Skip to main content
Log in

Parametric PSF estimation based on predicted-SURE with \(\ell _1\)-penalized sparse deconvolution

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

Point spread function (PSF) estimation plays an important role in blind image deconvolution. It has been shown that incorporating Wiener filter, minimization of the predicted Stein’s unbiased risk estimate (p-SURE)—unbiased estimate of predicted mean squared error—could yield an accurate PSF estimate. In this paper, we provide a theoretical analysis for the PSF estimation error, which shows that the better deconvolution leads to more accurate PSF estimate. It motivates us to incorporate an \(\ell _1\)-penalized sparse deconvolution into the p-SURE minimization, instead of the Wiener-type filtering. In particular, based on FISTA—one of the most popular iterative \(\ell _1\)-solvers, we evaluate the p-SURE for each update, by Jacobian recursion and Monte Carlo simulation. Numerical results of both synthetic and real experiments demonstrate the improvements in PSF estimate, and therefore, deconvolution performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. See [13, 25] for a few parametric examples.

  2. The optimal solution \(\mathbf {s}^\star \) may not be unique. The uniqueness of the solution depends on the specific parametric form of PSF.

  3. This similar phenomenon is also frequently encountered in non-blind sparse deconvolution (where \(\mathbf {H}\) is exactly known), especially when the regularization parameter \(\lambda \) is very small. Refer to Fig. 2-(1) of [26], Fig. 2-(2) of [29] and Fig. 2-(2) of [28] for the typical examples with \(\ell _1\) or total variation as regularizer, we can also see that the predicted error increases after a few iterations, since the iterative algorithm used aims at minimizing a given functional, not the predicted or reconstructed error. That is also why there is generally no need to set a very strict stopping criterion for convergence in practice, since the exact solution at the convergence usually does not have the good restoration quality, especially when \(\lambda \) is small [3, 18].

  4. We cannot compute p-MSE, since the original image \(\mathbf {x}_0\) and true PSF \(\mathbf {H}_0\) are unknown in the real experiments.

References

  1. Bal, U., Engin, M., Utzinger, U.: A multiresolution approach for enhancement and denoising of microscopy images. Signal Image Video Process. 9, 787–799 (2015)

    Article  Google Scholar 

  2. Baloch, G., Ozkaramanli, H.: Image denoising via correlation-based sparse representation. Signal Image Video Process. 11, 1501–1508 (2017)

    Article  Google Scholar 

  3. Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci. 2(1), 183–202 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bishop, T., Babacan, S., Amizic, B., Katsaggelos, A., Chan, T., Molina, R.: Blind image deconvolution: problem formulation and existing approaches. Blind Image Deconvolution Theory & Applications (2007)

  5. Blu, T., Luisier, F.: The SURE-LET approach to image denoising. IEEE Trans. Image Process. 16(11), 2778–2786 (2007)

    Article  MathSciNet  Google Scholar 

  6. Born, M., Wolf, E., Bhatia, A.: Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light. Cambridge University Press, Cambridge (1999)

    Book  Google Scholar 

  7. Carasso, A.: The APEX method in image sharpening and the use of low exponent Lévy stable laws. SIAM J. Appl. Math. 63(2), 593–618 (2003)

    Article  MATH  Google Scholar 

  8. Chen, D.: Inext alternating direction method based on Newton descent algorithm with application to Poisson image deblurring. Signal Image Video Process. 11, 89–96 (2017)

    Article  Google Scholar 

  9. Chen, F., Ma, J.: An empirical identification method of Gaussian blur parameter for image deblurring. IEEE Trans. Signal Process. 57(7), 2467–2478 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dell’Acqua, P.: \(\nu \) acceleration of statistical iterative methods for image restoration. Signal Image Video Process. 10, 927–934 (2016)

    Article  Google Scholar 

  11. Kerouh, F., Serir, A.: Wavelet-based blind blur reduction. Signal Image Video Process. 9, 1587–1599 (2015)

    Article  Google Scholar 

  12. Li, D., Simske, S.: Atmospheric turbulence degraded-image restoration by kurtosis minimization. IEEE Geosci. Remote Sens. Lett. 6(2), 244–247 (2009)

    Article  Google Scholar 

  13. Markham, J., Conchello, J.: Parametric blind deconvolution: a robust method for the simultaneous estimation of image and blur. J. Opt. Soc. Am. A 16(10), 2377–2391 (1999)

    Article  Google Scholar 

  14. Michailovich, O., Tannenbaum, A.: Blind deconvolution of medical ultrasound images: a parametric inverse filtering approach. IEEE Trans. Image Process. 16(12), 3005–3019 (2007)

    Article  MathSciNet  Google Scholar 

  15. Molina, R., Núñez, J., Cortijo, F., Mateos, J.: Image restoration in astronomy: a Bayesian perspective. IEEE Signal Process. Mag. 18(2), 11–29 (2001)

    Article  Google Scholar 

  16. Nazzal, M., Ozkaramanli, H.: Wavelet domain dictionary learning-based single image super-resolution. Signal Image Video Process. 9, 1491–1501 (2015)

    Article  Google Scholar 

  17. Oliveira, J., Figueiredo, M., Bioucas-Dias, J.: Parametric blur estimation for blind restoration of natural images: linear motion and out-of-focus. IEEE Trans. Image Process. 23(1), 466–477 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  18. Pan, H., Blu, T.: An iterative linear expansion of thresholds for \(\ell _1\)-based image restoration. IEEE Trans. Image Process. 22(9), 3715–3728 (2013)

    Article  Google Scholar 

  19. Ramirez, C., Argaez, M.: An \(\ell _1\) minimization algorithm for non-smooth regularization in image processing. Signal Image Video Process. 9, 373–386 (2015)

    Article  Google Scholar 

  20. Reeves, S.J., Mersereau, R.M.: Blur identification by the method of generalized cross-validation. IEEE Trans. Image Process. 1(3), 301–311 (1992)

    Article  Google Scholar 

  21. Shi, Y., Chang, Q., Yang, X.: A robust and fast combination algorithm for deblurring and denoising. Signal Image Video Process. 9, 865–874 (2015)

    Article  Google Scholar 

  22. Siadat, M., Aghazadeh, N., Öktem, O.: Reordering for improving global Arnoldi–Tikhonov method in image restoration problems. Signal Image Video Process. 12, 497–504 (2018)

    Article  Google Scholar 

  23. Stein, C.: Estimation of the mean of a multivariate normal distribution. Ann. Stat. 9(6), 1135–1151 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  24. Welk, M., Raudaschl, P., Schwarzbauer, T., Erler, M., Läuter, M.: Fast and robust linear motion deblurring. Signal Image Video Process. 9, 1221–1234 (2015)

    Article  Google Scholar 

  25. Xue, F., Blu, T.: A novel SURE-based criterion for parametric PSF estimation. IEEE Trans. Image Process. 24(2), 595–607 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  26. Xue, F., Blu, T., Liu, J., Ai, X.: Recursive evaluation of SURE for total variation denoising. In: Proceedings of 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1338–1342 (2018)

  27. Xue, F., Luisier, F., Blu, T.: Multi-Wiener SURE-LET deconvolution. IEEE Trans. Image Process. 22(5), 1954–1968 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  28. Xue, F., Pan, H., Liu, X., Liu, H., Liu, J.: Optimization of regularization parameter for sparse reconstruction based on predictive risk estimate. In: Proceedings of 2017 IEEE International Conference on Image Processing (ICIP), pp. 1442–1446 (2017)

  29. Xue, F., Pan, H., Wu, R., Liu, X., Liu, J.: Optimization of compound regularization parameters based on Stein’s unbiased risk estimate. In: Proceedings of 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 4591–4595 (2017)

  30. Xue, F., Yagola, A.G.: Analysis of point-target detection performance based on ATF and TSF. Infrared Phys. Technol. 52(5), 166–173 (2009)

    Article  Google Scholar 

  31. Xue, F., Yagola, A.G., Liu, J., Meng, G.: Recursive SURE for iterative reweighted least square algorithms. Inverse Probl. Sci. Eng. 24(4), 625–646 (2016)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Xue.

Additional information

This work was supported by the National Natural Science Foundation of China (No. 61401013)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, F., Liu, J. & Ai, X. Parametric PSF estimation based on predicted-SURE with \(\ell _1\)-penalized sparse deconvolution. SIViP 13, 635–642 (2019). https://doi.org/10.1007/s11760-018-1391-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-018-1391-9

Keywords

Navigation