Skip to main content
Log in

Double iterative optimal dictionary learning-based SAR image filtering method

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

The KSVD algorithm has been a focus of image filtering research ever since it was first developed. However, this algorithm has a slow convergence rate for sparse coding, and dictionary updating via singular value decomposition is too complex. Consequently, the filtering efficiency is very low for large synthetic aperture radar images, and a significant amount of edge texture information is lost. To address these issues, this paper proposes a double iterative optimal dictionary (DIOD) learning algorithm. First, during the sparse coding process, a single iteration is performed to select the optimal and second most optimal dictionary atoms for representing the residual error, and the selected atoms are then updated according to the accumulation of dictionary coefficients. Next, the normalized and weighted reconstruction error is used to update the dictionary. The experimental results indicate that the DIOD algorithm provides better edge preservation and has better operational efficiency than the KSVD algorithm while maintaining a high peak-signal-to-noise ratio. This approach effectively avoids the repetitive occurrence of dictionary atoms in the iteration process, accelerates the convergence rate, and increases the sparsity of the sparse coding coefficients while simplifying the dictionary updating method, enabling rapid filtering of large synthetic aperture radar images, and achieving an improved filtering effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Arsenault, H.H.: Speckle suppression and analysis for synthetic aperture radar images. Opt. Eng. 25(5), 636–643 (1986)

    Google Scholar 

  2. Lopes, A., Touzi, R., Nezry, E.: Adaptive speckle filters and scene heterogeneity. IEEE Trans. Geosci. Remote Sens. 28(6), 992–1000 (1990)

    Article  Google Scholar 

  3. Kumar, B.K.S.: Image denoising based on non-local means filter and its method noise thresholding. Signal Image Video Process. 7(6), 1211–1227 (2013)

    Article  Google Scholar 

  4. Sumaiya, M.N., Kumari, R.S.S.: SAR image despeckling using heavy-tailed Burr distribution. Signal Image Video Process. 11(1), 49–55 (2016)

    Article  Google Scholar 

  5. Cui, H., Yan, G., Song, H.: A novel curvelet thresholding denoising method based on chi-squared distribution. Signal Image Video Process. 9(2), 491–498 (2015)

    Article  Google Scholar 

  6. Tian, X., Jiao, L., Zhang, X.: Despeckling SAR images based on a new probabilistic model in nonsubsampled contourlet transform domain. Signal Image Video Process. 8(8), 1459–1474 (2014)

    Article  Google Scholar 

  7. Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 12(7), 629–639 (1990)

    Article  Google Scholar 

  8. Gomez, L., Munteanu, C., Jacobo-Berlles, J., et al.: Evolut- ionary expert-supervised despeckled SRAD filter design for enhancing SAR images. IEEE Geosci. Remote Sens. Lett. 8(4), 814–818 (2011)

    Article  Google Scholar 

  9. Zhu, L., Zhao, X., Gu, M.: SAR image despeckling using improved detail-preserving anisotropic diffusion. Electron. Lett. 50(15), 1092–1093 (2014)

    Article  Google Scholar 

  10. Olshausen, B.A., Field, D.J.: Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature 381(6583), 607–609 (1996)

    Article  Google Scholar 

  11. Sadeghi, M., Babaie-Zadeh, M., Jutten, C.: Learning overcomplete dictionaries based on atom-by-atom updating. IEEE T Image Process. 62(4), 883–891 (2014)

    Article  MathSciNet  Google Scholar 

  12. Zhang, A.Q., Fu, Y., Li, H., et al.: Dictionary learning method for joint sparse representation-based image fusion. Opt. Eng. 52(5), 7006 (2013)

    Google Scholar 

  13. Dikmen, O., FéVotte, C.: Maximum marginal likelihood estimation for nonnegative dictionary learning. Proc. Int. Conf. Acoust. Speech Signal Process. (ICASSP‘ 11) 60(10), 1992–1995 (2011)

    Google Scholar 

  14. Rubinstein, R., Zibulevsky, M., Elad, M.: Efficient Imple- mentation of the K-SVD Algorithm Using Batch Orthogonal Matching Pursuit. Cs Technion 40, 1–15 (2008)

    Google Scholar 

  15. Zheng, H., Bouzerdoum, A., Phung, S,L.: Depth image super-resolution using multi-dictionary sparse representation. IEEE International Conference on Image Processing (ICIP), pp 957–961 (2013)

  16. Zdunek, R., Cichocki, A.: Improved M-FOCUSS algorithm with overlapping blocks for locally smooth sparse signals. IEEE Trans. Signal Process. 56(10), 4752–4761 (2008)

    Article  MathSciNet  Google Scholar 

  17. Sajjad, M., Mehmood, I., Baik, S.W.: Sparse coded image super-resolution using K-SVD trained dictionary based on regularized orthogonal matching pursuit. Bio-Med. Mater. Eng. 26(s1), 1399–1407 (2015)

    Article  Google Scholar 

  18. Donoho, D.L., Tsaig, Y., Drori, I., et al.: Sparse solution of underdetermined systems of linear equations by stagewise orthogonal matching pursuit. IEEE Trans. Inf. Theory 58(2), 1094–1121 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. Cen, Y., Wang, F., Zhao, R., et al.: Tree-based backtracking orthogonal matching pursuit for sparse signal reconstruction. J. Appl. Math. 2013(2), 1–8 (2013)

    MathSciNet  Google Scholar 

  20. Elad, M., Aharon, M.: Image denoising via sparse and redundant representations over learned dictionaries. IEEE T Image Process. 15(12), 3736–3745 (2006)

    Article  MathSciNet  Google Scholar 

  21. Rubinstein, R., Zibulevsky, M., Elad, M.: Double sparsity: learning sparse dictionaries for sparse signal approximation. IEEE Trans. Signal Process. 58(3), 1553–1564 (2010)

    Article  MathSciNet  Google Scholar 

  22. Lu, T., Li, S., Fang, L., et al.: SAR image despeckling via structural sparse representation. Sens. Imaging 17(1), 1–20 (2016)

    Article  Google Scholar 

  23. Luo, H., Chu, H., Xu, Y.: Clustering-based image sparse denoising in wireless multimedia sensor networks. Circ. Syst. Signal Process. 34(3), 1–14 (2015)

    Article  Google Scholar 

  24. Yang, S., Zhao, L., Wang, M., et al.: Dictionary learning and similarity regularization based image noise reduction. J. Vis. Commun. Image Represent. 24(2), 181–186 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

This project was supported by an Open Research Program of the Changjiang River Scientific Research Institute (Program SN: CKWV2016403/KY) and by the Beijing Research Institute of Uranium Geology (Program SN:RS HXY111-1). We would like to thank American Journal Experts (http://www.aje.com/) for producing the English language translation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunjun Zhan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhan, Y., Dai, T., Huang, J. et al. Double iterative optimal dictionary learning-based SAR image filtering method. SIViP 12, 783–790 (2018). https://doi.org/10.1007/s11760-017-1220-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-017-1220-6

Keywords

Navigation