Skip to main content

Advertisement

Log in

Image quality assessment using block-based weighted SVD

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

Image quality is an important challenge in image processing. The quality measures should be designed in the direction where the correlation between the mathematical evaluation and subjective evaluation is high. We propose a new image quality assessment relying on block-based singular vectors. The corresponded distorted blocks are projected onto the singular vector matrices of the original blocks. These projection coefficients are the main quality attribute. The algorithm is further developed into the reduced reference method. Eigenvectors of the covariance matrix of all original blocks are used as the constant basis to compute the projecting coefficients of all original and distorted blocks. Simulation results on different databases with various distortion types and comparison to state-of-the-art methods show the proposed method in most cases gives the best correlation with human evaluation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. \(\parallel \mathbf X _{k\times k}\parallel _p=\left( \sum _{i=1}^k \sum _{j=1}^k \mid {a_{ij}}\mid ^p\right) ^{1/{p}}\).

References

  1. Wang, Z., Wu, G., Sheikh, H.R., Simoncelli, E.P., Yang, E.H., Bovik, A.C.: Quality-aware images, IEEE Trans. Image Process. 15(6), 1680–1689 (2006). Code source available [Online]: http://ece.uwaterloo.ca/~z70wang/research/ssim/

  2. Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. ACSSC 2, 1398–1402 (2003)

    Google Scholar 

  3. Yang, C.L., Gao, W.R., Po, L.M.: Discrete wavelet transform-based structural similarity for image quality assessment. In: ICIP 2008, pp. 377–380

  4. Wang, Z., Li, Q.: Information content weighting for perceptual image quality assessment. IEEE Trans. Image Process. 20(5), 1185–1198 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Sheikh, H.R., Bovik, A.C.: Image information and visual quality. IEEE Trans. Image Process. 15(2), 430–444 (2006)

    Article  Google Scholar 

  6. Zhu, J., Wang, N.: Image quality assessment by visual gradient similarity. IEEE Trans. Image Process. 21(3), 919–933 (2012). Code source available [Online]: http://www3.ntu.edu.sg/home/wslin/Publications.htm

  7. Zhang, L., Zhang, D., Mou, X.: RFSIM: a feature based image quality assessment metric using Riesz transforms. In: ICIP, pp. 321–324 (2010)

  8. Zhang, L., Zhang, D., Mou, X., Zhang, D.: FSIM: a feature similarity index for image quality assessment. IEEE Trans. Image Process. 20(8), 2378–2386 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Zhang, L., Shen, Y., Li, H.: VSI: A visual saliency-induced index for perceptual image quality assessment. IEEE Trans. Image Process. 23(10), 4270–4281 (2014). Source code available [online]: http://sse.tongji.edu.cn/linzhang/IQA/VSI/VSI.htm

  10. Alaei, A., Raveaux, r, Conte, D.: Image quality assessment based on regions of interest. Signal Image Video Proc. 11(4), 673–680 (2017)

    Article  Google Scholar 

  11. Shnayderman, A., Gusev, A., Eskicioglu, A.M.: An SVD-based grayscale image quality measure for local and global assessment. IEEE Trans. Image Process. 15(2), 422–429 (2006)

    Article  Google Scholar 

  12. Hu, A., Zhang, R., Yin, D., Zhan, Y.: Image quality assessment using a SVD-based structural projection. Signal Process. Image Commun. 29(3), 293–302 (2014)

    Article  Google Scholar 

  13. Yong, W., Yuqing, W., Xiaohui, Z.: Complex number-based image quality assessment using singular value decomposition. IET Image Proc. 10(2), 113–120 (2016)

    Article  Google Scholar 

  14. Torkamani-Azar, F., Amirshahi, S.A.: A new approach for image quality assessment using svd. In: ISSPA, Sharje (2007)

  15. Mansouri, A., MahmoudiAznaveh, A., Torkamani-Azar, F., Jahanshahi, J.: Image quality assessment using the singular value decomposition theorem. Opt. Rev. 16(2), 49–53 (2009)

    Article  Google Scholar 

  16. Mahmoudi-Aznaveh, A., Mansouri, A., Torkamani-Azar, F., Eslami, M.: Image quality measurement besides distortion type classifying. Opt. Rev. 16(1), 30–34 (2009). Code source available [Online]: http://www.ece.uwaterloo.ca/~z70wang/research/rriqa/index.html

  17. Wang, Z., Simoncelli, E.P.: Reduced-reference image quality assessment using a wavelet-domain natural image statistic model. In: SPIE Conference on Human Vision and Electronic Imaging, vol. 5666, pp. 149–159 (2005). Code source available [Online]: http://ece.uwaterloo.ca/~z70wang/

  18. Li, Q., Wang, Z.: Reduced-reference image quality assessment using divisive normalization-based image representation’. IEEE J. Sel. Top. Signal Process. 3(2), 202–211 (2009)

    Article  Google Scholar 

  19. Rehman, A., Wang, Z.: Reduced-reference image quality assessment by structural similarity estimation. IEEE Trans. Image Process. 21(8), 3378–3389 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  20. Soundararajan, R., Bovik, A.C.: RRED indices: reduced reference entropic differencing for image quality assessment. IEEE Trans. Image Process. 21(2), 517–526 (2012). Code source available [Online]: http://live.ece.utexas.edu/research/quality/

  21. Wu, J., Lin, W., Shi, G., Li, L., Fang, Y.: Orientation selectivity based visual pattern for reduced-reference image quality assessment. Inf. Sci. 351, 18–29 (2016)

    Article  Google Scholar 

  22. Liu, D., Xu, Y., Quan, Y., Le Callet, P.: Reduced reference image quality assessment using regularity of phase congruency. Signal Process. Image Commun. 29(8), 844–855 (2014)

    Article  Google Scholar 

  23. Wu, J., Lin, W., Shi, G., Liu, A.: Reduced-reference image quality assessment with visual information fidelity. IEEE Trans. Multimedia 15(7), 1700–1705 (2013)

    Article  Google Scholar 

  24. Jiang, Q., Shao, F., Lin, W., Gu, K., Jiang, G., Sunet, H.: Optimizing multi-stage discriminative dictionaries for blind image quality assessment. IEEE Trans. Multimedia (2017). https://doi.org/10.1109/TMM.2017.2763321

    Google Scholar 

  25. Wu, Q., Li, H., Wang, Z., Meng, F., Luo, B., Li, W., Ngan, K.N.: Blind image quality assessment based on rank-order regularized regression. IEEE Trans. Multimedia 19(11), 2490–2504 (2017)

    Article  Google Scholar 

  26. Ma, K., Liu, W., Liu, T., Liu, T., Wang, Z., Tao, D.: dipIQ: blind image quality assessment by learning-to-rank discriminable image pairs. IEEE Trans. Image Process. 26(8), 3951–3964 (2017)

    Article  MathSciNet  Google Scholar 

  27. Wu, Q., Li, H., Meng, F., Ngan, K.N., Luo, B., Huang, C., Zeng, B.: Blind image quality assessment based on multichannel feature fusion and label transfer. IEEE Trans. Circuits Syst. Video Technol. 26(3), 425–440 (2016)

    Article  Google Scholar 

  28. Wu, Q., Li, H., Ngan, K.N., Ma, K.: Blind image quality assessment using local consistency aware retriever and uncertainty aware evaluator. IEEE Trans. Circuits Syst. Video Technol. (2017). https://doi.org/10.1109/TCSVT.2017.2710419

    Google Scholar 

  29. Sheikh, H.R., Sabir, M.F., Bovik, A.C.: A statistical evaluation of recent full reference image quality assessment algorithms. IEEE Trans. Image Process. 15(11), 3440–3451 (2006)

    Article  Google Scholar 

  30. Gonzalez, R.C., Woods, R.E.: Digital Image Processing, 2nd edn. Prentice-Hall, Upper Saddle Rive (2002)

    Google Scholar 

  31. Amirshahi, S.A., Torkamani-Azar, F.: Human optic sensitivity computation based on singular value decomposition. Opt. Appl. 42(1), 137146 (2012)

    Google Scholar 

  32. Yang, J., Yang, J.Y.: From image vector to matrix: a straightforward image projection techniqueIMPCA vs. PCA. Pattern Recognit. 35(9), 1997–1999 (2002)

    Article  MATH  Google Scholar 

  33. Larson, E.C., Chandler, D.M.: Most apparent distortion: full-reference image quality assessment and the role of strategy. J. Electron. Imaging 19(1), 011006–1-011006-21 (2010). https://doi.org/10.1117/1.3267105

  34. Ponomarenko, N., Jin, L., Ieremeiev, O., Lukin, V., Egiazarian, K., Astola, J., Vozel, B., Chehdi, K., Carli, M., Battisti, F., Jay Kuo, C.-C.: Image database TID2013: peculiarities, results and perspectives. Signal Process. Image Commun. 30, 57–77 (2015)

    Article  Google Scholar 

  35. Jayaraman, D., Mittal, A., Moorthy, A.K., Bovik, A.C.: Objective quality assessment of multiply distorted images, ACSSC (2012), [Online]. https://utexas.app.box.com/v/LIVEmultidistortiondatabase

  36. Final Report From the Video Quality Experts Group on the Validation of Objective Models of Video Quality Assessment II (2003), [Online]. https://www.its.bldrdoc.gov/vqeg/projects/frtv-phase-ii/frtv-phase-ii.aspx

Download references

Acknowledgements

This work has been prepared while F. Torkamani Azar was a visiting professor at School of Computing University of Eastern Finland, Joensuu Campus. She would like to express her gratitude from Shahid Beheshti University as well as Eastern Finland University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farah Torkamani-Azar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Torkamani-Azar, F., Parkkinen, J. Image quality assessment using block-based weighted SVD. SIViP 12, 1337–1344 (2018). https://doi.org/10.1007/s11760-018-1287-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-018-1287-8

Keywords

Navigation