Skip to main content
Log in

A fast global matching pursuit algorithm for sparse reconstruction by \(l_{0}\) minimization

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

Greedy algorithms, which are employed to solve the sparse reconstruction based on \(l_{0}\) minimization, always present two main shortcomings. One is that they are easy to fall into sub-optimal solutions by utilizing fast searching strategies and perform relatively bad on reconstruction accuracy. The other is that they need a large number of iterations to be convergent by setting negative gradient as the searching direction. To improve the two shortcomings, this paper proposes a novel fast global matching pursuit algorithm (FGMP) for sparse reconstruction. Firstly, we design global matching pursuit strategies to solve the \(l_{0}\) minimization essentially, which is more likely to find the global optimal solution accurately. Then, the global searching direction is designed based on Quasi-Newton projection to replace the negative gradient, which is efficient to reduce the iterations of convergence and avoid the long time-consuming least square implementation to accelerate the reconstruction speed. The proposed FGMP algorithm is as simple as greedy algorithms, while it has better performance on both reconstruction accuracy and reconstruction speed. Simulated experiments on signal reconstruction and image reconstruction demonstrate that FGMP outperforms the state-of-the-art greedy algorithms especially when the sparsity level is relatively large.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Donoho, D.L.: Compressed sensing. IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006)

    Article  MathSciNet  Google Scholar 

  2. Cand’e, E.J., Wakin, M.B.: An introduction to compressive sampling. IEEE Signal Process. Mag. 25(2), 21–30 (2008)

    Article  Google Scholar 

  3. Cand’es, E.J., Romberg, J., Tao, T.: Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 52(2), 489–509 (2006)

    Article  MathSciNet  Google Scholar 

  4. Tang, X., Chen, Z., Li, Y.: Compressive sensing-based electrostatic sensor array signal processing and exhausted abnormal debris detecting. Mech. Syst. Signal Process. 105, 404–426 (2008)

    Article  Google Scholar 

  5. Provost, J., Lesage, F.: The application of compressed sensing for photo-acoustic tomography. IEEE Trans. Med. Imaging 28(4), 585–594 (2009)

    Article  Google Scholar 

  6. Khalfi, B., Hamdaoui, B., Guizani, M.: Efficient spectrum availability information recovery for wideband DSA networks: a weighted compressive sampling approach. IEEE Trans. Wirel. Commun. 17(4), 2162–2172 (2018)

    Article  Google Scholar 

  7. Tohidi, E., Radmard, M., Majd, M.N.: Compressive sensing MTI processing in distributed MIMO radars. IET Signal Process. 12(3), 327–334 (2018)

    Article  Google Scholar 

  8. Donoho, D.L., Elad, M.: On the stability of the basis pursuit in the presence of noise. Signal Process. 86(3), 511–532 (2006)

    Article  Google Scholar 

  9. Chen, S.S., Donoho, D.L., Saunders, M.A.: Atomic decomposition by basis pursuit. SIAM J. Sci. Comput. 20(1), 33–61 (1998)

    Article  MathSciNet  Google Scholar 

  10. Candes, E.J., Tao, T.: Decoding by linear programming. IEEE Trans. Inf. Theory 51(12), 4203–4215 (2005)

    Article  MathSciNet  Google Scholar 

  11. Guo, H., Yu, J.: Improved sparse reconstruction for fluorescence molecular tomography with \(l_{1/2}\) regularization. Biomed. Opt. Express 6(5), 1648–1664 (2015)

    Article  Google Scholar 

  12. Ou, W., You, X.: Robust face recognition via occlusion dictionary learning. Pattern Recognit. 47(4), 1559–1572 (2014)

    Article  Google Scholar 

  13. Cai, J.F., Wang, T.M.: Fast and provable algorithms for spectrally sparse signal reconstruction via low-rank Hankel matrix completion. Appl. Comput. Harmonic Anal. 46(1), 94–121 (2019)

    Article  MathSciNet  Google Scholar 

  14. Tropp, J., Gilbert, A.C., et al.: Signal recovery from random measurements via orthogonal matching pursuit. IEEE Trans. Inf. Theory 53(12), 4655–4666 (2007)

    Article  MathSciNet  Google Scholar 

  15. Cai, T.T., Wang, L.: Orthogonal matching pursuit for sparse signal recovery with noise. IEEE Trans. Inf. Theory 57(7), 4680–4688 (2011)

    Article  MathSciNet  Google Scholar 

  16. Needell, D., Tropp, J.A.: CoSaMP: iterative signal recovery from incomplete and inaccurate samples. Appl. Comput. Harmonic Anal. 26(3), 301–321 (2009)

    Article  MathSciNet  Google Scholar 

  17. Do, T.T., Gan, L., Nguyen, N., Tran, T.D.: Sparsity adaptive matching pursuit algorithm for practical compressed sensing. In: 2008 42nd Asilomar Conference on Signals, Systems and Computers IEEE, pp. 581–587 (2008)

  18. Donoho, D.L., Tsaig, Y., Drori, I., Starck, J.-L.: Sparse solution of under-determined systems of linear equations by stagewise orthogonal matching pursuit. IEEE Trans. Inf. Theory 58(2), 1094–1121 (2012)

    Article  Google Scholar 

  19. Plumbley, M.D.: Recovery of sparse representations by polytope faces pursuit. In: Puntonet, C.G., Prieto, A. (eds.) Independent Component Analysis and Blind Signal Separation, pp. 206–213. Springer, Berlin (2006)

    Chapter  Google Scholar 

  20. Yin, W., Osher, S., Goldfarb, D., Darbon, J.: Bregman iterative algorithms for l1 minimization with applications to compressed sensing. SIAM J. Imaging Sci. 1(1), 143–168 (2008)

    Article  MathSciNet  Google Scholar 

  21. Dai, W., Milenkovic, O.: Subspace pursuit for compressive sensing signal reconstruction. IEEE Trans. Inf. Theory 55(5), 2230–2249 (2009)

    Article  MathSciNet  Google Scholar 

  22. Huang, H., Makur, A.: Backtracking-based matching pursuit method for sparse signal reconstruction. IEEE Signal Process. Lett. 18(7), 391–394 (2011)

    Article  Google Scholar 

  23. Tuba, M., Bacanin, N.: Improved seeker optimization algorithm hybridized with firefly algorithm for constrained optimization problems. Neurocomputing 143, 197–207 (2014)

    Article  Google Scholar 

  24. Hajek, B.: Cooling schedules for optimal annealing. Math. Oper. Res. 13(2), 311–329 (1988)

    Article  MathSciNet  Google Scholar 

  25. Lin, C.-H.: A rough penalty genetic algorithm for constrained optimization. Inf. Sci. 241, 119–137 (2013)

    Article  Google Scholar 

  26. Li, D., Qiang, W.: Intelligent greedy pursuit model for sparse reconstruction based on l0 minimization. Signal Process. 122, 138–151 (2016)

    Article  Google Scholar 

  27. Jing, M., Zhou, X., Qi, C.: Quasi-Newton iterative projection algorithm for sparse recovery. Neurocomputing 144, 169–173 (2014)

    Article  Google Scholar 

  28. Yang, H., Fang, H.: Iterative hard thresholding algorithm based on backtracking. Acta Autom. Sin. 37(3), 276–282 (2011)

    Article  MathSciNet  Google Scholar 

  29. Qi, R., Yang, D.: On recovery of block sparse signals via block generalized orthogonal matching pursuit. Signal Process. 153, 34–46 (2018)

    Article  Google Scholar 

  30. Wang, Q., Qu, G.: A new greedy algorithm for sparse recovery. Neurocomputing 275, 137–143 (2018)

    Article  Google Scholar 

  31. Needell, D.: Topics in compressed sensing. arXiv preprint arXiv:0905.4482

Download references

Acknowledgements

This work is financially supported by National Science Foundations of China (No. 61801214).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dan Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, D., Wu, Z. A fast global matching pursuit algorithm for sparse reconstruction by \(l_{0}\) minimization. SIViP 14, 277–284 (2020). https://doi.org/10.1007/s11760-019-01555-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-019-01555-9

Keywords

Navigation