Skip to main content
Log in

Hurst exponent estimation from short time series

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

Fractal investigation of time series is very complex for several reasons. Due to the existence of fully continuous model, on which the majority of conventional methods are based, the quality of Hurst exponent estimate is often influenced by the number of input data and its sampling rate. In this work, we present a novel approach of unbiased Hurst exponent estimate that is suitable especially for short time series. The crucial idea is deriving the discrete fractional Brownian bridge and its statistical properties that can be subsequently used for model parameter estimation. For the verification and demonstration of efficiency of the method, several generators of fractional Gaussian noise are presented and tested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Abry, P., Sellan, F.: The wavelet-based synthesis for fractional Brownian motion proposed by F. Sellan and Y. Meyer: remarks and fast implementation. Appl. Comput. Harmon. Anal. 3(4), 377–383 (1996). https://doi.org/10.1006/acha.1996.0030

    Article  MathSciNet  MATH  Google Scholar 

  2. Borowska, M., Borys, K., Szarmach, J., Oczeretko, E.: Fractal dimension in textures analysis of xenotransplants. Signal Image Video Process. 11(8), 1461–1467 (2017). https://doi.org/10.1007/s11760-017-1108-5

    Article  Google Scholar 

  3. Campanharo, A., Ramos, F.M.: Hurst exponent estimation of self-affine time series using quantile graphs. Physica A Stat. Mech. Appl. 444, 43–48 (2016). https://doi.org/10.1016/j.physa.2015.09.094

    Article  MATH  Google Scholar 

  4. Cherouat, S., Soltani, F., Schmitt, F., Daout, F.: Using fractal dimension to target detection in bistatic SAR data. Signal Image Video Process. 9(2), 365–371 (2013). https://doi.org/10.1007/s11760-013-0453-2

    Article  Google Scholar 

  5. Dietrich, C.R., Newsam, G.N.: Fast and exact simulation of stationary gaussian processes through circulant embedding of the covariance matrix. SIAM J. Sci. Comput. 18(4), 1088–1107 (1997). https://doi.org/10.1137/s1064827592240555

    Article  MathSciNet  MATH  Google Scholar 

  6. Dlask, M., Kukal, J., Tran, Q.V.: Revisited zero-crossing method for hurst exponent estimation in time series. In: Martincik, D. (ed.) Mathematical Methods in Economics Proceedings 2015, vol. 1, pp. 115–120. University of West Bohemia, Plzen, University of West Bohemia, Cheb (2015)

    Google Scholar 

  7. Falconer, K.: Fractal Geometry: Mathematical Foundations and Applications. Wiley, Chichester (2003)

    Book  MATH  Google Scholar 

  8. Han, D., Chung, J.: Self-similar traffic end-to-end delay minimization multipath routing algorithm. IEEE Commun. Lett. 18(12), 2121–2124 (2014). https://doi.org/10.1109/lcomm.2014.2362747

    Article  Google Scholar 

  9. Hanmandlu, M., Choudhury, D., Dash, S.: Detection of defects in fabrics using topothesy fractal dimension features. Signal Image Video Process. 9(7), 1521–1530 (2014). https://doi.org/10.1007/s11760-013-0604-5

    Article  Google Scholar 

  10. Hurst, H.E.: Methods of using long-term storage in reservoirs. Proc. Inst. Civ. Eng. 5(5), 519–543 (1956). https://doi.org/10.1680/iicep.1956.11503

    Google Scholar 

  11. Oleg, I., Sheluhin, M.: Self-Similar Processes in Telecommunications. Wiley, Chichester (2007)

    Google Scholar 

  12. Incio, P., Freire, M.: Fast synthesis of persistent fractional brownian motion. ACM Trans. Model. Comput. Simul. 22(2), 1–21 (2012). https://doi.org/10.1145/2133390.2133395

    Article  MathSciNet  Google Scholar 

  13. Ionescu, C.M., Sabatier, J., Machado, J.A.T.: Special issue: fractional signals and systems. Signal Image Video Process. 6(3), 341–342 (2012). https://doi.org/10.1007/s11760-012-0313-5

    Article  Google Scholar 

  14. Istas, J., Lang, G.: Quadratic variations and estimation of the local hölder index of a gaussian process. Ann. de l’Institut Henri Poincare (B) Prob. Stat. 33(4), 407–436 (1997). https://doi.org/10.1016/s0246-0203(97)80099-4

    Article  MATH  Google Scholar 

  15. Jefferies, B.R.: Spectral Properties of Noncomputing Operators. Lecture Notes in Mathematics. Springer, Berlin (2004)

    Book  MATH  Google Scholar 

  16. Julian, M., Alcaraz, R., Rieta, J.J.: Application of hurst exponents to assess atrial reverse remodeling in paroxysmal atrial fibrillation. Physiol. Meas. 36(11), 2231–2246 (2015). https://doi.org/10.1088/0967-3334/36/11/2231

    Article  Google Scholar 

  17. Lowen, S.B.: Generation of fractional brownian motion for simulation of infrared foal-plane array calibration drift. Methodol. Comput. Appl. Prob. 1(4), 445–456 (1999). https://doi.org/10.1023/a:1010027211901

    Article  MATH  Google Scholar 

  18. Ludena, C., Lavielle, M.: The whittle estimator for strongly dependent stationary gaussian fields. Scand. J. Stat. 26(3), 433–450 (1999). https://doi.org/10.1111/1467-9469.00158

    Article  MathSciNet  MATH  Google Scholar 

  19. Luo, J., Xie, Z., Xie, M.: Interpolated DFT algorithms with zero padding for classic windows. Mech. Syst. Signal Process. 70–71, 1011–1025 (2016). https://doi.org/10.1016/j.ymssp.2015.09.045

    Article  Google Scholar 

  20. Makarava, N., Holschneider, M.: Estimation of the hurst exponent from noisy data: a bayesian approach. Eur. Phys. J. B 85(8), 5 (2012). https://doi.org/10.1140/epjb/e2012-30221-1

    Article  Google Scholar 

  21. Mandelbrot, B., Ness, J.V.: Fractional brownian motions, fractional noises and applications. SIAM Rev. 10(4), 422–437 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  22. Mansuy, R.: Aspects of Brownian Motion. Springer, Altona (2008)

    Book  MATH  Google Scholar 

  23. Maxim, V., Sendur, L.: Fractional gaussian noise, functional MRI and alzheimers disease. NeuroImage 25(1), 141–158 (2005). https://doi.org/10.1016/j.neuroimage.2004.10.044

    Article  Google Scholar 

  24. Ming, L.: Fractional Gaussian noise and network traffic modeling. In: A. Cañada, P. Drábek, A. Fonda (eds.) Proceedings of the 8th WSEAS International Conference on Applied Computer and Applied Computational Science, vol. 1, pp. 34–39. School of Information Science Technology East China Normal University, Hangzhou (2009)

  25. Mohindru, P., Khanna, R., Bhatia, S.S.: New tuning model for rectangular windowed FIR filter using fractional fourier transform. Signal Image Video Process. 9(4), 761–767 (2013). https://doi.org/10.1007/s11760-013-0515-5

    Article  Google Scholar 

  26. Seber, G., Wild, C.: Nonlinear Regression. Wiley, Hoboken (2003)

    MATH  Google Scholar 

  27. Suman, S., Kumar, A., Singh, G.K.: A new method for higher-order linear phase FIR digital filter using shifted chebyshev polynomials. Signal Image Video Process. 10(6), 1041–1048 (2015). https://doi.org/10.1007/s11760-015-0856-3

    Article  Google Scholar 

  28. Tam, C.M.: Fractional Brownian motions in financial models and their Monte Carlo simulation. In: Recent Advances in Financial Engineering 2012. World Scientific Publishing Co Pvt Ltd (2014). https://doi.org/10.1142/9789814571647_0007

  29. Theiler, J.: Efficient algorithm for estimating the correlation dimension from a set of discrete points. Phys. Rev. A 36(9), 4456–4462 (1987). https://doi.org/10.1103/physreva.36.4456

    Article  MathSciNet  Google Scholar 

  30. Tran, Q.V., Jan, K.: Visual recurrent analysis and its application on the czech stock market. Politick Ekonom. 57(3), 305–322 (2009)

    Article  Google Scholar 

  31. Tzouras, C.A., McCoy, E.: Financial time series modeling using the hurst exponent. Physica A Stat. Mech. Appl. 425, 50–68 (2015). https://doi.org/10.1016/j.physa.2015.01.031

    Article  Google Scholar 

  32. Vahid, F.: Digital Design with RTL Design, Verilog and VHDL. Wiley, Hoboken (2011)

    Google Scholar 

  33. Wu, Y., Verdu, S.: Renyi information dimension: fundamental limits of almost lossless analog compression. IEEE Trans. Inform. Theory 56(8), 3721–3748 (2010). https://doi.org/10.1109/tit.2010.2050803

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The paper was created with the support of the Grant SGS14/208/OHK4/3T/14 as Student Grant Competition at the Czech Technical University in Prague.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Dlask.

Appendices

Appendix A: MATLAB code of fractional Brownian bridge

The following code provides the calculation of the dfBB (Xk) and fBB (Mk) of the given time series x.

figure a

Appendix B: MATLAB code of autocorrelation function of dfBB

The following code provides the calculation of the mth autocorrelation coefficient of theoretical dfBB constructed from the bridge of length N and Hurst coefficient H.

figure b

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dlask, M., Kukal, J. Hurst exponent estimation from short time series. SIViP 13, 263–269 (2019). https://doi.org/10.1007/s11760-018-1353-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-018-1353-2

Keywords

Navigation