., Stoica, P.: Robust Adaptive Beamforming. Wiley Series in Telecommunications and Signal Processing. Wiley, New York (2006)

    Google Scholar 

  5. Feldman, D., Griffiths, L.J.: A projection approach for robust adaptive beamforming. IEEE Trans. Signal Process. 42(4), 867–876 (1994)

    Article  Google Scholar 

  6. Li, Y., Wan, Q., Fan, R.:’ A robust beamformer with virtual array. In: International Conference on Electronics, Communications and Control, pp. 2479–2482, 2011

  7. Yu, Z.L., Gu, Z., Zhou, J., Li, Y., Ser, W., Er, M.H.: A robust adaptive beamformer based on worst-case semi-definite programming. IEEE Trans. Signal Process. 58(11), 5914–5919 (2010)

    Article  MathSciNet  Google Scholar 

  8. Zhang, T., Sun, L.: Iterative robust beamformer with an estimation of uncertainty level. In: Wireless Symposium, pp. 1–3. IEEE International (2013)

  9. Shi, Y., Huang, L., Qian, C., Wang, Y., Xie, W., So, H. C.: A novel worst-case robust beamformer based on interference-plus-noise covariance reconstruction and uncertainty level estimation. In: ChinaSIP, pp. 746–750, 2015

  10. Xin, D., Guisheng, L., Hongqing, L., Haihong, T.: Robust constrained LMS adaptive beamformer. In: International Conference on Radar, pp. 1–4, 2006

  11. Yu, Z.L., Ser, W., Er, M.H.: A novel robust beamformer based on linear optimization. In: International Conference on Information, Communications and Signal Processing, pp. 1–4, 2007

  12. Yu, Z.L., Ser, W., Er, M.H., Chen, H.: Robust adaptive beamformer exploiting symmetric structure of array. In: IEEE Conference on Industrial Electronics and Applications, pp. 2439–2443, 2008

  13. Han, Yubing, Tran, Vanha: Recursive Bayesian beamforming with uncertain projected steering vector and strong interferences. SIViP 10, 975–982 (2016)

    Article  Google Scholar 

  14. Liao, B., Guo, C., Huang, L., Li, Q., So, H.C.: A robust beamformer with main beam control. In: IEEE Sensor Array and Multichannel Signal Processing Workshop (SAM), pp. 1–5, 2016

  15. Li, Q., Wang, W., Xu, D., Wang, X., Han, Z.: Robust beamformer based on magnitude response constraint and steering vector correction. Electron. Lett. 51(17), 1302–1304 (2015)

    Article  Google Scholar 

  16. Vorobyov, S.A., Gershman, A.B., Luo, Z.: Robust adaptive beamforming using worst-case performance optimisation: a solution to the signal mismatch problem. IEEE Trans. Signal Process. 51(2), 313–324 (2003)

  17. El-Keyi, A., Kirubarajan, T., Gershman, A.B.: Robust adaptive beamforming based on the Kalman filter. IEEE Trans. Signal Process. 53(8), 3032–3041 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  18. Sturm, J.F.: Using SeDuMi 1.02, a Matlab toolbox for optimization over symmetric cones. Optim. Methods Softw. 11–12, 625–653 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kim, J.W., Un, C.K.: An adaptive array robust to beam pointing error. IEEE Trans. Signal Process. 40(6), 1582–1584 (1992)

    Article  Google Scholar 

  20. Gershman, A.B.: Robust adaptive beamforming in sensor arrays. Int. J. Electron. Commun. 53, 305–314 (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samir Bendoukha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korayem, R., Bendoukha, S. A gradient descent implementation of the adaptive robust narrowband constrained LMS beamformer. SIViP 12, 463–470 (2018). https://doi.org/10.1007/s11760-017-1180-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-017-1180-x

Keywords

Navigation