Skip to main content
Log in

Parameter estimation for coherently distributed noncircular sources under impulsive noise environments

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

The signal source generates angular expansion in space due to scattering, reflection and other phenomena in a complex environment, which requires a distributed signal model for processing. This paper extends the method of joint angular estimation for coherently distributed (CD) sources consisting of noncircular signals to the impulsive noise scenario. In an actual wireless passive positioning environment, impulsive noise is very common. However, most algorithms only consider Gaussian noise environments and are not suitable for angle estimation in impulsive noise scenarios. This paper proposes the generalized complex correntropy (GCC) and shows that it can eliminate the effects of outliers in an impulsive noise environment. This is because the complex correntropy is an effective tool to analyze higher-order statistical moments in the impulsive noise environment. In order to improve the accuracy of the estimation, we construct a GCC matrix based on extended array output and apply the subspace techniques to extract the angle information of the CD noncircular sources. The simulation results show that the estimation performance of the proposed algorithms is better than the traditional algorithm applied to the noncircular CD sources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ma, F., Zhang, X.: Wideband DOA estimation based on focusing signal subspace. Signal Image Video Process. 13(4), 675–682 (2018)

    Article  Google Scholar 

  2. Astély, D., Ottersten, B.: The effects of local scattering on direction of arrival estimation with MUSIC. IEEE Trans. Signal Process. 47(12), 3220–3234 (1999)

    Article  Google Scholar 

  3. Valaee, P.K.S., Champagne, B.: Parametric localization of distributed sources. IEEE Trans. Signal Process. 43(9), 2144–2153 (1995)

    Article  Google Scholar 

  4. Adali, T., Schreier, P.J., Scharf, L.L.: Complex-valued signal processing: The proper way to deal with impropriety. IEEE Trans. Signal Process. 59(11), 5101–5125 (2011)

    Article  MathSciNet  Google Scholar 

  5. Picinbono, B.: On circularity. IEEE Trans. Signal Process. 42(12), 3473–3482 (1994)

    Article  Google Scholar 

  6. Gounon, P., Adnet, C., Galy, J.: Angular localisation for noncircular signals. Trait. du Signal 15(1), 17–23 (1998)

    MATH  Google Scholar 

  7. Wan, L., Han, G., Jiang, J., et al.: DOA estimation for coherently distributed sources considering circular and noncircular signals in massive MIMO systems. IEEE Syst. J. 11(1), 41–49 (2017)

    Article  Google Scholar 

  8. Yang, X., Li, G., Zheng, Z., et al.: 2D DOA estimation of coherently distributed noncircular sources. Wirel. Pers. Commun. 78(2), 1095–1102 (2014)

    Article  Google Scholar 

  9. Liu, T., Qiu, T., Luan, S.: Cyclic correntropy: foundations and theories. IEEE Access 6, 34659–34669 (2018)

    Article  Google Scholar 

  10. Shao, M., Nikias, C.L.: Signal processing with fractional lower order moments: Stable processes and their applications. Proc. IEEE 81(7), 986–1010 (1993)

    Article  Google Scholar 

  11. Belkacemi, H., Marcos, S.: Robust subspace-based algorithms for joint angle/Doppler estimation in non-Gaussian clutter. Signal Process. 87(7), 1547–1558 (2007)

    Article  Google Scholar 

  12. Jinfeng, Z., Tianshuang, Q.: A novel covariation based noncircular sources direction finding method under impulsive noise environments. Signal Process. 98, 252–262 (2014)

    Article  Google Scholar 

  13. Tian, Q., Qiu, T., Ma, J., et al.: A simplified DOA estimation method based on correntropy in the presence of impulsive noise. IEEE Access 6, 67010–67025 (2018)

    Article  Google Scholar 

  14. Zhang, J., Qiu, T., Song, A., et al.: A novel correntropy based DOA estimation algorithm in impulsive noise environments. Signal Process. 104, 346–357 (2014)

    Article  Google Scholar 

  15. Liu, W., Pokharel, P.P., Principe, J.C.: Correntropy: properties and applications in non-Gaussian signal processing. IEEE Trans. Signal Process. 55(11), 5286–5298 (2007)

    Article  MathSciNet  Google Scholar 

  16. Guimaraes, J.P.F., Fontes, A.I.R., Rego, J.B.A., et al.: Complex correntropy: probabilistic interpretation and application to complex-Valued data. IEEE Signal Process. Lett. 24(1), 42–45 (2017)

    Article  Google Scholar 

  17. Schmidt, R.: Multiple emitter location and signal parameter estimation. IEEE Trans. Antennas Propag. 34(3), 276–280 (1986)

    Article  Google Scholar 

  18. Gunduz, A., Principe, J.C.: Correntropy as a novel measure for nonlinearity tests. Signal Process. 89(1), 14–23 (2009)

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by the National Natural Science Foundation of China under Grant 61671105, Grant 61139001, Grant 61172108 and Grant 81241059.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tianshuang Qiu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: The Proof of the boundedness of GCC

Appendix: The Proof of the boundedness of GCC

Here, we can rewrite the GCC operator as:

$$ \begin{aligned} & V_{\text{GCC}} \left( {C_{1} ,C_{2} } \right) \\ & \quad = E\left[ {\frac{1}{{2\pi \Delta^{2} }}\exp \left( { - \frac{{\left( {C_{1} - C_{2} } \right)\left( {C_{1} - C_{2} } \right)^{*} }}{{2\Delta^{2} }}} \right)C_{1} C_{2}^{*} } \right] \end{aligned} $$
(B1)

Analysis of (B1) as follows

$$ \begin{aligned} & V_{GCC} \left( {C_{1} ,C_{2} } \right) \\ & \quad \le E\left[ {\left| {\frac{1}{{2\pi \Delta^{2} }}\exp \left( { - \frac{{\left( {C_{1} - C_{2} } \right)\left( {C_{1} - C_{2} } \right)^{*} }}{{2\Delta^{2} }}} \right)C_{1} C_{2}^{*} } \right|} \right] \\ & \quad \le E\left[ {\left| {C_{1} C_{2}^{*} } \right|} \right] \end{aligned} $$
(B2)

As mentioned above that let \( C_{1} \) and \( C_{2} \) be i.i.d. SαS complex random variables, under this assumption \( C_{1} \) and \( C_{2}^{*} \) must be also i.i.d. So we have

$$ V_{\text{GCC}} \left( {C_{1} ,C_{2} } \right) \le E\left[ {\left| {C_{1} C_{2}^{*} } \right|} \right] = E\left[ {\left| {C_{1} } \right|} \right]E\left[ {\left| {C_{2}^{*} } \right|} \right] $$
(B3)

From [10] we know that for the SαS random variable \( X \) with the characteristic exponent \( 1 < \alpha \le 2 \), there exists

$$ E\left[ {\left| X \right|^{p} } \right] = \frac{{2^{p + 1} \varGamma \left( {\frac{p + 1}{2}} \right)\varGamma \left( { - p/\alpha } \right)}}{{\alpha \sqrt \pi \varGamma \left( { - p/2} \right)}}\gamma^{{\frac{p}{\alpha }}} \quad {\text{for}}\;0 < p < \alpha $$
(B4)

\( \varGamma \left( \cdot \right) \) is the gamma function defined by \( \varGamma \left( x \right) = \int_{0}^{\infty } {t^{x - 1} e^{ - t} {\text{d}}t} \).

Obviously substituting \( p \) with 1 in (B4) can get a finite value \( E[|C_{1} |] \le + \infty \). So

$$ V_{\text{GCC}} \left( {C_{1} ,C_{2} } \right) \le + \infty $$
(B5)

which means that \( V_{\text{GCC}} \) is bounded.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chao, L., Qiu, T., Tian, Q. et al. Parameter estimation for coherently distributed noncircular sources under impulsive noise environments. SIViP 14, 1497–1505 (2020). https://doi.org/10.1007/s11760-020-01687-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-020-01687-3

Keywords

Navigation