Skip to main content
Log in

Iterative-based visualization-oriented fusion scheme for hyperspectral images

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

This article investigates a novel visualization-based fusion of hyperspectral image bands using an iterative approach. Given a multi-objective function and the pixel-based hyperspectral image fusion method, the optimization process is described as finding the optimal fusion parameters to improve the fusion performance. Accordingly, an iterative-based approach is adopted. In the first step, the fusion process is developed using the pixel-based fusion technique. In the second step, the fused image is produced, and the fusion quality is assessed for multi-objective function construction. For multi-objective formulation, we focus three desired properties of the fused image such as entropy, variance, and smoothness. In the last step, fusion parameters are updated iteratively by examining the objective function. Here, the self-adaptive learning particle swarm optimizer is used to refine the fusion parameters iteratively. Different hyperspectral images, such as Cuprite mining, AVIRIS Indian pines scene, are employed in the evaluation. Quantitative analysis of fused images is carried out through some efficient fusion metrics such as correlation coefficient, entropy, Q-average, ERGAS, SAM, and SID. Experimental results show that the proposed approach outperforms existing methods in terms of both objective function criteria and visual effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Amro, I., Mateos, J., Vega, M., Molina, R., Katsaggelos, A.K.: A survey of classical methods and new trends in pansharpening of multispectral images. EURASIP J. Adv. Signal Process. 2011(1), 1–22 (2011)

    Article  Google Scholar 

  2. Gonz’alez-Aud’ıcana, M., Saleta, J.L., Catal’an, R.G., Garc’ıa, R.: Fusion of multispectral and panchromatic images using improved IHS and PCA mergers based on wavelet decomposition. IEEE Trans. Geosci. Remote Sens. 42(6), 1291–1299 (2004)

    Article  Google Scholar 

  3. Li, S., Yang, B.: A new pan-sharpening method using a compressed sensing technique. IEEE Trans. Geosci. Remote Sens. 49(2), 738–746 (2011)

    Article  MathSciNet  Google Scholar 

  4. Liu, D., Boufounos, P.T.: Dictionary learning based pan-sharpening, In: Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Kyoto, Japan, pp. 2397–2400 (March 2012)

  5. Bioucas-Dias, J.M., Plaza, A., Dobigeon, N., Parente, M., Du, Q., Gader, P., Chanussot, J.: Hyperspectral unmixing overview: Geometrical, statistical, and sparse regression-based approaches. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens 5(2), 354–379 (2012)

    Article  Google Scholar 

  6. Chang, C.-I.: Hyperspectral Data Exploitation: Theory and Applications. Wiley, Hoboken (2007)

    Book  Google Scholar 

  7. Winter, M.E., Winter, E.: Resolution enhancement of hyperspectral data, In: Proceedings of IEEE Aerospace Conference, pp. 3–1523 (2002)

  8. Hardie, R.C., Eismann, M.T., Wilson, G.L.: MAP estimation for hyperspectral image resolution enhancement using an auxiliary sensor. IEEE Trans. Image Process. 13(9), 1174–1184 (2004)

    Article  Google Scholar 

  9. Yokoya, N., Yairi, T., Iwasaki, A.: Coupled nonnegative matrix factorization unmixing for hyperspectral and multispectral data fusion. IEEE Trans. Geosci. Remote Sens. 50(2), 528–537 (2012)

    Article  Google Scholar 

  10. Zhang, Y., He, M.: Multispectral and hyperspectral image fusion using 3-D WT. J. Electron. 24(2), 218–224 (2007)

    Google Scholar 

  11. Qian, S., Chen, G.: Enhancing spatial resolution of hyperspectral imagery using sensor’s intrinsic keystone distortion. IEEE Trans. Geosci. Remote Sens. 50(12), 5033–5048 (2012)

    Article  Google Scholar 

  12. Chan, J.C., Ma, J., Kempeneers, P., Canters, F.: Superresolution enhancement of hyperspectral CHRIS/Proba images with a thin-plate spline nonrigid transform model. IEEE Trans. Geosci. Remote Sens. 48(6), 2569–2579 (2010)

    Article  Google Scholar 

  13. Eismann, M.T., Hardie, R.C.: Hyperspectral resolution enhancement using high-resolution multispectral imagery with arbitrary response functions. IEEE Trans. Geosci. Remote Sens. 43(3), 455–465 (2005)

    Article  Google Scholar 

  14. Zhang, Y., De Backer, S., Scheunders, P.: Noise-resistant wavelet based Bayesian fusion of multispectral and hyperspectral images. IEEE Trans. Geosci. Remote Sens. 47(11), 3834–3842 (2009)

    Article  Google Scholar 

  15. Kotwal, K., Chaudhuri, S.: A Bayesian approach to visualization-oriented hyperspectral image fusion. Inf. Fus. 14(4), 349–360 (2013)

    Article  Google Scholar 

  16. Liang, J.J., Qin, A.K., Baskar, S.: Comprehensive learning particle swarm optimizer for global optimization of multimodal function. IEEE Trans. Evol. Comput. 10(3), 281–295 (2006)

    Article  Google Scholar 

  17. Wang, Y., Li, B., Weise, T., Wang, J., Yuan, B., Tian, Q.: Self-adaptive learning based particle swarm optimization. Inf. Sci. 181(20), 4515–4538 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Peng, J., Luo, T.: Sparse matrix transform-based linear discriminant analysis for hyperspectral image classification. Signal Image Video Process. 10(4), 761–768 (2016)

    Article  Google Scholar 

  19. Kumar, B.K.: Shreyamsha. Image fusion based on pixel significance using cross bilateral filter. Signal Image Video Process. 9(5), 1193–1204 (2015)

    Article  Google Scholar 

  20. Ülkü, İ., Töreyin, B.U.: Sparse coding of hyperspectral imagery using online learning. Signal Image Video Process. 9(4), 959–966 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Ablin.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (docx 257 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ablin, R., Sulochana, C.H. Iterative-based visualization-oriented fusion scheme for hyperspectral images. SIViP 12, 757–765 (2018). https://doi.org/10.1007/s11760-017-1217-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-017-1217-1

Keywords

Navigation