Skip to main content
Log in

A novel lossless compression encoding framework for SAR remote sensing images

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

The resolution of SAR (synthetic-aperture radar) remote sensing images becomes higher to provide more details, but these images contain more data, which creates a limitation in terms of transport and storage. Most of existing image data compression frameworks are lossy or designed for spectral images. In this paper, we propose a novel lossless compression encoding framework for SAR remote sensing images. In the proposed framework, an outline of the image and the high-frequency components are separated and processed separately to increase the relativity of adjacent pixels. So the accuracy of prediction is improved, which makes the data compression more effective. The outline image is down-sampled to reduce data size, and the nonlocally centralized sparse representation-based super-resolution method is used to predict pixel values using the information in nonlocal similar regions. The proposed framework is evaluated with the ground range detected and PauliRGB images captured by SAR satellites. The results show that the proposed technique can get an efficient compression performance and it outperforms existing lossless compression frameworks in terms of compression efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kaarna, A., Zemcik, P., Kalviainen, H., Parkkinen, J.: Compression of multispectral remote sensing images using clustering and spectral reduction. IEEE Trans. Geosci. Remote Sens. 38(2), 1073–1082 (2000)

    Article  Google Scholar 

  2. Hussain, A.J., Al.Fayadh, A., Radi, N.: Image compression techniques: a survey in lossless and lossy algorithms. Neurocomputing 300, 44–69 (2018)

    Article  Google Scholar 

  3. Wallace, G.K.: The JPEG still picture compression standard. IEEE Trans. Consum. Electron. 38(1), 12 (1992)

    Article  Google Scholar 

  4. Christopoulos, C., Skodras, A., Ebrahimi, T.: The JPEG2000 still image coding system: an overview. IEEE Trans. Consum. Electron. 46(4), 1103–1127 (2000)

    Article  Google Scholar 

  5. Alexa, F., Gui, V., Caleanu, C., Botoca, C.: Lossless data compression using neural networks. In: WSEAS International Conference Proceedings Mathematics and Computers in Science and Engineering, vol. 7 (2008)

  6. Adler, M., Boutell, T., Bowler, J., Brunschen, C., Costello, A., Crocker, L., et al.: Portable network graphics (PNG) specification. Specification 1(2), W3C (2003)

    Google Scholar 

  7. Parsons, G., Rafferty, J.: Tag Image File Format (TIFF)–F Profile for Facsimile. In: RFC 2306, March (1998)

  8. Wu, X., Memon, N.: CALIC—a context based adaptive lossless image codec. ICASSP IEEE Int. Conf. Acoust. Speech Signal Process. Proc. 4, 1890–1893 (1996)

    Google Scholar 

  9. Weinberger, M.J., Seroussi, G., Sapiro, G.: The LOCO-I lossless image compression algorithm: principles and standardization into JPEG-LS. IEEE Trans. Image Process. 9(8), 1309–1324 (2000)

    Article  Google Scholar 

  10. Jarno, M., Bormin, H.: Lossless compression of hyperspectral images using clustered linear prediction with adaptive prediction length. IEEE Geosci. Remote Sens. Lett. 9(6), 1118–1121 (2012)

    Article  Google Scholar 

  11. Alfonso, R., Lucana, S., Roberto, S., Eduardo, D.: Scalable hardware-based on-board processing for run-time adaptive lossless hyperspectral compression. IEEE Access 7, 10644–10652 (2019)

    Article  Google Scholar 

  12. Li, J., Liu, Z.: Multispectral transforms using convolution neural networks for remote sensing multispectral image compression. Remote Sens. 11(7), 759–779 (2019)

    Article  Google Scholar 

  13. Li, B., Yang, R., Jiang, H.: Remote-sensing image compression using two-dimensional oriented wavelet transform. IEEE Trans. Geosci. Remote Sens. 49(1), 236–250 (2010)

    Article  Google Scholar 

  14. Zhan, X., Zhang, R., Yin, D., Huo, C.: SAR image compression using multiscale dictionary learning and sparse representation. IEEE Geosci. Remote Sens. Lett. 10(5), 1090–1094 (2013)

    Article  Google Scholar 

  15. Zemliachenko, A.N., Abramov, S.K., Lukin, V.V., Vozel, B., Chehdi, K.: Lossy compression of noisy remote sensing images with prediction of optimal operation point existence and parameters. J. Appl. Remote Sens. 9(1), 095066 (2015)

    Article  Google Scholar 

  16. Shi, C., Zhang, J., Zhang, Y.: Content-based onboard compression for remote sensing images. Neurocomputing 191(2), 330–340 (2016)

    Article  Google Scholar 

  17. Chiranjeevi, K., Jena, U.: SAR image compression using adaptive differential evolution and pattern search based K-means vector quantization. Image Anal. Stereol. 37(1), 35–54 (2018)

    Article  Google Scholar 

  18. Ma, J., Yang, B., Gao, Y., Tao, L., Liu, X.: SAR image compression using optronic processing. J. Eng. 2019, 5982–5985 (2019)

    Article  Google Scholar 

  19. Xia, Y., Li, Z., Chen, Z., Yang, D.: Quantitative analysis on lossy compression in remote sensing image classification. In: Proceedings of SPIE—The International Society for Optical Engineering, vol. 9410 (2015)

  20. Mahammad, S.S., Ramakrishnan, R.: GeoTIFF-A standard image file format for GIS applications. Map India, pp. 28–31 (2003)

  21. Bogdan, R., Oleksiy, L., Yuriy, L., Adolf, L., Lubomyk, P.: Lossless image compression in the remote sensing applications. In: 2016 IEEE First International Conference on Data Stream Mining Processing (DSMP), pp. 195–198 (2016)

  22. Uthayakumar, J., Vengattaraman, T.: Performance Evaluation of Lossless Compression Techniques: An Application of Satellite Images. In: 2018 Second International Conference on Electronics, Communication and Aerospace Technology (ICECA), pp. 750–754 (2018)

  23. Huijuan, L., Youshan, Q., Pan, C.: Modulation transfer function online compensation of imaging system in remote sensing satellite. In: International Conference on Electronics, Communications and Control (ICECC), pp. 3821–3824 (2011)

  24. Pan, Z., Huang, H., Sun, W.: Super resolution of remote sensing image based on structure similarity in CS frame. MIPPR 2011 Multispectr. Image Acquis. Process. Anal. 8002, 80020H (2011)

    Google Scholar 

  25. Dong, W., Zhang, L., Shi, G., Li, X.: Nonlocally centralized sparse representation for image restoration. IEEE Trans. Image Process. 22(4), 1620–1630 (2012)

    Article  MathSciNet  Google Scholar 

  26. Guo, F., Li, S.: Data compression based on prediction. In: International Conference on Consumer Electronics, pp. 2483–2486 (2012)

  27. Gao W., Ma S.: Entropy coding. In: Advanced Video Coding Systems. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-14243-2_6

  28. Zhang, Y., Adjeroh, D.A.: Prediction by partial approximate matching for lossless image compression. IEEE Trans. Image Process. 17(6), 924–935 (2008)

    Article  MathSciNet  Google Scholar 

  29. Knuth, D.E.: Dynamic Huffman coding. J. Algorithms 6(2), 163–180 (1985)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China (No. 61802105, 61701154, 61702154, 61632007, 61976076), and Natural Science Foundation of Anhui Province (No. 1908085QF265 and 1808085QF185).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunxiao Fan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, C., Hu, Z., Jia, L. et al. A novel lossless compression encoding framework for SAR remote sensing images. SIViP 15, 441–448 (2021). https://doi.org/10.1007/s11760-020-01763-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-020-01763-8

Keywords

Navigation