Skip to main content
Log in

Robust signal recovery using Bayesian compressed sensing based on Lomax prior

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

Recently published research shows that Lomax distribution exhibits compressibility in Lorentz curves. In this paper, we address the problem of signal reconstruction in the high noise level and phase error environments in a Bayesian framework of Lomax prior distribution. Furthermore, from the perspective of improving sparsity and compressibility of the signal constraints, a novel reconstruction model deducted from Lomax-prior-based Bayesian compressed sensing (LomaxCS) is proposed. The LomaxCS improves the accuracy of existing Bayesian compressed sensing signal reconstruction methods and enhances the robustness against Gauss noise and phase errors. Compared with the conventional models, the proposed LomaxCS model still reveals the general profile of the signal in the worst conditions. The experimental results demonstrate that the proposed algorithm can achieve substantial improvements in terms of recovering signal quality and robustness; meanwhile, it brings an evident application prospect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Khwaja, A.S., Zhang, X.P.: Compressed sensing ISAR reconstruction in the presence of rotational acceleration. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 7(7), 2957–2970 (2014)

    Google Scholar 

  2. Xia, C.Y., Gao, Y.X., Yu, J., Yu, Z.H.: Block-sparse signal recovery based on orthogonal matching pursuit via stage-wise weak selection, pp. 1–9. Signal, Image Video Process. (2019)

    Google Scholar 

  3. Zhang, Z., Rao, B.D.: Sparse signal recovery with temporally correlated source vectors using sparse Bayesian learning. IEEE J. Sel. Top. Signal Process. 5(5), 912–926 (2011)

    Article  Google Scholar 

  4. Mehrkam, M., Tinati, M.A., Rezaii, T.Y.: Reconstruction of low-rank jointly sparse signals from multiple measurement vectors. SIViP 13(4), 683–691 (2019)

    Article  Google Scholar 

  5. Wang, Y., Zhao, B., Jiang, Y.: Inverse synthetic aperture radar imaging of targets with complex motion based on cubic Chirplet decomposition. IET Signal Proc. 9(5), 419–429 (2015)

    Article  Google Scholar 

  6. Emmanuel, C., Romberg, J., Tao, T.: Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. IEEE Trans Inf. Theory 52, 489–509 (2004)

    MathSciNet  MATH  Google Scholar 

  7. Ma, W., Chen, B., Qu, H., Zhao, J.: Sparse least mean p-power algorithms for channel estimation in the presence of impulsive noise. SIViP 10(3), 503–510 (2016)

    Article  Google Scholar 

  8. Subasi, A.: EEG signal classification using wavelet feature extraction and a mixture of expert model. Expert Syst. Appl. 32(4), 1084–1093 (2007)

    Article  Google Scholar 

  9. Zhang, Y., Amin, M.G.: Spatial averaging of time–frequency distributions for signal recovery in uniform linear arrays. IEEE Trans. Signal Process. 48(10), 2892–2902 (2000)

    Article  MathSciNet  Google Scholar 

  10. Ji, S., Xue, Y., Carin, L.: Bayesian compressive sensing. IEEE Trans. Signal Process. 56(6), 2346 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bilgic, B., Goyal, V.K., Adalsteinsson, E.: Multi-contrast reconstruction with Bayesian compressed sensing. Magn. Reson. Med. 66(6), 1601–1615 (2011)

    Article  Google Scholar 

  12. Yu, L., Sun, H., Barbot, J.P., Zheng, G.: Bayesian compressive sensing for cluster structured sparse signals. Sig. Process. 92(1), 259–269 (2012)

    Article  Google Scholar 

  13. Babacan, S.D., Molina, R., Katsaggelos, A.K.: Bayesian compressive sensing using Laplace priors. IEEE Trans. Image Process. 19(1), 53–63 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Zhang, S., Liu, Y., Li, X., Bi, G.: Logarithmic Laplacian prior based Bayesian inverse synthetic aperture radar imaging. Sensors 16(5), 611 (2016)

    Article  Google Scholar 

  15. Baraniuk, R., Cevher, V., Wakin, M.B.: Low-dimensional models for dimensionality reduction and signal recovery: a geometric perspective. Proc. IEEE 98, 959–971 (2010)

    Article  Google Scholar 

  16. Lee, S., Kim, J.H.: Exponentiated generalized Pareto distribution: properties and applications towards extreme value theory. Commun. Stat. Theory Methods 48, 2014–2038 (2018)

    Article  MathSciNet  Google Scholar 

  17. Cevher, V.: Learning with compressible priors. In: Jordan, M.I., LeCun, Y., Solla, S.A. (eds.) Advances in neural information processing systems, pp. 261–269. MIT Press, Cambridge (2009)

    Google Scholar 

  18. Zhang, S., Liu, Y., Li, X.: Autofocusing for sparse aperture ISAR imaging based on joint constraint of sparsity and minimum entropy. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 10(3), 998–1011 (2016)

    Article  Google Scholar 

  19. Alzaatreh, A., Ghosh, I.: A study of the Gamma-Pareto (IV) distribution and its applications. Commun. Stat. Theory Methods 45(3), 636–654 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  20. Candes, E.J., Romberg, J.K., Tao, T.: Stable signal recovery from incomplete and inaccurate measurements. Commun. Pure Appl. Math. 59(8), 1207–1223 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  21. Zhao, G., Wang, Q., Shen, F., Li, X., Shi, G.: Robust compressive multi-input–multi-output imaging. IET Radar Sonar Navig. 7(3), 233–245 (2013)

    Article  Google Scholar 

  22. Carrillo, R.E., Aysal, T.C., Barner, K.E.: Bayesian compressed sensing using generalized Cauchy priors. In: 2010 IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 4058–4061. IEEE (2010)

  23. Zhang, S., Liu, Y., Li, X.: Fast entropy minimization based autofocusing technique for ISAR imaging. IEEE Trans. Signal Process. 63(13), 3425–3434 (2015)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Y. Xia.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, C.Y., Gao, Y.X., Li, L. et al. Robust signal recovery using Bayesian compressed sensing based on Lomax prior. SIViP 14, 1235–1243 (2020). https://doi.org/10.1007/s11760-020-01661-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-020-01661-z

Keywords

Navigation