Skip to main content
Log in

Sparse time–frequency distributions based on the \(\ell _1\)-norm minimization with the fast intersection of confidence intervals rule

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

Methods based on the sparsity constraint have been recently introduced to the time–frequency (TF) signal processing, achieving artifact suppression by exploiting the fact that most real-life signals are sparse in the TF domain. In this paper, we propose a sparse reconstruction algorithm based on the two-step iterative shrinkage/thresholding (TwIST) algorithm. In the proposed TwIST algorithm modification, the soft-thresholding value is adaptively determined by the fast intersection of the confidence intervals (FICI) rule in each iteration of the reconstruction algorithm. The FICI rule is used to determine the TF region with the lowest mean value, and the soft-thresholding value is set to the largest sample value inside the region. The performance of the proposed algorithm has been compared to the performance of the state-of-the-art reconstruction algorithms in terms of their execution time and concentration of the resulting TF distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. The authors wish to thank Curtis Condon, Ken White, and Al Feng of the Beckman Institute of the University of Illinois for the bat data and for permission to use it in this paper.

References

  1. Candès, E.J., Romberg, J., Tao, T.: Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 52(2), 489–509 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  2. Donoho, D.: Compressed sensing. IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  3. Barkan, O., Weill, J., Averbuch, A., Dekel, S.: Adaptive compressed tomography sensing. In: 2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2195–2202 (2013)

  4. Gramfort, A., Strohmeier, D., Haueisen, J., Hmlinen, M., Kowalski, M.: Time–frequency mixed-norm estimates: sparse M/EEG imaging with non-stationary source activations. NeuroImage 70, 410–422 (2013)

    Article  Google Scholar 

  5. Bioucas-Dias, J.M., Figueiredo, M.A.: A new TwIST: two-step iterative shrinkage/thresholding algorithms for image restoration. IEEE Trans. Image Process. 16(12), 2992–3004 (2007)

    Article  MathSciNet  Google Scholar 

  6. Romberg, J.: Imaging via compressive sampling [introduction to compressive sampling and recovery via convex programming]. IEEE Signal Process. Mag. 25(2), 14–20 (2008)

    Article  Google Scholar 

  7. Afonso, M., Bioucas-Dias, J., Figueiredo, M.: Fast image recovery using variable splitting and constrained optimization. IEEE Trans. Image Process. 19(9), 2345–2356 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. El Mouatasim, A., Wakrim, M.: Control subgradient algorithm for image \(\ell _1\) regularization. Signal Image Video Process. 9(1), 275–283 (2015)

    Article  Google Scholar 

  9. Lan, X., Ma, A.J., Yuen, P.C.: Multi-cue visual tracking using robust feature-level fusion based on joint sparse representation. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1194–1201 (2014)

  10. Lan, X., Ma, A.J., Yuen, P.C., Chellappa, R.: Joint sparse representation and robust feature-level fusion for multi-cue visual tracking. IEEE Trans. Image Process. 24(12), 5826–5841 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Lan, X., Zhang, S., Yuen, P.C., Chellappa, R.: Learning common and feature-specific patterns: a novel multiple-sparse-representation-based tracker. IEEE Trans. Image Process. 27(4), 2022–2037 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gholami, A.: Sparse time–frequency decomposition and some applications. IEEE Trans. Geosci. Remote Sens. 51(6), 3598–3604 (2013)

    Article  Google Scholar 

  13. Flandrin, P., Borgnat, P.: Time–frequency energy distributions meet compressed sensing. IEEE Trans. Signal Process. 58(6), 2974–2982 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Stankovic, L., Orovic, I., Stankovic, S., Amin, M.: Compressive sensing based separation of nonstationary and stationary signals overlapping in time–frequency. IEEE Trans. Signal Process. 61(18), 4562–4572 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Stankovic, L., Stankovic, S., Orovic, I., Amin, M.G.: Robust time–frequency analysis based on the L-estimation and compressive sensing. IEEE Signal Process. Lett. 20(5), 499–502 (2013)

    Article  MATH  Google Scholar 

  16. Orović, I., Stanković, S., Thayaparan, T.: Time–frequency-based instantaneous frequency estimation of sparse signals from incomplete set of samples. IET Signal Process. 8(3), 239–245 (2014)

    Article  Google Scholar 

  17. Volaric, I., Sucic, V., Car, Z.: A compressive sensing based method for cross-terms suppression in the time–frequency plane. In: 2015 IEEE 15th International Conference on Bioinformatics and Bioengineering (BIBE), pp. 1–4 (2015)

  18. Volaric, I., Sucic, V.: On the noise impact in the l1 based reconstruction of the sparse time–frequency distributions. In: 2016 International Conference on Broadband Communications for Next Generation Networks and Multimedia Applications (CoBCom), pp. 1–6 (2016)

  19. Volaric, I., Sucic, V., Stankovic, S.: A data driven compressive sensing approach for time–frequency signal enhancement. Signal Process. 141, 229–239 (2017)

    Article  Google Scholar 

  20. Boashash, B.: Time–Frequency Signal Analysis and Processing: A Comprehensive Reference, 2nd edn. Elsevier, Amsterdam (2016)

    Google Scholar 

  21. Becker, S., Bobin, J., Candès, E.J.: NESTA: a fast and accurate first-order method for sparse recovery. SIAM J. Imaging Sci. 4(1), 1–39 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. Yang, J., Zhang, Y.: Alternating direction algorithms for \(\ell _1\)-problems in compressive sensing. SIAM J. Sci. Comput. 33(1), 250–278 (2011)

    Article  MathSciNet  Google Scholar 

  23. Volaric, I., Lerga, J., Sucic, V.: A fast signal denoising algorithm based on the LPA–ICI method for real-time applications. Circuits Syst. Signal Process. 36(11), 4653–4669 (2017)

    Article  Google Scholar 

  24. Figueiredo, M.A., Nowak, R.D., Wright, S.J.: Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problems. IEEE J. Sel. Top. Signal Process. 1(4), 586–597 (2007)

    Article  Google Scholar 

  25. Daubechies, I., Defrise, M., De Mol, C.: An iterative thresholding algorithm for linear inverse problems with a sparsity constraint. Commun. Pure Appl. Math. 57, 1416–1457 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  26. Wright, S.J., Nowak, R.D., Figueiredo, M.A.: Sparse reconstruction by separable approximation. IEEE Trans. Signal Process. 57(7), 2479–2493 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  27. Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci. 2(1), 183–202 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  28. Needell, D., Tropp, J.: Cosamp: iterative signal recovery from incomplete and inaccurate samples. Appl. Comput. Harmon. Anal. 26(3), 301–321 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  29. Blumensath, T.: Accelerated iterative hard thresholding. Signal Process. 92(3), 752–756 (2012)

    Article  Google Scholar 

  30. Foucart, S.: Hard thresholding pursuit: an algorithm for compressive sensing. SIAM J. Numer. Anal. 49(6), 2543–2563 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  31. Qiu, K., Dogandzic, A.: Sparse signal reconstruction via ECME hard thresholding. IEEE Trans. Signal Process. 60(9), 4551–4569 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  32. Zhang, Z., Xu, Y., Yang, J., Li, X., Zhang, D.: A survey of sparse representation: algorithms and applications. IEEE Access 3, 490–530 (2015)

    Article  Google Scholar 

  33. Lerga, J., Vrankic, M., Sucic, V.: A signal denoising method based on the improved ICI rule. IEEE Signal Process. Lett. 15, 601–604 (2008)

    Article  MATH  Google Scholar 

  34. Stankovic, L.: A measure of some time–frequency distributions concentration. Signal Process. 81(3), 621–631 (2001)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor Sucic.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Volaric, I., Sucic, V. Sparse time–frequency distributions based on the \(\ell _1\)-norm minimization with the fast intersection of confidence intervals rule. SIViP 13, 499–506 (2019). https://doi.org/10.1007/s11760-018-1375-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-018-1375-9

Keywords

Navigation