Skip to main content

Advertisement

Log in

DWT-based electromyogram signal classification using maximum likelihood-estimated features for neurodiagnostic applications

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

Automated diagnosis of neuromuscular disorders such as myopathy and neuropathy can be done by measuring and analyzing the nonlinear and non-stationary trends in electromyogram (EMG) signals. This paper introduces a new automated diagnostic approach with the combination of discrete wavelet transform (DWT) and maximum likelihood estimation (ML-estimation) for analysis and classification of EMG signals into healthy, myopathy, or neuropathy classes. DWT decomposes the considered EMG signals into frequency sub-bands, and ML-estimation is used for extracting the features from the discrete wavelet sub-bands. Subsequently, obtained feature vectors are used for classifying the EMG signals using multilayer perceptron neural network (MLPNN). Comparative analysis of various performance measures has been performed with all the 71 wavelets of DWT and 13 training algorithms of MLPNN. Results are promising with specificity of 83.33%, sensitivity (myopathy) of 91.66%, sensitivity (neuropathy) of 83.33%, and total classification accuracy of 86.5%, which are obtained using the combination of Daubechies-11 wavelet and Fletcher–Reeves conjugate gradient training algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Phinyomark, A., Phukpattaranont, P., Limsakul, C.: Feature reduction and selection for EMG signal classification. Expert Syst. Appl. 39(8), 7420–7431 (2012)

    Article  Google Scholar 

  2. Yousefi, J., Hamilton-Wright, A.: Characterizing EMG data using machine-learning tools. Comput. Biol. Med. 51, 1–13 (2014)

    Article  Google Scholar 

  3. Preston, D.C., Shapiro, B.E.: Electromyography and Neuromuscular Disorders E-Book: Clinical-Electrophysiologic Correlations (Expert Consult-Online and Print), Elsevier Health Sciences (2012)

  4. Naik, G.R., Selvan, S.E., Nguyen, H.T.: Single-channel EMG classification with ensemble-empirical-mode-decomposition-based ICA for diagnosing neuromuscular disorders. IEEE Trans. Neural Syst. Rehabil. Eng. 24(7), 734–743 (2015)

    Article  Google Scholar 

  5. Subasi, A.: A decision support system for diagnosis of neuromuscular disorders using DWT and evolutionary support vector machines. SIViP 9(2), 399–408 (2015)

    Article  Google Scholar 

  6. Tabatabaei, S.M., Chalechale, A.: Local binary patterns for noise-tolerant sEMG classification. SIViP 13(3), 491–498 (2019)

    Article  Google Scholar 

  7. Gu, Y., Yang, D., Huang, Q., Yang, W., Liu, H.: Robust EMG pattern recognition in the presence of confounding factors: features, classifiers and adaptive learning. Expert Syst. Appl. 96, 208–217 (2018)

    Article  Google Scholar 

  8. Zhai, X., Jelfs, B., Chan, R.H., Tin, C.: Self-recalibrating surface EMG pattern recognition for neuroprosthesis control based on convolutional neural network. Front. Neurosci. 11, 379 (2017)

    Article  Google Scholar 

  9. Menon, R., Caterina, G.D., Lakany, H., Petropoulakis, L., Conway, B.A.: Study on interaction between temporal and spatial information in the classification of EMG signals in myoelectric prostheses. IEEE Trans. Neural Syst. Rehabil. Eng. 25(10), 1821–1831 (2017)

    Article  Google Scholar 

  10. Naik, G.R., Al-Timemy, A.H., Nguyen, H.T.: Transradial amputee gesture classification using an optimal number of sEMG sensors: an approach using ICA clustering. IEEE Trans. Neural Syst. Rehabil. Eng. 24(8), 837–846 (2016)

    Article  Google Scholar 

  11. Naik, G.R., Nguyen, H.T.: Nonnegative matrix factorization for the identification of EMG finger movements: evaluation using matrix analysis. IEEE J. Biomed. Health Inf. 19(2), 478–485 (2015)

    Article  Google Scholar 

  12. Naik, G.R., Kumar, D.K.: Twin SVM for gesture classification using the surface electromyogram. IEEE Trans. Inf. Technol. Biomed. 14(2), 301–308 (2009)

    Article  Google Scholar 

  13. Naik, G.R., Kumar, D.K., Palaniswami, M.: Signal processing evaluation of myoelectric sensor placement in low-level gestures: sensitivity analysis using independent component analysis. Expert Syst. 31(1), 91–99 (2014)

    Article  Google Scholar 

  14. Pattichis, C.S., Schizas, C.N., Middleton, L.T.: Neural network models in EMG diagnosis. IEEE Trans. Biomed. Eng. 42(5), 486–496 (1995)

    Article  Google Scholar 

  15. Pattichis, C.S., Schizas, C.N.: Genetics-based machine learning for the assessment of certain neuromuscular disorder. IEEE Trans. Neural Networks 7(2), 427–439 (1996)

    Article  Google Scholar 

  16. Abel, E.W., Zacharia, P.C., Forster, A., Farrow, T.L.: Neural network analysis of the EMG interference pattern. Med. Eng. Phys. 18(9), 12–17 (1996)

    Article  Google Scholar 

  17. Christodoulou, C.I., Pattichis, C.S.: Combining neural classifiers in EMG diagnosis. In: 6th European Congress on Intelligent Techniques and Soft Computing (EUFIT’98), pp. 1837–1841 (1998)

  18. Subasi, A.: Classification of EMG signals using combined features and soft computing techniques. Appl. Soft Comput. 12(8), 2188–2198 (2012)

    Article  Google Scholar 

  19. Doulah, A.B.M.S.U., Fattah, S.A.: Neuromuscular disease classification based on mel frequency cepstrum of motor unit action potential. In: 1st IEEE International Conference on Electrical Engineering and Information and Communication Technology, pp. 1–4 (2014)

  20. Mishra, V.K., Bajaj, V., Kumar, A., Sharma, D., Singh, G.K.: An efficient method for analysis of EMG signals using improved empirical mode decomposition. AEU Int. J. Electron. Commun. 72, 200–209 (2017)

    Article  Google Scholar 

  21. Mishra, V.K., Bajaj, V., Kumar, A., Sharma, D., Singh, G.K.: Analysis of ALS and normal EMG signals based on empirical mode decomposition. IET Sci. Meas. Technol. 10(8), 963–971 (2016)

    Article  Google Scholar 

  22. Koçer, S., Tümer, A.E.: Classifying neuromuscular diseases using artificial neural networks with applied Autoregressive and Cepstral analysis. Neural Comput. Appl. 28(1), 945–952 (2017)

    Article  Google Scholar 

  23. Hazarika, A., Dutta, L., Boro, M., Barthakur, M., Bhuyan, M.: An automatic feature extraction and fusion model: application to electromyogram (EMG) signal classification. Int. J. Multimed. Inf. Retr. 7(3), 73–186 (2018)

    Google Scholar 

  24. Hazarika, V., Dutta, L., Barthakur, M., Bhuyan, M.: A multiview discriminant feature fusion-based nonlinear process assessment and diagnosis: application to medical diagnosis. IEEE Trans. Instrum. Meas. 99, 1–9 (2018)

    Google Scholar 

  25. Nagineni, S., Taran, S., Bajaj, V.: Features based on variational mode decomposition for identification of neuromuscular disorder using EMG signals. Health Inf. Sci. Syst. 6(1), 13 (2018)

    Article  Google Scholar 

  26. Khan, M., Singh, J.K., Tiwari, M.: A multi-classifier approach of EMG signal classification for diagnosis of neuromuscular disorders. J. Bioeng. Biomed. Sci. 3, 2 (2016)

    Google Scholar 

  27. Senghur, A., Akbulut, Y., Guo, Y., Bajaj, V.: Classification of amyotrophic lateral sclerosis disease based on convolutional neural network and reinforcement sample learning algorithm. Health Inf. Sci. Syst. 5(1), 9 (2017)

    Article  Google Scholar 

  28. Joshi, D., Tripathi, A., Sharma, R., Pachori, R.B.: Computer aided detection of abnormal EMG signals based on Tunable-Q wavelet transform. In: 4th IEEE International Conference on Signal Processing and Integrated Networks (SPIN), pp. 544–549 (2017)

  29. Kiran, P.U., Abhiram, N., Taran, S., Bajaj, V.: TQWT based features for classification of ALS and healthy EMG signals. Am. J. Comput. Sci. Inf. Technol. 6(2), 19 (2018)

    Google Scholar 

  30. Gokgoz, E., Subasi, A.: Comparison of decision tree algorithms for EMG signal classification using DWT. Biomed. Signal Process. Control 18, 138–144 (2015)

    Article  Google Scholar 

  31. Defino, J., Vasanthi, S.M.: Classification of neuromuscular diseases using dominant MUAP based on wavelet domain features and improving its accuracy using SVM. Int. J. Res. Sci. Innov. (IJRSI). 3(5), 112–118 (2016)

    Google Scholar 

  32. Vallejo, M., Gallego, C.J., Duque-Muñoz, L., Delgado-Trejos, E.: Neuromuscular disease detection by neural networks and fuzzy entropy on time-frequency analysis of electromyography signals. Expert Syst. 35(4), e12274 (2018)

    Article  Google Scholar 

  33. Rialle, V., Vila. A.: Use of unsupervised neural networks for classification tasks in electromyography. In: Annual Conference of Engineering in Medicine and Biology, pp. 1014–1015 (1992)

  34. Pattichis, C.S., Elia, A.G.: Autoregressive and cepstral analyses of motor unit action potentials. Med. Eng. Phys. 21(6–7), 405–419 (1999)

    Article  Google Scholar 

  35. Elamvazuthi, I., Duy, N.H.X., Ali, Z., Su, S.W., Khan, M.A., Parasuraman, S.: Electromyography (EMG) based classification of neuromuscular disorders using multi-layer perceptron. Procedia Comput. Sci. 76, 223–228 (2015)

    Article  Google Scholar 

  36. Subasi, A.: Classification of EMG signals using PSO optimized SVM for diagnosis of neuromuscular disorders. Comput. Biol. Med. 43, 576–586 (2013)

    Article  Google Scholar 

  37. Bozkurt, M.R., Subaşi, A., Köklükaya, E., Yilmaz, M.: Comparison of AR parametric c methods with subspace-based methods for EMG signal classification using stand-alone and merged neural network models. Turk. J. Electr. Eng. Comput. Sci. 24(3), 1547–1559 (2016)

    Article  Google Scholar 

  38. Fattah, S.A., Doulah, A.S.U., Iqbal, M.A., Shahnaz, C., Zhu W. P., Ahmad, M.O.: Identification of motor neuron disease using wavelet domain features extracted from EMG signal. In: IEEE International Symposium on Circuits and Systems (ISCAS2013), pp. 1308–1311 (2013)

  39. Subasi, A.: Medical decision support system for diagnosis of neuromuscular disorders using DWT and fuzzy support vector machines. Comput. Biol. Med. 42, 806–815 (2012)

    Article  Google Scholar 

  40. Kamali, T., Boostani, R., Parsaei, H.: A multi-classifier approach to MUAP classification for diagnosis of neuromuscular disorders. IEEE Trans. Neural Syst. Rehabil. Eng. 22(1), 191–200 (2014)

    Article  Google Scholar 

  41. Nikolic, M.: Detailed analysis of clinical electromyography signals: EMG decomposition, findings and firing pattern analysis in controls and patients with myopathy and amyotrophic lateral sclerosis. Doctoral dissertation. (2001)

  42. Winter, D.A., Fuglevand, A.J., Archer, S.E.: Crosstalk in surface electromyography: theoretical and practical estimates. J. Electromyogr. Kinesiol. 4(1), 15–26 (1994)

    Article  Google Scholar 

  43. Day, S.: Important Factors in Surface EMG Measurement, pp. 1–17. Bortec Biomedical Ltd publishers, Calgary (2002)

    Google Scholar 

  44. Do, M.N., Vetterli, M.: Wavelet-based texture retrieval using generalized Gaussian density and Kullback–Leibler distance. IEEE Trans. Image Process. 11(2), 146–158 (2002)

    Article  MathSciNet  Google Scholar 

  45. The Math Works.: Training: Backpropagation (Neural Network Toolbox). The MathWorks, Inc., Natick, Massachusetts, United States, (1994–2005)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Thomas George.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jose, S., Thomas George, S. & Roopchand, P.S. DWT-based electromyogram signal classification using maximum likelihood-estimated features for neurodiagnostic applications. SIViP 14, 601–608 (2020). https://doi.org/10.1007/s11760-019-01590-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-019-01590-6

Keywords

Navigation