Skip to main content
Log in

Human action recognition based on discriminant body regions selection

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

This paper introduces a new method for human action recognition based on human body skeleton. The proposed method is composed of two phases: an off-line phase which selects the most discriminant human body regions and an online phase to classify the request action. In both phases, we applied the cumulative skeletonized images matrix to extract the action features. The experimental study shows that the proposed method, thanks to salient regions selection and the two-level classification strategy, provides good results comparable in terms of recognition accuracy to the most known and recent state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Turaga, P., Chellappa, R., Subrahmanian, S., Udrea, O.: Machine recognition of human activities : a survey. J IEEE Trans. Circuits Syst. Video Technol. 18, 1473–1488 (2008)

    Article  Google Scholar 

  2. Gościewska, K., Frejlichowski, D.: Moment shape descriptors applied for action recognition in video sequences. In: Intelligent Information and Database Systems. ACIIDS 2017, vol. 10192, pp. 197–206 (2017)

  3. Shao, L., Chen, X.: Histogram of body poses and spectral regression discriminant analysis for human action categorization. In: The British Machine Vision Conference (BMVC), pp. 1–11 (2010)

  4. Ziaeefard, M., Ebrahimnezhad, H.: Hierarchical human action recognition by normalized-polar histogram. In: 20th International Conference in Pattern Recognition (ICPR), pp. 3720–3723 (2010)

  5. Han, L., Wu, X., Liang, W., Hou, G., Jia, Y.: Discriminative human action recognition in the learned hierarchical manifold space. J. Image Vis. Comput. 28, 836–849 (2010)

    Article  Google Scholar 

  6. Wang, W., Enescu, V., Sahli, H.: Adaptive real-time emotion recognition from body movements. ACM. Trans. Interact. Intell. Syst. 5, 1–18 (2016)

    Article  Google Scholar 

  7. Jiang, Z., Lin, Z., Davis, L.: Recognizing human actions by learning and matching shape-motion prototype trees. IEEE Trans. Pattern Anal. Mach. Intell. 34, 533–547 (2012)

    Article  Google Scholar 

  8. Sekma, M., Mejdoub M., Amar, C.B.: Human action recognition using temporal segmentation and accordion representation. In: International Conference on Computer Analysis of Images and Patterns, pp. 563–570 (2013)

  9. Moussa, M.M., Hamayed, E., Fayek, M.B., Nemr, H.A.E.: An enhanced method for human action recognition. J. Adv. Res. 6, 163–169 (2015)

    Article  Google Scholar 

  10. Wang, H., Klaser, A., Schmid C., Liu, C.L.: Action recognition by dense trajectories. In: International Conference of Computer Vision and Pattern Recognition (CVPR), pp. 3169–3176 (2011)

  11. Mahbub, U., Imtiaz, H., Ahad-Rahman, Md.A.: Action recognition based on statistical analysis from clustered flow vectors. J. Signal Image Video Process. 8, 243–253 (2014)

  12. Tsai, D.M., Chiu, W.Y., Lee, M.H.: Optical flow-motion history image (of-mhi) for action recognition. J. Signal Image Video Process. 9, 1897–1906 (2015)

    Article  Google Scholar 

  13. Pei, L., Ye, M., Zhao, X., Xiang, T., Li, T.: Learning spatio-temporal features for action recognition from the side of the video. J. Signal Image Video Process. 10, 199–206 (2016)

    Article  Google Scholar 

  14. Ravi, D., Wong, C., Lo, B., Yang, G.Z.: Deep learning for human activity recognition: a resource efficient implementation on low-power devices. In: 13th International Conference on Wearable and Implantable Body Sensor Networks, pp. 71–76 (2016)

  15. Johansson, G.: Visual perception of biological motion and a model for its analysis. J. Percept. Psychophys. 14, 201–211 (1973)

    Article  Google Scholar 

  16. Ding, C., Peng, H.: Minimum redundancy feature selection from microarray gene expression data. J. Bioinform. Comput. Biol. 30, 185–205 (2005)

    Article  Google Scholar 

  17. Kuijsten, J.: Adaptive alarm clock using movement detection to differentiate sleep phases. Ph.D. thesis, Eindhoven University Of Technology (2010)

  18. Hilitch, C.J.: Linear skeletons from square cupboards. J. Mach. Intell. 4, 403–420 (1969)

    Google Scholar 

  19. Saeed, K., Tabȩdzki, M., Rybnik, M., Adamski, M.: K3m: a universal algorithm for image skeletonization and a review of thinning techniques. Int. J. Appl. Math. Comput. Sci. 20, 317–335 (2010)

    Article  MATH  Google Scholar 

  20. Soofi, E.S.: Principal information theoretic approaches. J. Am. Stat. Assoc. 95, 1349–1353 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  21. Blank, M., Gorelick, L., Shechtman, E., Irani, M. , Basri, R.: Actions as space-time shapes. In: International Conference on Computer Vision, pp. 1395–1402 (2005)

  22. Jiang, Z., Lin, Z., Davis, L.: Recognizing human actions by learning and matching shape-motion prototype trees. J. Trans. Pattern Anal. Mach. Intell. 34, 533–547 (2012)

    Article  Google Scholar 

  23. Marill, T., Green, D.: On the effectiveness of receptors in recognition systems. J. IEEE Trans. Inf. Theory 9, 11–17 (1963)

    Article  Google Scholar 

  24. Pudil, P., Novovičová, J., Kittler, J.: Floating search methods in feature selection. J. Pattern Recognit. Lett. 15, 1119–1125 (1994)

    Article  Google Scholar 

  25. Seo, H.J., Milanfar, P.: Action recognition from one example. J. IEEE Trans. Pattern Anal. Mach. Intell. 33, 867–882 (2011)

    Article  Google Scholar 

  26. Zhang, Z., Tao, D.: Slow feature analysis for human action recognition. J. IEEE Trans. Pattern Anal. Mach. Intell. 34, 436–450 (2012)

    Article  Google Scholar 

  27. Jargalsaikhan, I., Little, S., Direkoglu, C., O’Connor, N.E.: Action recognition based on sparse motion trajectories. In: IEEE International Conference on Image Processing (ICIP), pp. 3982–3985 (2013)

  28. Luo, G., Yang, S., Tian, G., Yuan, C., Hu, W., Maybank, S.J.: Learning human actions by combining global dynamics and local appearance. J. IEEE Trans. Pattern Anal. Mach. Intell 36, 2466–2482 (2014)

    Article  Google Scholar 

  29. Elshourbagy, M., Hemayed, E., Fayek, M.: Enhanced bag of words using multilevel k-means for human activity recognition. Egypt. Inform. J. 17, 227–237 (2016)

    Article  Google Scholar 

  30. Deepak, N.A., Sinha, U.N.: Analysis of human gait for person identification and human action recognition. J. Commun. Appl. Electron. (CAE) 4, 1–4 (2016)

    Google Scholar 

  31. Liu, H., Shu, N., Tang, Q., Zhang, W.: Computational model based on neural network of visual cortex for human action recognition. J. IEEE Trans. Neural Netw. Learn. Syst. 99, 1–14 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hazar Mliki.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mliki, H., Zaafouri, R. & Hammami, M. Human action recognition based on discriminant body regions selection. SIViP 12, 845–852 (2018). https://doi.org/10.1007/s11760-017-1227-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-017-1227-z

Keywords

Navigation