Skip to main content
Log in

Local contourlet tetra pattern for image retrieval

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

Local binary pattern (LBP) is an effective image descriptor that is being used in various computer vision applications such as detection of faces, object classification, target detection, image retrieval. To improve the performance of local patterns, different variants of LBP were introduced. In this work, contourlet tetra pattern, a modified version of local pattern, is introduced which uses contourlet directions to derive the tetra pattern of the image. The difference between local tetra pattern (LTrP) and the proposed method is that LTrP uses spatial first-order derivatives to derive the directions, whereas the proposed method uses contourlet transform to find the directions. In this work, contourlet transform is used to find the directions based on the fact that it helps to represent the images effectively into multiple directional bands which will have more accurate directional information than in the spatial derivatives. The proposed method is evaluated using three different databases (namely Corel 1 K, Corel 10 K and Brodatz), and experimental result shows the proposed method performs better than the conventional local pattern techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kim, W.: Fingerprint liveness detection using local coherence patterns. IEEE Signal Proc. Lett. 24, 51–55 (2017)

    Article  Google Scholar 

  2. Qiao, T., et al.: Effective denoising and classification of hyperspectral images using curvelet transform and singular spectrum analysis. IEEE Trans. Geosci. Remote Sens. 55, 119–133 (2017)

    Article  Google Scholar 

  3. Liua, L., et al.: Extended local binary patterns for texture classification. Image Vis. Comput. 30, 86–99 (2012)

    Article  Google Scholar 

  4. Murphy, J.M., et al.: Automatic image registration of multimodal remotely sensed data with global shearlet features. IEEE Trans. Geosci. Remote Sens. 54, 1685–1704 (2016)

    Article  Google Scholar 

  5. Ryu, J., et al.: Sorted consecutive local binary pattern for texture classification. IEEE Trans. Image Process. 24, 2254–2265 (2015)

    Article  MathSciNet  Google Scholar 

  6. Hongbo, Y., et al.: Histogram modification using grey-level co-occurrence matrix for image contrast enhancement. IET Image Process. 8, 782–793 (2014)

    Article  Google Scholar 

  7. Tan, T.N., Baker, K.D.: Efficient image gradient based vehicle localization. IEEE Trans. Image Process. 9, 1343–1356 (2000)

    Article  Google Scholar 

  8. Uzun, I.S., et al.: FPGA implementations of fast Fourier transforms for real-time signal and image processing. IEE Proc. 152(3), 283–296 (2005)

    MathSciNet  Google Scholar 

  9. Phamila, A.V., Amutha, R.: Discrete cosine transform based fusion of multi-focus images for visual sensor networks. Signal Process. 95, 161–170 (2014)

    Article  Google Scholar 

  10. Farsi, H., et al.: Colour and texture feature-based image retrieval by using hadamard matrix in discrete wavelet transform. IET Image Process. 7, 212–218 (2013)

    Article  MathSciNet  Google Scholar 

  11. Huang, Q., et al.: Adaptive digital ridgelet transform and its application in image denoising. Elsevier Digit. Signal Process. 52, 45–54 (2016)

    Article  Google Scholar 

  12. Da Cunha, A.L., et al.: The nonsubsampled contourlet transform: theory, design, and applications. IEEE Trans. Image Process. 15, 3089–3101 (2006)

    Article  Google Scholar 

  13. Asmare, M.H., et al.: Image enhancement based on contourlet transform. Signal Image Video Process. 9, 1679–1690 (2015)

    Article  Google Scholar 

  14. Lim, W.-Q.: Nonseparable shearlet transform. IEEE Trans. Image Process. 22, 2056–2065 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Quellec, G., et al.: Fast wavelet-based image characterization for highly adaptive image retrieval. IEEE Trans. Image Process. 21, 1613–1623 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Dong, Y., et al.: Texture classification and retrieval using shearlets and linear regression. IEEE Trans. Cybern. 45, 358–369 (2015)

    Article  Google Scholar 

  17. Dubey, S.R., et al.: Local wavelet pattern: a new feature descriptor for image retrieval in medical CT databases. IEEE Trans. Image Process. 24, 5892–5903 (2015)

    Article  MathSciNet  Google Scholar 

  18. He, J., et al.: Rotation invariant texture descriptor using local shearlet-based energy histograms. IEEE Signal Process. Lett. 20, 905–908 (2013)

    Article  Google Scholar 

  19. Alahmadi, A., et al.: Passive detection of image forgery using DCT and local binary pattern. Signal Image Video Process. 11, 81–88 (2017)

    Article  Google Scholar 

  20. Ojala, T., et al.: A comparative study of texture measures with classification based on feature distributions. Pattern Recognit. 29, 51–59 (1996)

    Article  Google Scholar 

  21. Takala, V., et al.: Block-based methods for image retrieval using local binary patterns. Image Anal. Lect. Notes Comput. Sci. 3540, 882–891 (2005)

  22. Ahonen, T., et al.: Face description with local binary patterns: applications to face recognition. IEEE Trans. Pattern Anal. Mach. Intell. 28, 2037–2041 (2006)

    Article  Google Scholar 

  23. Wei, Y., et al.: An improved LBP algorithm for texture and face classification. Signal Image Video Process. 8, 155–161 (2014)

    Article  Google Scholar 

  24. Kaya, Y., Ertugrul, O.F.: Gender classification from facial images using gray relational analysis with novel local binary pattern descriptors. Signal Image Video Process. 11, 769–776 (2017)

    Article  Google Scholar 

  25. Chen, C., et al.: Land-use scene classification using multi-scale completed local binary patterns. Signal Image Video Process. 10, 745–752 (2016)

    Article  Google Scholar 

  26. He, S., et al.: Quantitative analysis of facial paralysis using local binary patterns in biomedical videos. IEEE Trans. Biomed. Eng. 56(7), 1864–1870 (2009)

    Article  Google Scholar 

  27. Nannia, L., et al.: Local binary patterns variants as texture descriptors for medical image analysis. Artif. Intell. Med. 49, 117–125 (2010)

    Article  Google Scholar 

  28. Liao, S., Law, M.W.K., Chung, A.C.S.: Dominant local binary patterns for texture classification. IEEE Trans. Image Process. 18, 1107–1118 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  29. Guo, Z., Zhang, L., Zhang, D.: A completed modeling of local binary pattern operator for texture classification. IEEE Trans. Image Process. 19, 1657–1663 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  30. Guo, Z., Zhang, L., Zhang, D.: Rotation invariant texture classification using LBP variance (LBPV) with global matching. Pattern Recognit. 43, 706–719 (2010)

    Article  MATH  Google Scholar 

  31. Tan, X., Triggs, B.: Enhanced local texture feature sets for face recognition under difficult lighting conditions. IEEE Trans. Image Process. 19, 1635–1650 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  32. Liu, L., et al.: Median robust extended local binary pattern for texture classification. IEEE Trans. Image Process. 25, 1368–1381 (2016)

    Article  MathSciNet  Google Scholar 

  33. Rahtua, E., et al.: Local phase quantization for blur-insensitive image analysis. Image Vis. Comput. 30, 501–512 (2012)

    Article  Google Scholar 

  34. Iakovidis, D.K., Keramidas, E.G., Maroulis, D.: Fuzzy local binary patterns for ultrasound texture characterization. In: Campilho, A., Kamel, M. (eds.) Image Analysis and Recognition. Lecture Notes in Computer Science, vol. 5112, pp. 750–759. Springer, Berlin, Heidelberg (2008)

  35. Fathi, A., Naghsh-Nilchi, A.R.: Noise tolerant local binary pattern operator for efficient texture analysis. Pattern Recognit. Lett. 33, 1093–1100 (2012)

    Article  Google Scholar 

  36. Ren, J., Jiang, X., Yuan, J.: Noise-resistant local binary pattern with an embedded error-correction mechanism. IEEE Trans. Image Process. 22, 4049–4060 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  37. Ahmed, F.: Gradient directional pattern: a robust feature descriptor for facial expression recognition. IEEE Electron. Lett. 48, 1203–1204 (2012)

    Article  Google Scholar 

  38. Vipparthi, S.K., et al.: Local directional mask maximum edge patterns for image retrieval and face recognition. IET Comput. Vis. 10, 182–192 (2016)

    Article  Google Scholar 

  39. Al-Berry, M.N., et al.: Fusing directional wavelet local binary pattern and moments for human action recognition. IET Comput. Vis. 10, 153–162 (2016)

    Article  Google Scholar 

  40. Murala, S., Maheshwari, R.P., Balasubramanian, R.: Directional binary wavelet patterns for biomedical image indexing and retrieval. J. Med. Syst. 36, 2865–2879 (2012)

    Article  Google Scholar 

  41. Ge, H.: Gabor Directional binary pattern: an image descriptor for gaze estimation. EURASIP J. Adv. Signal Process. 2010, 807612 (2010). https://doi.org/10.1155/2010/807612

  42. Murala, M., Balasubramanian, R.: Local tetra patterns: a new feature descriptor for content-based image retrieval. IEEE Trans. Image Process. 12, 2874–86 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  43. Ojala, T., et al.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 24, 971–987 (2002)

    Article  Google Scholar 

  44. http://wang.ist.psu.edu/docs/home.shtml#download

  45. http://sites.google.com/site/dctresearch/Home/content-based-image-retrieval

  46. http://multibandtexture.recherche.usherbrooke.ca/original_brodatz.html

  47. Dubey, S.R., et al.: Boosting local binary pattern with bag-of-filters for content based image retrieval., IEEE UP Section Conference on Electrical Computer and Electronics (2015)

Download references

Acknowledgements

The authors are very much thankful to the editor and anonymous reviewers for their valuable comments, suggestions and other directions to improve the quality of this manuscript. Also, authors thank the management of Sathyabama University and Adhiparasakthi engineering college for their constant support and motivation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. G. Subash Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, T.G.S., Nagarajan, V. Local contourlet tetra pattern for image retrieval. SIViP 12, 591–598 (2018). https://doi.org/10.1007/s11760-017-1197-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-017-1197-1

Keywords

Navigation