Skip to main content
Log in

MARO: matrix rank optimization for the detection of small-size moving objects from aerial camera platforms

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

Moving objects detection from aerial camera platforms is a very challenging problem due to the small-size of the moving objects and the false motion of the static background elements. Although many methods have been proposed in this domain, they always have a trade-off between true detections and false detections. This paper proposes a novel solution called matrix rank optimization method (MARO) to achieve high true detections with low false detections. In MARO, the detection problem is formulated as a principal component pursuit with a transformation domain. The novelty of MARO is that it solves this problem by using the inexact Newton method and a backtracking behaviour in inexact augmented Lagrange multiplier. MARO has been extensively evaluated using DARPA VIVID, UCF aerial action, and VIRAT aerial datasets. The results show that MARO outperforms current-state-of-the-art methods, as well as lowers the execution time without sacrificing the accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Barron, J.L., Fleet, D.J., Beauchemin, S.S.: Performance of optical flow techniques. Int. J. Comput. Vis. 12(1), 43–77 (1994)

    Article  Google Scholar 

  2. Bertsekas, D.P.: Convex Optimization Theory. Athena Scientific, Belmont (2009)

    MATH  Google Scholar 

  3. Bouwmans, T., Zahzah, E.H.: Robust PCA via principal component pursuit: a review for a comparative evaluation in video surveillance. CVIU 122, 22–34 (2014)

    Google Scholar 

  4. Candès, E.J., Li, X., Ma, Y., Wright, J.: Robust principal component analysis? JACM 58(3), 11 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chaquet, J.M., Carmona, E.J., Fernández-Caballero, A.: A survey of video datasets for human action and activity recognition. CVIU 117(6), 633–659 (2013)

    Google Scholar 

  6. Chen, Y., Wang, Y., Li, M., He, G.: Augmented Lagrangian alternating direction method for low-rank minimization via non-convex approximation. SIVP 11, 1271–1278 (2017)

    Google Scholar 

  7. Collins, R., Zhou, X., Teh, S.K.: An open source tracking testbed and evaluation web site. In: IEEE International Workshop on Performance Evaluation of Tracking and Surveillance, pp. 17–24 (2005)

  8. Dembo, R.S., Eisenstat, S.C., Steihaug, T.: Inexact newton methods. SIAM J. Numer. Anal. 19(2), 400–408 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  9. Du, S., Shehata, M., Badawy, W.: Hard hat detection in video sequences based on face features, motion and color information. In: 2011 3rd International Conference on ICCRD, vol. 4, pp. 25–29. IEEE (2011)

  10. Eisenstat, S.C., Walker, H.F.: Globally convergent inexact newton methods. SIAM J. Optim. 4(2), 393–422 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  11. Elias, R.N., Coutinho, A.L., Martins, M.A.: Inexact newton-type methods for non-linear problems arising from the SUPG/PSPG solution of steady incompressible Navier–Stokes equations. J. Braz. Soc. Mech. Sci. Eng. 26(3), 330–339 (2004)

    Article  Google Scholar 

  12. ElTantawy, A., Shehata, M.S.: Moving object detection from moving platforms using Lagrange multiplier. In: 2015 IEEE International Conference on ICIP, pp. 2586–2590. IEEE (2015)

  13. ElTantawy, A., Shehata, M.S.: UT-MARO: unscented transformation and matrix rank optimization for moving objects detection in aerial imagery. In: International Symposium on Visual Computing, pp. 275–284. Springer (2015)

  14. ElTantawy, A., Shehata, M.S.: A novel method for segmenting moving objects in aerial imagery using matrix recovery and physical spring model. In: 2016 23rd International Conference on Pattern Recognition (ICPR), pp. 3898–3903. IEEE (2016)

  15. Gibson, J., Marques, O.: Sparsity in optical flow and trajectories. SIVP 10(3), 487–494 (2016)

    Google Scholar 

  16. Golub, G.H., Reinsch, C.: Singular value decomposition and least squares solutions. Numerische mathematik 14(5), 403–420 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  17. Guyon, C., Bouwmans, T., Zahzah, E.: Robust principal component analysis for background subtraction: systematic evaluation and comparative analysis. In: Sanguansat, P. (eds.) Principal component analysis, chapter 12, pp. 223–238. InTech (2012)

  18. Krejic, N., Martínez, J.M.: A globally convergent inexact-Newton method for solving reducible nonlinear systems of equations. Optim. Methods Softw. 13(1), 11–34 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lin, Z., Chen, M., Ma, Y.: The augmented Lagrange multiplier method for exact recovery of corrupted low-rank matrices (2010). arXiv preprint arXiv:1009.5055

  20. Mazumder, R., Hastie, T., Tibshirani, R.: Spectral regularization algorithms for learning large incomplete matrices. JMLR 11, 2287–2322 (2010)

    MathSciNet  MATH  Google Scholar 

  21. Oh, S., Hoogs, A., Perera, A., Cuntoor, N., Chen, C.C., Lee, J.T., Mukherjee, S., Aggarwal, J., Lee, H., Davis, L., et al.: A large-scale benchmark dataset for event recognition in surveillance video. In: 2011 IEEE Conference on CVPR, pp. 3153–3160. IEEE (2011)

  22. Oreifej, O., Li, X., Shah, M.: Simultaneous video stabilization and moving object detection in turbulence. IEEE Trans. PAMI 35(2), 450–462 (2013)

    Article  Google Scholar 

  23. Peng, Y., Ganesh, A., Wright, J., Xu, W., Ma, Y.: RASL: robust alignment by sparse and low-rank decomposition for linearly correlated images. In: 2010 IEEE International Conference on CVPR, pp. 763–770. IEEE (2010)

  24. Peng, Y., Ganesh, A., Wright, J., Xu, W., Ma, Y.: RASL: robust alignment by sparse and low-rank decomposition for linearly correlated images. IEEE Trans. PAMI 34(11), 2233–2246 (2012)

    Article  Google Scholar 

  25. Sengar, S.S., Mukhopadhyay, S.: Moving object detection based on frame difference and w4. SIVP 11, 1357–1364 (2017)

    Google Scholar 

  26. Shehata, M., Eberlein, A., Fapojuwo, A.O.: Managing policy interactions in KNX-based smart homes. In: COMPSAC 2007. 31st Annual International, vol. 2, pp. 367–378. IEEE (2007)

  27. Sherman, A.H.: On Newton-iterative methods for the solution of systems of nonlinear equations. SIAM J. Numer. Anal. 15(4), 755–771 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  28. Tibshirani, R., Saunders, M., Rosset, S., Zhu, J., Knight, K.: Sparsity and smoothness via the fused lasso. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 67(1), 91–108 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  29. Toh, K.C., Yun, S.: An accelerated proximal gradient algorithm for nuclear norm regularized linear least squares problems. Pac. J. Optim. 6(615–640), 15 (2010)

    MathSciNet  MATH  Google Scholar 

  30. Tron, R., Vidal, R.: A benchmark for the comparison of 3-d motion segmentation algorithms. In: IEEE Conference on Computer Vision and Pattern Recognition, 2007. CVPR’07, pp. 1–8. IEEE (2007)

  31. Wright, S., Nocedal, J.: Numerical Optimization, vol. 35, pp. 67–68. Springer, New York (1999)

    MATH  Google Scholar 

  32. Xin, B., Tian, Y., Wang, Y., Gao, W.: Background subtraction via generalized fused lasso foreground modeling (2015). arXiv preprint arXiv:1504.03707

  33. Zhou, X., Yang, C., Yu, W.: Moving object detection by detecting contiguous outliers in the low-rank representation. IEEE Trans. PAMI 35(3), 597–610 (2013)

    Article  Google Scholar 

  34. Zhou, Z., Li, X., Wright, J., Candes, E., Ma, Y.: Stable principal component pursuit. In: 2010 IEEE International Symposium on ISIT, pp. 1518–1522. IEEE (2010)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agwad ElTantawy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

ElTantawy, A., Shehata, M.S. MARO: matrix rank optimization for the detection of small-size moving objects from aerial camera platforms. SIViP 12, 641–649 (2018). https://doi.org/10.1007/s11760-017-1203-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-017-1203-7

Keywords

Navigation