Skip to main content
Log in

Vegetation segmentation based on variational level set using multi-channel local wavelet texture and color

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

The existing spectrum index-based methods for detecting vegetation coverage suffer from an over-dependence on spectrum. To address these issues, this paper proposes a graph cut-based variational level set segmentation algorithm that combines multi-channel local wavelet texture (MCLWT) and color. First, the prior color is generated by automatic estimation based on the mathematical morphology with a color histogram. Then, local wavelet texture features are extracted using a multi-scale and orientation Gabor wavelet transformation followed by local median and entropy filtering. Next, in addition to the energy of color, that of MCLWT is integrated into the variational level set model based on kernel density estimation. Consequently, all energies are integrated into the graph cut-based variational level set model. Finally, the proposed energy functional is made convex to obtain a global optimal solution, and a primal-dual algorithm with global relabeling is adopted to accelerate the evolution of the level sets. A comparison of the segmentation results from our proposed algorithm and other state-of-the-art algorithms showed that our algorithm effectively reduces the over-dependence on color and yields more accurate results in detecting vegetation coverage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Von Bargen, K., Woebbecke, D.M., Meyer, G.E., Mortensen, D.A.: Color indices for weed identification under various soil, residue, and lighting conditions. Trans. ASAE 38(1), 259–269 (1995)

    Article  Google Scholar 

  2. Meyer, G.E., Hindman, T.W., Laksmi, K.: Machine vision detection parameters for plant species identification. In: Photonics East (1999)

  3. Kataoka, T., Kaneko, T., Okamoto, H., Hata, S.: Crop growth estimation system using machine vision. In: 2003 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, 2003. AIM 2003. Proceedings, pp. b1079–b1083

  4. Meyer, G.E., Neto, J.C.: Verification of color vegetation indices for automated crop imaging applications. Comput. Electron. Agric. 63(2), 282–293 (2008)

    Article  Google Scholar 

  5. Hague, T., Tillett, N., Wheeler, H.: Automated crop and weed monitoring in widely spaced cereals. Precis. Agric. 7(1), 21–32 (2006)

    Article  Google Scholar 

  6. Ponti, M.P.: Segmentation of low-cost remote sensing images combining vegetation indices and mean shift. IEEE Geosci. Remote Sens. Lett. 10(1), 67–70 (2013)

    Article  Google Scholar 

  7. Bai, X., Zhiguo Cao, Y., Wang, Z.Y., Zhu, H., Zhang, X., Li, C.: Vegetation segmentation robust to illumination variations based on clustering and morphology modelling. Biosyst. Eng. 125(3), 80–97 (2014)

    Article  Google Scholar 

  8. Feng, Q., Liu, J., Gong, J.: Uav remote sensing for urban vegetation mapping using random forest and texture analysis. Remote Sens. 7(1), 1074–1094 (2015)

    Article  Google Scholar 

  9. Aksoy, S., Akcay, H.G., Wassenaar, T.: Automatic mapping of linear woody vegetation features in agricultural landscapes using very high resolution imagery. IEEE Trans. Geosci. Remote Sens. 48(1), 511–522 (2010)

    Article  Google Scholar 

  10. Nia, M.S., Wang, Z., Gader, P., Bohlman, S.A., Graves, S.J., Petrovic, M.: Impact of atmospheric correction and image filtering on hyperspectral classification of tree species using support vector machine. J. Appl. Remote Sens. 9(1), 095990 (2015)

    Article  Google Scholar 

  11. Osher, S., Sethian, J.: Fronts propagating with curvature dependent speed: algorithms based on Hamilton–Jacobi formulations. J. Comput. Phys. 79(1), 12–49 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  12. Liu, K., Wan, J., Han, Z.: Abnormal event detection and localization using level set based on hybrid features. Signal Image Video Process. 11(6), 1–7 (2017)

    Google Scholar 

  13. Shahvaran, Z., Kamran, K., Helfroush, M.S.: Simultaneous vector-valued image segmentation and intensity nonuniformity correction using variational level set combined with Markov random field modeling. Signal Image Video Process. 10(5), 887–893 (2016)

    Article  Google Scholar 

  14. Unger, M., Pock, T., Bischof, H.: Global relabeling for continuous optimization in binary image segmentation. In: Energy Minimization Methods in Computer Vision and Pattern Recognition, Lecture Notes in Computer Science , vol. 6819, pp. 104–117 (2011)

  15. Nikolova, M., Chan, T.F., Esedoglu, S.: Algorithms for finding global minimizers of image segmentation and denoising models. SIAM J. Appl. Math. 66(5), 1632–1648 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Yang, T., Huang, L., Hu, P.: Vegetation segmentation based on level set using local wavelet texture. In: 2016 IEEE 13th International Conference on Signal Processing, pp. 222–227

  17. Bresson, X., Esedoglu, S., Vandergheynst, P., Thiran, J.-P., Osher, S.: Fast global minimization of the active contour/snake model. J. Math. Imaging Vis. 28(2), 151–167 (2007)

    Article  MathSciNet  Google Scholar 

  18. Rother, C., Kolmogorov, V., Blake, A.: Grabcut: interactive foreground extraction using iterated graph cuts. ACM Trans. Graph. 23(3), 309–314 (2004)

    Article  Google Scholar 

  19. Yang, T., Huang, L., Jiang, C.: Wavelet and total variation based level set segmentation method for portraits. Int. J. Digit. Content Technol. Appl. 7(4), 973–982 (2013)

    Article  Google Scholar 

  20. Chan, T.F., Vese, L.A.: Active contours without edges. IEEE Trans. Image Process. 10(2), 266–277 (2001)

    Article  MATH  Google Scholar 

  21. Xie, Z., Wang, S., Dewen, H.: New insight at level set & Gaussian mixture model for natural image segmentation. Signal Image Video Process. 7(3), 521–536 (2013)

    Article  Google Scholar 

  22. Chang, J., Fisher, J.W.: Efficient MCMC sampling with implicit shape representations. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2081–2088 (2011)

  23. Cheng, Y.: Mean shift, mode seeking clustering. IEEE Trans. Pattern Anal. Mach. Intell. 17(8), 790–799 (1995)

    Article  Google Scholar 

  24. Gée, C., Bossu, J., Jones, G., Truchetet, F.: Crop/weed discrimination in perspective agronomic images. Comput. Electron. Agric. 60(1), 49–59 (2008)

    Article  Google Scholar 

  25. Neto, J.C.: A combined statistical-soft computing approach for classification and mappingweed species in minimum-tillage systems. Thesis (2006)

  26. Tian, L.F., Slaughter, D.C.: Environmentally adaptive segmentation algorithm for outdoor image segmentation. Comput. Electron. Agric. 21(3), 153–168 (1998)

    Article  Google Scholar 

  27. Bergasa, L.M., Mazo, M., Gardel, A., Sotelo, M.A., Boquete, L.: Unsupervised and adaptive Gaussian skin-color model. Image Vis. Comput. 18(12), 987–1003 (2000)

    Article  Google Scholar 

  28. Jones, M.J., Rehg, J.M.: Statistical color models with application to skin detection. Int. J. Comput. Vis. 46(1), 81–96 (2002)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This research was partly supported by the Guangdong Provincial Key Laboratory of Digital Signal and Image Processing Techniques (2013GDDSIPL-03) and by the Guangxi Basic Ability Promotion Project for Young and Middle-aged Teachers (2017KY0247).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhun Fan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, T., Chen, Y. & Fan, Z. Vegetation segmentation based on variational level set using multi-channel local wavelet texture and color. SIViP 12, 951–958 (2018). https://doi.org/10.1007/s11760-018-1239-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-018-1239-3

Keywords

Navigation