Skip to main content

Advertisement

Log in

Online learning method based on support vector machine for metallographic image segmentation

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

The shape, size and distribution of the microstructure could certainly reveal mechanical properties. Therefore, it is important to segment the microstructure accurately. However, in view of the randomness in the metallographic detection period, a fixed segmentation algorithm with good performance in specific and known dataset may lead to wrong result when external condition changes. To solve the problem, we proposes an online learning pipeline to adjust the model adaptively by dynamic samples. First, a preprocessing method is deployed to smooth the uneven gray level. Next, local features and abstract features are extracted by a genetic algorithm-optimized boundary detector and a deep learning model, respectively. Then, online support vector machine is employed to update the model parameters under complex and changeable conditions in real time. Finally, a post-processing method is employed to get final result. A variety of experiments are presented to verify the effectiveness and the convergence of online algorithm. The experiment results indicate that the proposed pipeline can effectively extract local and abstract features, and the real-time updating model according to dynamic samples achieves state-of-the-art segmentation performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Callister, W.D., Rethwisch, D.G.: Materials Science and Engineering: An Introduction. Wiley, New York (2018)

    Google Scholar 

  2. Chen, L., Jiang, M., Chen, J.: Image segmentation using iterative watersheding plus ridge detection. In: ICIP (2009)

  3. Lievers, W.B., Pilkey, A.K.: An evaluation of global thresholding techniques for the automatic image segmentation of automotive aluminum sheet alloys. Mater. Sci. Eng., A 381(1), 134–142 (2004)

    Article  Google Scholar 

  4. Campbell, A.I., Murray, P., Yakushina, E., Marshall, S., Ion, W.: New methods for automatic quantification of microstructural features using digital image processing. Mater. Design 141, 395–406 (2018)

    Article  Google Scholar 

  5. Zhenying, X., Jiandong, Z., Qi, Z., Yamba, P.: Algorithm based on regional separation for automatic grain boundary extraction using improved mean shift method. Surf. Topogr. Metrol. Prop. 6(2), 025001 (2018)

    Article  Google Scholar 

  6. Journaux, S., Gouton, P., Paindavoine, M., Thauvin, G.: Evaluating creep in metals by grain boundary extraction using directional wavelets and mathematical morphology. J. Mater. Process. Technol. 117(1), 132–145 (2001)

    Article  Google Scholar 

  7. Zhang, S., Chen, D., Liu, S., Zhang, P., Zhao, W.: Aluminum alloy microstructural segmentation method based on simple noniterative clustering and adaptive density-based spatial clustering of applications with noise. J. Electron. Imaging 28(3), 033035 (2019)

    Google Scholar 

  8. Papa, J.P., Nakamura, R.Y., De Albuquerque, V.H.C., Falcão, A.X., Tavares, J.M.R.: Computer techniques towards the automatic characterization of graphite particles in metallographic images of industrial materials. Expert Syst. Appl. 40(2), 590–597 (2013)

    Article  Google Scholar 

  9. Bulgarevich, D.S., Tsukamoto, S., Kasuya, T., Demura, M., Watanabe, M.: Pattern recognition with machine learning on optical microscopy images of typical metallurgical microstructures. Sci. Rep. 8(1), 1–8 (2018)

    Article  Google Scholar 

  10. DeCost, B.L., Holm, E.A.: A computer vision approach for automated analysis and classification of microstructural image data. Comput. Mater. Sci. 110, 126–133 (2015)

    Article  Google Scholar 

  11. Gola, J., Britz, D., Staudt, T., Winter, M., Schneider, A.S., Ludovici, M., Mücklich, F.: Advanced microstructure classification by data mining methods. Comput. Mater. Sci. 148, 324–335 (2018)

    Article  Google Scholar 

  12. de Albuquerque, V.H.C., de Alexandria, A.R., Cortez, P.C., Tavares, J.M.R.: Evaluation of multilayer perceptron and self-organizing map neural network topologies applied on microstructure segmentation from metallographic images. NDT & E Int. 42(7), 644–651 (2009)

    Article  Google Scholar 

  13. de Albuquerque, V.H.C., Silva, C.C., Menezes, T.I.D.S., Farias, J.P., Tavares, J.M.R.: Automatic evaluation of nickel alloy secondary phases from SEM images. Microsc. Res. Tech. 74(1), 36–46 (2011)

    Article  Google Scholar 

  14. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR (2016)

  15. Azimi, S.M., Britz, D., Engstler, M., Fritz, M., Mücklich, F.: Advanced steel microstructural classification by deep learning methods. Sci. Rep. 8(1), 1–14 (2018)

    Article  Google Scholar 

  16. Chen, D., Zhang, P., Liu, S., Chen, Y., Zhao, W.: Aluminum alloy microstructural segmentation in micrograph with hierarchical parameter transfer learning method. J. Electron. Imaging 28(5), 053018 (2019)

    Google Scholar 

  17. Li, M., Chen, D., Liu, S., Liu, F.: Grain boundary detection and second phase segmentation based on multi-task learning and generative adversarial network. Measurement 162, 107857 (2020)

    Article  Google Scholar 

  18. Dekel, O., Gilad-Bachrach, R., Shamir, O., Xiao, L.: Optimal distributed online prediction using mini-batches. J. Mach. Learn. Res 13, 165–202 (2012)

    MathSciNet  MATH  Google Scholar 

  19. Cesa-Bianchi, N., Conconi, A., Gentile, C.: A second-order perceptron algorithm. SIAM J. Comput. 34(3), 640–668 (2005)

    Article  MathSciNet  Google Scholar 

  20. Arora, S., Hazan, E., Kale, S.: The multiplicative weights update method: a meta-algorithm and applications. Theory Comput. 8(1), 121–164 (2012)

    Article  MathSciNet  Google Scholar 

  21. McMahan, H. B.: Follow-the-regularized-leader and mirror descent: equivalence theorems and L1 regularization. In: AISTATS (2011)

  22. Lu, J., Sahoo, D., Zhao, P., Hoi, S.C.: Sparse passive-aggressive learning for bounded online kernel methods. ACM Trans. Intell. Syst. Technol. 9(4), 1–27 (2018)

    Article  Google Scholar 

  23. Ülkü, İ., Töreyin, B.U.: Sparse coding of hyperspectral imagery using online learning. Signal Image Video Process. 9(4), 959–966 (2015)

    Article  Google Scholar 

  24. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: MICCAI (2015)

  25. Comon, P.: Independent component analysis, a new concept? Signal Process. 36(3), 287–314 (1994)

    Article  Google Scholar 

  26. McMahan, H.B.: A survey of algorithms and analysis for adaptive online learning. J. Mach. Learn. Res 18(1), 3117–3166 (2017)

    MathSciNet  MATH  Google Scholar 

  27. Orabona, F., Keshet, J., Caputo, B.: Bounded kernel-based online learning. J. Mach. Learn. Res 10, 2643–2666 (2009)

    MathSciNet  MATH  Google Scholar 

  28. Krähenbühl, P., Koltun, V.: Efficient inference in fully connected crfs with gaussian edge potentials. In: NIPS (2011)

  29. Goldberg, D.E., Holland, J.H.: Genetic algorithms and machine learning. Mach. Learn. 3, 95–99 (1988)

    Article  Google Scholar 

  30. Back, T.: Evolutionary Algorithms in Theory and Practice: Evolution Strategies, Evolutionary Programming, Genetic Algorithms. Oxford University Press, Oxford (1996)

    Book  Google Scholar 

  31. Shalev-Shwartz, S.: Online learning and online convex optimization. Found. Trends Mach. Learn. 4(2), 107–194 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Key R&D Program of China under Grant 2017YFB0306400 and the National Natural Science Foundation of China under Grant 61773104.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dali Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Chen, D., Liu, S. et al. Online learning method based on support vector machine for metallographic image segmentation. SIViP 15, 571–578 (2021). https://doi.org/10.1007/s11760-020-01778-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-020-01778-1

Keywords

Navigation