Skip to main content
Log in

Skin lesion segmentation using object scale-oriented fully convolutional neural networks

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

Melanoma is the deadliest form of skin cancer, and its incidence level is increasing. It is important to obtain a diagnosis at an early stage to increase the patient survival rate. Skin lesion segmentation is a difficult problem in medical image analysis. To address this problem, we propose end-to-end object scale-oriented fully convolutional networks (OSO–FCNs) for skin lesion segmentation. Given a single skin lesion image, the proposed method produces a pixel-level mask for skin lesion areas. We found that the scale of the lesions in the training dataset affects a large number of the segmentation results of the lesions in the testing phase, and thus, a training strategy called object scale-oriented (OSO) training is proposed. First, the pre-trained network of VGG-16 is adapted and is transformed into fully convolutional networks (FCNs). Second, after very simple preprocessing, skin lesion images with boundary-level annotations are fed into the FCNs for fine-tuning training based on the pre-trained model using OSO training. During the OSO training, the training dataset is divided into 2 subsets according to an index called the object occupation ratio, and then the whole training dataset and the 2 subsets are used to train 3 different scale-oriented FCNs. A dataset provided by the International Skin Imaging Collaboration (ISIC), ISIC2016, is used for training and testing. Our algorithm is compared with the state-of-the-art algorithms, and the experimental results demonstrate that the segmentation accuracy of our algorithm is higher or very close to the performances of the other algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Siegel, R.L., Miller, K.D., Jemal, A.: Cancer statistics, 2018. CA Cancer J. Clin. 68(1), 7–30 (2018)

    Article  Google Scholar 

  2. American Cancer Society What are the key statistics about melanoma skin cancer? (2015). http://www.cancer.org/cancer/skincancer-melanoma/detailedguide/melanoma-skin-cancer-key-statistics. Accessed 16 Aug 2015

  3. Celebi, M.E., Iyatomi, H., Schaefer, G., Stoecker, W.V.: Lesion border detection in dermoscopy images. Comput. Med. Imaging Graph. 33(2), 148–153 (2009)

    Article  Google Scholar 

  4. Gutman, D., Codella, N.C.F., Celebi, E., Helba, B., Marchetti, M., Mishra, N., Halpern, A.: Skin lesion analysis toward melanoma detection: a challenge at the International Symposium on Biomedical Imaging (ISBI) 2016, hosted by the International Skin Imaging Collaboration (ISIC). In: IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018) (2016). arXiv:1605.01397 [cs.CV]

  5. Garnavi, R., Aldeen, M., Celebi, M.E., Varigos, G., Finch, S.: Border detection in dermoscopy images using hybrid thresholding on optimized color channels. Comput. Med. Imaging Graph. 35(2), 105–115 (2011)

    Article  Google Scholar 

  6. Celebi, E.M., Quan, W., Sae, H., Hitoshi, I., Gerald, S.: Lesion border detection in dermoscopy images using ensembles of thresholding methods. Skin Res. Technol. 19(1), e252–e258 (2013)

    Article  Google Scholar 

  7. Peruch, F., Bogo, F., Bonazza, M., Cappelleri, V.M., Peserico, E.: Simpler, faster, more accurate melanocytic lesion segmentation through MEDS. IEEE Trans. Biomed. Eng. 61(2), 557–565 (2013)

    Article  Google Scholar 

  8. Ma, Z., Tavares, J.M.R.S.: A novel approach to segment skin lesions in dermoscopic images based on a deformable model. IEEE J. Biomed. Health Inform. 20(2), 615–623 (2016)

    Article  Google Scholar 

  9. Zhou, H., Schaefer, G., Sadka, A.H., Celebi, M.E.: Anisotropic mean shift based fuzzy c-means segmentation of dermoscopy images. IEEE J. Sel. Top. Signal Process. 3(1), 26–34 (2009)

    Article  Google Scholar 

  10. Ashour, A.S., Hawas, A.R., Guo, Y., Wahba, M.A.: A novel optimized neutrosophic k-means using genetic algorithm for skin lesion detection in dermoscopy images. Signal Image Video Process. 12(7), 1311–1318 (2018)

    Article  Google Scholar 

  11. Gomez, D.D., Butakoff, C., Ersboll, B.K., Stoecker, W.: Independent histogram pursuit for segmentation of skin lesions. IEEE Trans. Biomed. Eng. 55(1), 157–161 (2008)

    Article  Google Scholar 

  12. Iyatomi, H., Oka, H., Celebi, M.E., Hashimoto, M., Hagiwara, M., Tanaka, M., Ogawa, K.: An improved Internet-based melanoma screening system with dermatologist-like tumor area extraction algorithm. Comput. Med. Imaging Graph. 32(7), 566–579 (2008)

    Article  Google Scholar 

  13. Celebi, M., Kingravi, H.H., Aslandogan, Y., Stoecker, W., Moss, R., Malters, J., Grichnik, J., Marghoob, A., Rabinovitz, H., Menzies, S.: Border detection in dermoscopy images using statistical region merging. Skin Res. Technol. 14(3), 347–353 (2008)

    Article  Google Scholar 

  14. Celebi, M.E., Asl, Y.A., Stoecker, W.V., Iyatomi, H., Oka, H., Chen, X.: Skin research and technology unsupervised border detection in dermoscopy images. Skin Res. Technol. 13(4), 377–384 (2007)

    Article  Google Scholar 

  15. Arakeri, M.P., Reddy, G.R.M.: Computer-aided diagnosis system for tissue characterization of brain tumor on magnetic resonance images. Signal Image Video Process. 9(2), 409–425 (2015)

    Article  Google Scholar 

  16. An, N.-Y., Pun, C.-M.: Color image segmentation using adaptive color quantization and multiresolution texture characterization. Signal Image Video Process. 8(5), 943–954 (2014)

    Article  Google Scholar 

  17. Celebi, M.E., Mendonca, T., Marques, J.S. (eds.): A state-of-the- art survey on lesion border detection in dermoscopy images. In: Dermoscopy image analysis, pp. 97-129. CRC Press, Boca Raton, FL (2015). https://www.taylorfrancis.com/books/9781482253269

  18. Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. 115(3), 211–252 (2015)

    Article  MathSciNet  Google Scholar 

  19. Lécun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  20. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. Adv. Neural. Inf. Process. Syst. 25(2), 1106–1114 (2012)

    Google Scholar 

  21. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition (2014). arXiv.org/abs/1409.1556

  22. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 79(10), 1337–1342 (2015)

    Google Scholar 

  23. Lecun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)

    Article  Google Scholar 

  24. Codella, N., Cai, J., Abedini, M., Garnavi, R., Halpern, A., Smith, J.R.: Deep learning, sparse coding, and SVM for melanoma recognition in dermoscopy images. In: International Workshop on Machine Learning in Medical Imaging, pp. 118–126 (2015)

  25. Yoshida, T., Celebi, M.E., Schaefer, G., Iyatomi, H.: Simple and effective pre-processing for automated melanoma discrimination based on cytological findings. In: 2016 IEEE International Conference on Big Data (Big Data), pp. 3439–3442. (2016)

  26. Barata, A.C.F., Celebi, E.M., Marques, J.: A survey of feature extraction in dermoscopy image analysis of skin cancer. IEEE J. Biomed. Health Inform. (2018). https://doi.org/10.1109/jbhi.2018.2845939

    Google Scholar 

  27. Jafari, M.H., Nasresfahani, E., Karimi, N., Soroushmehr, S.M.R., Samavi, S., Najarian, K.: Extraction of skin lesions from non-dermoscopic images using deep learning (2016). arXiv.org/abs/1609.02374

  28. Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 40(4), 834–848 (2018)

    Article  Google Scholar 

  29. Yuan, Y., Ming, C., Lo, Y.C.: Automatic skin lesion segmentation using deep fully convolutional networks with jaccard distance. IEEE Trans. Med. Imaging 36(9), 1876–1886 (2017)

    Article  Google Scholar 

  30. Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J.: Caffe: convolutional architecture for fast feature embedding. In: Proceedings of the 22nd ACM International Conference on Multimedia, pp. 675–678. Orlando, FL (2014)

  31. Yu, L., Chen, H., Dou, Q., Qin, J., Heng, P.A.: Automated melanoma recognition in dermoscopy images via very deep residual networks. IEEE Trans. Med. Imaging 36(4), 994–1004 (2017)

    Article  Google Scholar 

  32. Bi, L., Kim, J., Ahn, E., Kumar, A., Fulham, M., Feng, D.: Dermoscopic image segmentation via multistage fully convolutional networks. IEEE Trans. Biomed. Eng. 64(9), 2065–2074 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

This research was partly supported by the Guangxi Natural Science Foundation (2018JJB170004), the Guangxi Basic Ability Promotion Project for Young and Middle-aged Teachers (2017KY0247), the Project of Cultivating a Thousand Young and Middle-aged Teachers in Guangxi Universities, the Guangxi Key Laboratory Fund of Embedded Technology and Intelligent System (2018A-07), and the Guangxi Universities Key Laboratory Fund of Embedded Technology and Intelligent Information Processing (2017-1-1, 2017-2-4). Additionally, we would like to thank NVIDIA for providing the Titan X GPU used in this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi-gong Zhao.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, L., Zhao, Yg. & Yang, Tj. Skin lesion segmentation using object scale-oriented fully convolutional neural networks. SIViP 13, 431–438 (2019). https://doi.org/10.1007/s11760-018-01410-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-018-01410-3

Keywords

Navigation