Skip to main content
Log in

FPRSGF denoised non-subsampled shearlet transform-based image fusion using sparse representation

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

In this work, multiscale decomposition and sparse representation-based multimodal medical image fusion technique is proposed. An efficient denoising technique, feature-preserving regularized Savitzky–Golay filter is applied to obtain noise-free images. The filtered medical images are split into low- and high-pass subbands by non-subsampled shearlet transform (NSST). The sparse coefficient vectors of low-pass subbands are obtained from a pre-learned dictionary, and “max-L1” rule is applied to obtain the fused low-pass subband. However, high-pass subbands are fused using “max-absolute” rule. Lastly, NSST reconstruction is applied to generate the fused multimodal medical image. The non-subsampled contourlet transform, NSST-based fusion using parameter adaptive pulse coupled neural network and phase congruency techniques are also realized for comparative analysis. Multiple experiments on clean and noisy sets are performed for gray and color medical images. The fusion techniques are also tested on infrared–visible image pairs. The visual and quantitative outcomes verify that suggested technique outperforms the state-of-the-art fusion techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Li, H., He, X., Tao, D., Tang, Y., Wang, R.: Joint medical image fusion, denoising and enhancement via discriminative low-rank sparse dictionaries learning. Pattern Recognit. 79, 130–146 (2018)

    Article  Google Scholar 

  2. Olshausen, B.A., Field, D.J.: Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature 381(6583), 607 (1996)

    Article  Google Scholar 

  3. Mairal, J., Elad, M., Sapiro, G.: Sparse representation for color image restoration. IEEE Trans. Image Process. 17(1), 53–69 (2007)

    Article  MathSciNet  Google Scholar 

  4. Elad, M., Aharon, M.: Image denoising via sparse and redundant representations over learned dictionaries. IEEE Trans. Image Process. 15(12), 3736–3745 (2006)

    Article  MathSciNet  Google Scholar 

  5. Dong, W., Zhang, L., Shi, G., Wu, X.: Image deblurring and super-resolution by adaptive sparse domain selection and adaptive regularization. IEEE Trans. Image Process. 20(7), 1838–1857 (2011)

    Article  MathSciNet  Google Scholar 

  6. Yu, S., Ou, W., You, X., Mou, Y., Jiang, X., Tang, Y.: Single image rain streaks removal based on self-learning and structured sparse representation. In: 2015 IEEE China Summit and International Conference on Signal and Information Processing (ChinaSIP), IEEE, pp. 215–219 (2015)

  7. He, Z., Yi, S., Cheung, Y.M., You, X., Tang, Y.Y.: Robust object tracking via key patch sparse representation. IEEE Trans. Cybern. 47(2), 354–364 (2016)

    Google Scholar 

  8. Chen, Z., You, X., Zhong, B., Li, J., Tao, D.: Dynamically modulated mask sparse tracking. IEEE Trans. Cybern. 47(11), 3706–3718 (2016)

    Article  Google Scholar 

  9. Zhan, K., Li, Q., Teng, J., Wang, M., Shi, J.: Multifocus image fusion using phase congruency. J. Electron. Imaging 24(3), 033014 (2015)

    Article  Google Scholar 

  10. Yang, B., Li, S.: Multifocus image fusion and restoration with sparse representation. IEEE Trans. Instrum. Meas. 59(4), 884–892 (2009)

    Article  Google Scholar 

  11. Yin, M., Liu, X., Liu, Y., Chen, X.: Medical image fusion with parameter-adaptive pulse coupled neural network in nonsubsampled shearlet transform domain. IEEE Trans. Instrum. Meas. 99, 1–16 (2018)

    Google Scholar 

  12. Yang, B., Li, S.: Pixel-level image fusion with simultaneous orthogonal matching pursuit. Inf. Fusion 13(1), 10–19 (2012)

    Article  Google Scholar 

  13. Wang, K., Qi, G., Zhu, Z., Chai, Y.: A novel geometric dictionary construction approach for sparse representation based image fusion. Entropy 19(7), 306 (2017)

    Article  Google Scholar 

  14. Liu, Y., Liu, S., Wang, Z.: A general framework for image fusion based on multi-scale transform and sparse representation. Inf. Fusion 24, 147–164 (2015)

    Article  Google Scholar 

  15. Agarwal, S., Rani, A., Singh, V., Mittal, A.P.: Performance evaluation and implementation of fpga based sgsf in smart diagnostic applications. J. Med. Syst. 40(3), 63 (2016)

    Article  Google Scholar 

  16. Agarwal, S., Rani, A., Singh, V., Mittal, A.P.: EEG signal enhancement using cascaded S-Golay filter. Biomed. Signal Process. Control 36, 194–204 (2017)

    Article  Google Scholar 

  17. Knoll, F., Bredies, K., Pock, T., Stollberger, R.: Second order total generalized variation (TGV) for MRI. Magn. Reson. Med. 65(2), 480–491 (2011)

    Article  Google Scholar 

  18. Ou, W., You, X., Cheung, Ym., Peng, Q., Gong, M., Jiang, X.: Structured sparse coding for image representation based on l 1-graph. In: Proceedings of the 21st International Conference on Pattern Recognition (ICPR2012), IEEE, pp. 3220–3223 (2012)

  19. The whole brain atlas. http://www.med.harvard.edu/aanlib/. Accessed 30 Mar 2019

  20. Bhatnagar, G., Wu, Q.J., Liu, Z.: Directive contrast based multimodal medical image fusion in nsct domain. IEEE Trans. Multimedia 15(5), 1014–1024 (2013)

    Article  Google Scholar 

  21. Liu, Y., Wang, Z.: Simultaneous image fusion and denoising with adaptive sparse representation. IET Image Proc. 9(5), 347–357 (2014)

    Article  Google Scholar 

  22. Cvejic, N., Canagarajah, C., Bull, D.: Image fusion metric based on mutual information and Tsallis entropy. Electron. Lett. 42(11), 626–627 (2006)

    Article  Google Scholar 

  23. Xydeas, C., Petrovic, V.: Objective image fusion performance measure. Electron. Lett. 36(4), 308–309 (2000)

    Article  Google Scholar 

  24. Zhao, J., Laganiere, R., Liu, Z.: Performance assessment of combinative pixel-level image fusion based on an absolute feature measurement. Int. J. Innov. Comput. Inf. Control 3(6), 1433–1447 (2007)

    Google Scholar 

  25. Ruderman, D.L., Cronin, T.W., Chiao, C.C.: Statistics of cone responses to natural images: implications for visual coding. JOSA A 15(8), 2036–2045 (1998)

    Article  Google Scholar 

  26. James, A.P., Dasarathy, B.V.: Medical image fusion: a survey of the state of the art. Inf. Fusion 19, 4–19 (2014)

    Article  Google Scholar 

  27. Tno’s image fusion database. http://www.imagefusion.org/. Accessed 10 Sept 2019

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sonal Goyal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goyal, S., Singh, V., Rani, A. et al. FPRSGF denoised non-subsampled shearlet transform-based image fusion using sparse representation. SIViP 14, 719–726 (2020). https://doi.org/10.1007/s11760-019-01597-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-019-01597-z

Keywords

Navigation