Skip to main content
Log in

A thresholding algorithm for sparse recovery via Laplace norm

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

The last decade has witnessed rapidly growing interest in the studies of compressed sensing. \(\ell _{p}\) norm, an approximation to \(\ell _{0}\) norm, can be used to recover a sparse signal from underdetermined linear systems. In comparison with \(\ell _{p}\) norm, another approximation called Laplace norm is a closer approximation to \(\ell _{0}\) norm. The thresholding algorithm is a simple and efficient iterative process to solve the regularization problem. In this paper, we derive the thresholding point and a quasi-analytic thresholding representation for the Laplace regularization, and then a thresholding algorithm for the Laplace regularization is proposed. The numerical results show that the proposed algorithm has higher recovery rate than the \(\ell _{p}\) thresholding algorithms. This thresholding representation can be easily incorporated into the iterative thresholding framework to provide a tool for sparsity problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Candès, E.J., Romberg, J., Tao, T.: Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 52(2), 489–509 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  2. Candès, E.J., Romberg, J.K.: Practical signal recovery from random projections. In: Proceedings of SPIE—The International Society for Optical Engineering, p. 5674 (2004)

  3. Candès, E.J., Tao, T.: Near-optimal signal recovery from random projections: universal encoding strategies? IEEE Trans. Inf. Theory 52(12), 5406–5425 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. Donoho, D.L.: Compressed sensing. IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Abolghasemi, V., Ferdowsi, S., Sanei, S.: Fast and incoherent dictionary learning algorithms with application to fMRI. Signal Image Video Process. 9(1), 147–158 (2015)

    Article  Google Scholar 

  6. Lustig, M., Donoho, D., Pauly, J.M.: Sparse MRI: the application of compressed sensing for rapid mr imaging. Magn. Reson. Med. 58(6), 1182–1195 (2007)

    Article  Google Scholar 

  7. Liu, J., Xu, S., Gao, X., Li, X.: Compressive radar imaging methods based on fast smoothed \(\ell _{0}\) algorithm. Procedia Eng. 29(4), 2209–2213 (2012)

    Google Scholar 

  8. Duarte, M.F., Davenport, M.A., Takhar, D., Laska, J.N., Sun, T., Kelly, K.F., Baraniuk, R.G.: Single-pixel imaging via compressive sampling. IEEE Signal Process. Mag. 25(2), 83–91 (2008)

    Article  Google Scholar 

  9. Du, H., Zhang, X., Hu, Q., Hou, Y.: Sparse representation-based robust face recognition by graph regularized low-rank sparse representation recovery. Neurocomputing 164, 220–229 (2015)

    Article  Google Scholar 

  10. Mao, Q., Zhou, B., Zou, Q., Li, Q.: Efficient and lossless compression of raster maps. Signal Image Video Process. 9(1), 133–145 (2015)

    Article  Google Scholar 

  11. Wang, Q., Qu, G.: Extended omp algorithm for sparse phase retrieval. Signal Image Video Process. 11(8), 1397–1403 (2017)

    Article  Google Scholar 

  12. Ahmed, A.A.: An optimal complexity H. 264/AVC encoding for video streaming over next generation of wireless multimedia sensor networks. Signal Image Video Process. 10(6), 1143–1150 (2016)

    Article  Google Scholar 

  13. Haupt, J., Bajwa, W.U., Rabbat, M., Nowak, R.: Compressed sensing for networked data. IEEE Signal Process. Mag. 25(2), 92–101 (2008)

    Article  Google Scholar 

  14. Natarajan, B.K.: Sparse approximate solutions to linear systems. SIAM J. Comput. 24(2), 227–234 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  15. Zou, H.: The adaptive lasso and its oracle properties. J. Am. Stat. Assoc. 101(476), 1418–1429 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Chartrand, R., Staneva, V.: Restricted isometry properties and nonconvex compressive sensing. Inverse Probl. 24(3), 657–682 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. Xu, Z., Zhang, H., Wang, Y.: \({L}_{1/2}\) regularization. Sci. China 53(6), 1159–1169 (2010)

    MathSciNet  Google Scholar 

  18. He, R., Yuan, X., Zheng, W.S.: A fast convex conjugated algorithm for sparse recovery. Neurocomputing 115, 178–185 (2013)

    Article  Google Scholar 

  19. Huang, X., Liu, Y., Shi, L., Huffel, S.V., Suykens, J.: Two-level \(\ell _{1}\) minimization for compressed sensing. Signal Process. 108, 459–475 (2015)

    Article  Google Scholar 

  20. Yang, Z.Z., Yang, Z.: Fast linearized alternating direction method of multipliers for the augmented \(\ell _{1}\)-regularized problem. Signal Image Video Process. 9(7), 1601–1612 (2015)

    Article  Google Scholar 

  21. Blumensath, T., Davies, M.E.: Iterative thresholding for sparse approximations. J. Fourier Anal. Appl. 14(5), 629–654 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. Daubechies, I., Defrise, M., Mol, C.D.: An iterative thresholding algorithm for linear inverse problems with a sparsity constraint. Commun. Pure Appl. Math. 57(11), 1413–1457 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  23. Xu, Z., Chang, X., Xu, F., Zhang, H.: \({L}_{1/2}\) regularization: a thresholding representation theory and a fast solver. IEEE Trans. Neural Netw. Learn. Syst. 23(7), 1013–1027 (2012)

    Article  Google Scholar 

  24. Yu, H., Miao, C.: General thresholding representation for the \({L}_{p}\) regularization problem. In: Biomedical Imaging (ISBI), 2014 IEEE 11th International Symposium on IEEE (2014)

  25. Wang, Y., Liu, P., Li, Z., Sun, T., Yang, C., Zheng, Q.: Data regularization using Gaussian beams decomposition and sparse norms. J. Inverse Ill-Posed Probl. 21(1), 1–23 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  26. Zeng, J., Lin, S., Xu, Z.: Sparse regularization: convergence of iterative jumping thresholding algorithm. IEEE Trans. Signal Process. 64(19), 5106–5118 (2016)

    Article  MathSciNet  Google Scholar 

  27. Miao, C., Yu, H.: A general-thresholding solution for \(\ell _{p}(0<p<1)\) regularized CT reconstruction. IEEE Trans. Image Process. 24(12), 5455–5468 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is partially supported by the National Natural Science Foundation of China under Grants 61271012 and 61671004.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gangrong Qu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Qu, G. & Han, G. A thresholding algorithm for sparse recovery via Laplace norm. SIViP 13, 389–395 (2019). https://doi.org/10.1007/s11760-018-1367-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-018-1367-9

Keywords

Navigation