Skip to main content
Log in

Additive neural network for forest fire detection

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

In this paper, we introduce a video-based wildfire detection scheme based on a computationally efficient additive deep neural network, which we call AddNet. This AddNet is based on a multiplication-free vector operator, which performs only addition and sign manipulation operations. In this regard, we construct a dot product-like operation from the mf-operator and use it to define dense and convolutional feed-forwarding passes in AddNet. We train AddNet on images taken from forestry surveillance cameras. Our experiments show that AddNet can achieve a time-saving by 12.4% when compared to an equivalent regular convolutional neural network (CNN). Furthermore, the smoke recognition performance of AddNet is as good as regular CNNs and substantially better than binary-weight neural networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Töreyin, B.U., Dedeoǧlu, Y., Güdükbay, U., Cetin, A.E.: Computer vision based method for real-time fire and flame detection. Pattern Recognit. Lett. 27(1), 49–58 (2006)

    Article  Google Scholar 

  2. Töreyin, B.U., Dedeoğlu, Y., Cetin, A.E.: Wavelet based real-time smoke detection in video. In: 2005 13th European Signal Processing Conference, pp. 1–4. IEEE (2005)

  3. Habiboğlu, Y.H., Günay, O., Çetin, A.E.: Covariance matrix-based fire and flame detection method in video. Mach. Vis. Appl. 23(6), 1103–1113 (2012)

    Article  Google Scholar 

  4. Habiboglu, Y.H., Gunay, O., Cetin, A.E.: Real-time wildfire detection using correlation descriptors. In: 2011 19th European Signal Processing Conference, pp. 894–898. IEEE (2011)

  5. Töreyin, B.U.: Smoke detection in compressed video. In: Applications of Digital Image Processing XLI, vol. 10752, p. 1075232. International Society for Optics and Photonics (2018)

  6. Aslan, S., Güdükbay, U., Töreyin, B.U., Çetin, A.E.: Early wildfire smoke detection based on motion-based geometric image transformation and deep convolutional generative adversarial networks. In: ICASSP 2019: 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 8315–8319. IEEE (2019)

  7. Borges, P.V.K., Izquierdo, E.: A probabilistic approach for vision-based fire detection in videos. IEEE Trans. Circuits Syst. Video Technol. 20(5), 721–731 (2010)

    Article  Google Scholar 

  8. Çelik, T., Özkaramanli, H., Demirel, H.: Fire and smoke detection without sensors: image processing based approach. In: 2007 15th European Signal Processing Conference, pp. 1794–1798. IEEE (2007)

  9. Celik, T., Demirel, H.: Fire detection in video sequences using a generic color model. Fire Saf. J. 44(2), 147–158 (2009)

    Article  Google Scholar 

  10. Yuan, F.: A fast accumulative motion orientation model based on integral image for video smoke detection. Pattern Recognit. Lett. 29(7), 925–932 (2008)

    Article  Google Scholar 

  11. Guillemant, P., Vicente, J.: Real-time identification of smoke images by clustering motions on a fractal curve with a temporal embedding method. Opt. Eng. 40, 554–563 (2001)

  12. Vicente, J., Guillemant, P.: An image processing technique for automatically detecting forest fire. Int. J. Therm. Sci. 41(12), 1113–1120 (2002)

    Article  Google Scholar 

  13. Gomez-Rodriguez, F., Arrue, B.C., Ollero, A.: Smoke monitoring and measurement using image processing: application to forest fires. In: Automatic Target Recognition XIII, vol. 5094, pp. 404–411. International Society for Optics and Photonics (2003)

  14. Krstinić, D., Stipaničev, D., Jakovčević, T.: Histogram-based smoke segmentation in forest fire detection system. Inf. Technol. Control 38(3), 237–244 (2009)

    Google Scholar 

  15. Luo, Q., Han, N., Kan, J., Wang, Z.: Effective dynamic object detecting for video-based forest fire smog recognition. In: 2009 2nd International Congress on Image and Signal Processing, pp. 1–5. IEEE (2009)

  16. Toreyin, B.U., Cetin, A.E.: Computer vision based forest fire detection. In: 2008 IEEE 16th Signal Processing, Communication and Applications Conference, pp. 1–4. IEEE (2008)

  17. Toreyin, B.U., Cetin, A.E.: Wildfire detection using LMS based active learning. In: 2009 IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 1461–1464. IEEE (2009)

  18. Gunay, O., Toreyin, B.U., Kose, K., Cetin, A.E.: Entropy-functional-based online adaptive decision fusion framework with application to wildfire detection in video. IEEE Trans. Image Process. 21(5), 2853–2865 (2012)

    Article  MathSciNet  Google Scholar 

  19. Han, S., Pool, J., Tran, J., Dally, W.: Learning both weights and connections for efficient neural network. In: Advances in Neural Information Processing Systems, pp. 1135–1143 (2015)

  20. Afrasiyabi, A., Nasir, B., Yildiz, O., Vural, F.T.Y., Cetin, A.E.: An energy efficient additive neural network. In: 2017 25th Signal Processing and Communications Applications Conference (SIU), pp. 1–4. IEEE (2017)

  21. Ionica, M.H., Gregg, D.: The movidius myriad architecture’s potential for scientific computing. IEEE Micro 35(1), 6–14 (2015)

    Article  Google Scholar 

  22. Essera, S.K., Merollaa, P.A., Arthura, J.V., Cassidya, A.S., Appuswamya, R., Andreopoulosa, A., Berga, D.J., McKinstrya, J.L., Melanoa, T., Barcha, D.R., di Nolfoa, C.: Convolutional networks for fast energy-efficient neuromorphic computing. Proc. Nat. Acad. Sci. USA 113(41), 11441–11446 (2016)

    Article  Google Scholar 

  23. Painkras, E., Plana, L.A., Garside, J., Temple, S., Galluppi, F., Patterson, C., Lester, D.R., Brown, A.D., Furber, S.B.: SpiNNaker: a 1-W 18-core system-on-chip for massively-parallel neural network simulation. IEEE J. Solid State Circuits 48(8), 1943–1953 (2013)

    Article  Google Scholar 

  24. Lin, M., Chen, Q., Yan, S.: Network in network (2013). arXiv:1312.4400

  25. Gu, J., Ramamoorthi, R., Belhumeur, P., Nayar, S.: Removing image artifacts due to dirty camera lenses and thin occluders. ACM Trans. Graph. (TOG) 28(5), 144 (2009)

    Article  Google Scholar 

  26. Yue-Hei Ng, J., Hausknecht, M., Vijayanarasimhan, S., Vinyals, O., Monga, R., Toderici, G.: Beyond short snippets: deep networks for video classification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4694–4702(2015)

Download references

Acknowledgements

The research is supported by National Science Foundation, (No. 1739396) 2017. We also thank NVIDIA company for providing a GPU and the developers of TensorFlow for publishing a so powerful machine learning library.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongyi Pan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, H., Badawi, D., Zhang, X. et al. Additive neural network for forest fire detection. SIViP 14, 675–682 (2020). https://doi.org/10.1007/s11760-019-01600-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-019-01600-7

Keywords

Navigation