Skip to main content
Log in

Wideband DOA estimation based on focusing signal subspace

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

The traditional wideband direction-of-arrival (DOA) estimation algorithms usually require the preliminary DOA estimations, which determine the accuracy of the final DOA estimations. To remedy the apparent performance degradation, this paper introduces a novel direction-of-arrival (DOA) estimation algorithm for wideband sources called the focusing signal subspace (FSS). This novel algorithm constructs a unitary focusing matrix which combines the eigenvector of signal subspace of the reference frequency and the eigenvector of signal subspace of other discrete frequencies with the constraint of Frobenius norm. The focusing matrix does not require the preliminary DOA estimations. Furthermore, the covariance matrix at each frequency is transformed to the focusing covariance matrix at the reference focusing frequency by using the focusing matrix. Experiments and simulation results show that focusing signal subspace outperforms the traditional rotational signal subspace and the test of orthogonality of projected subspace. FSS features a high resolution and a low root-mean-square error without the preliminary DOA estimations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ma, F., Liu, F., Zhang, X., et al.: An ultrasonic positioning algorithm based on maximum correntropy criterion extended Kalman filter weighted centroid. Signal, Image Video Process. 12(6), 1207–1215 (2018)

    Article  Google Scholar 

  2. Zheng, J., Kaveh, M.: Sparse spatial spectral estimation: a covariance fitting algorithm, performance and regularization. IEEE Trans. Signal Process. 61(11), 2767–2777 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  3. Anbiyaei, M.R., Liu, W., McLernon, D.C.: Performance improvement for wideband DOA estimation with white noise reduction based on uniform linear arrays. In: Sensor Array and Multichannel Signal Processing Workshop (SAM), 2016 IEEE. IEEE. pp. 1–5 (2016)

  4. Xiahou, Z., Zhang, X.: Adaptive localization in wireless sensor network through Bayesian compressive sensing. Int. J. Distrib. Sensor Netw. 11(8), 438638 (2015)

    Article  Google Scholar 

  5. Yan, F.G., Shen, Y., Jin, M.: Fast DOA estimation based on a split subspace decomposition on the array covariance matrix. Signal Process. 115, 1–8 (2015)

    Article  Google Scholar 

  6. Raimondi, F., Comon, P., Michel, O.: Wideband multilinear array processing through tensor decomposition. In: Acoustics, Speech and Signal Processing (ICASSP), 2016 IEEE International Conference on. pp. 2951–2955. IEEE (2016)

  7. Shen, Q., Cui, W., Liu, W., et al.: Underdetermined wideband DOA estimation of off-grid sources employing the difference co-array concept. Signal Process. 130, 299–304 (2017)

    Article  Google Scholar 

  8. Wang, L., Zhao, L., Bi, G., et al.: Novel wideband DOA estimation based on sparse Bayesian learning with Dirichlet process priors. IEEE Trans. Signal Process. 64(2), 275–289 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  9. Su, G., Morf, M.: The signal subspace approach for multiple wide-band emitter location. IEEE Trans. Acoustics, Speech, Signal Process. 31(6), 1502–1522 (1983)

    Article  Google Scholar 

  10. Wang, H., Kaveh, M.: Coherent signal-subspace processing for the detection and estimation of angles of arrival of multiple wide-band sources. IEEE Trans. Acoustics, Speech, Signal Process. 33(4), 823–831 (1985)

    Article  Google Scholar 

  11. Doron, M.A., Weiss, A.J.: On focusing matrices for wide-band array processing. IEEE Trans. Signal Process. 40(6), 1295–1302 (1992)

    Article  MATH  Google Scholar 

  12. Hung, H., Kaveh, M.: Focussing matrices for coherent signal-subspace processing. IEEE Trans. Acoustics, Speech, Signal Process. 36(8), 1272–1281 (1988)

    Article  MATH  Google Scholar 

  13. Guo, R., Li, W., Zhang, Y., et al.: DOA estimation of coherent wideband signals based on extended TOPS algorithm. MIPPR 2015: Automatic Target Recognition and Navigation. Int. Soc. Opt. Photon. 9812, 98120 (2015)

    Google Scholar 

  14. Liu, C., Zakharov, Y.V., Chen, T.: Broadband underwater localization of multiple sources using basis pursuit de-noising. IEEE Trans. Signal Process. 60(4), 1708–1717 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Tang, Z., Blacquire, G., Leus, G.: Aliasing-free wideband beamforming using sparse signal representation. IEEE Trans. Signal Process. 59(7), 3464–3469 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  16. Zhang, J., Hu, N., Bao, M., et al.: Wideband DOA estimation based on block FOCUSS with limited samples. In: Global Conference on Signal and Information Processing (GlobalSIP), 2013 IEEE. pp. 634-637. IEEE (2013)

  17. Liu, Z.M., Huang, Z.T., Zhou, Y.Y.: An efficient maximum likelihood method for direction-of-arrival estimation via sparse Bayesian learning. IEEE Trans. Wirel. Commun. 11(10), 1–11 (2012)

    Article  Google Scholar 

  18. He, Z.Q., Shi, Z.P., Huang, L., et al.: Underdetermined DOA estimation for wideband signals using robust sparse covariance fitting. IEEE Signal Process. Lett. 22(4), 435–439 (2015)

    Article  Google Scholar 

  19. Yoon, Y.S., Kaplan, L.M., McClellan, J.H.: TOPS: new DOA estimator for wideband signals. IEEE Trans. Signal Process. 54(6), 1977–1989 (2006)

    Article  MATH  Google Scholar 

  20. Shaw, A.K.: Improved wideband DOA estimation using modified TOPS (mTOPS) algorithm. IEEE Signal Process. Lett. 23(12), 1697–1701 (2016)

    Article  Google Scholar 

  21. Ciuonzo D, Romano G, Solimene R.: On MSE performance of time-reversal MUSIC. In: Sensor Array and Multichannel Signal Processing Workshop (SAM), 2014 IEEE 8th. IEEE. pp. 13-16 (2014)

  22. Ciuonzo, D.: On time-reversal imaging by statistical testing. IEEE Signal Process. Lett. 24(7), 1024–1028 (2017)

    Article  Google Scholar 

  23. Ciuonzo, D., Rossi, P.S.: Noncolocated time-reversal MUSIC: high-SNR distribution of null spectrum. IEEE Signal Process. Lett. 24(4), 397–401 (2017)

    Article  Google Scholar 

  24. Devaney, A.J.: Time reversal imaging of obscured targets from multistatic data. IEEE Trans. Antennas Propag. 53(5), 1600–1610 (2005)

    Article  Google Scholar 

  25. Pal, P., Vaidyanathan, P.P.: A novel autofocusing approach for estimating directions-of-arrival of wideband signals. In: Signals, Systems and Computers, 2009 Conference Record of the Forty-Third Asilomar Conference on. pp. 1663-1667. IEEE. (2009)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaotong Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, F., Zhang, X. Wideband DOA estimation based on focusing signal subspace. SIViP 13, 675–682 (2019). https://doi.org/10.1007/s11760-018-1396-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-018-1396-4

Keywords

Navigation