Skip to main content
Log in

Predicting medical image registration error through independent directions

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

Estimating registration error through independent directions, horizontal, vertical, and diagonal, is yet an unaccomplished task. If accurately done, this information can be used as feedback to further improve the registration quality. In this paper, we propose an algorithm for this purpose using a random forest regressor with features extracted using block matching. The proposed algorithm only requires two images as input and make predictions densely without requiring multiple registrations. The results on publicly available datasets show that the displacement of the best match after block matching provides strong cues about the registration error and the proposed algorithm is capable of estimating registration error through independent directions with high accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Sun, Z., et al.: Detection of conversion from mild cognitive impairment to Alzheimer’s disease using longitudinal brain MRI. Front. Neuroinform. 11(6), 16 (2017)

    Google Scholar 

  2. Van der Lijn, F., et al.: Automated brain structure segmentation based on atlas registration and appearance models. IEEE Trans. Med. Imag. 31(2), 276–286 (2012)

    Article  Google Scholar 

  3. Iglesias, Juan E., Mert, R.Sabuncu: Multi-atlas segmentation of biomedical images: a survey. Med. Image Anal. 24(1), 205–219 (2015)

    Article  Google Scholar 

  4. Ma, Andrew K., et al.: Intraoperative image guidance in transoral robotic surgery: a pilot study. Head Neck 39(10), 1976–1983 (2017)

    Article  Google Scholar 

  5. Medan, Guy, et al.: Sparse 3D radon space rigid registration of CT scans: method and validation study. IEEE Trans. Med. Imag. 36(2), 497–506 (2017)

    Article  Google Scholar 

  6. Sotiras, Aristeidis, et al.: Deformable medical image registration: a survey. IEEE Trans. Med. Imag. 32(7), 1153–1190 (2013)

    Article  Google Scholar 

  7. Qiao, Y., et al.: Fast automatic step size estimation for gradient descent optimization of image registration. IEEE Trans. Med. Imag. 35(2), 391–403 (2016)

    Article  Google Scholar 

  8. Sokooti, H., et al.: Nonrigid image registration using multi-scale 3D convolutional neural networks. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 232–239, (2017)

  9. Eppenhof, K.A.J., et al.: Deformable image registration using convolutional neural networks. Medical Imaging 2018: Image Processing, 105740S, (2018)

  10. Pluim, J.P.W., et al.: The truth is hard to make: validation of medical image registration. In: International Conference on Pattern Recognition (ICPR), pp. 2294–2300, (2016)

  11. Rohlfing, T.: Image similarity and tissue overlaps as surrogates for image registration accuracy: widely used but unreliable. IEEE Trans. Med. Imag. 31(2), 153–163 (2012)

    Article  Google Scholar 

  12. Park, H., et al.: Adaptive registration using local information measures. Med. Image Anal. 8(4), 465–473 (2004)

    Article  Google Scholar 

  13. Crum, W.R., et al.: Automatic estimation of error in voxel-based registration. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 821–828, (2004)

  14. Andriy, F., et al.: Evaluation of brain MRI alignment with the robust Hausdorff distance measures. In: International Symposium on Visual Computing, pp. 594–603, (2008)

  15. Rohde, G.K., et al.: The adaptive bases algorithm for intensity-based nonrigid image registration. IEEE Trans. Med. Imag. 22(11), 1470–1479 (2003)

    Article  Google Scholar 

  16. Kybic, Jan: Bootstrap resampling for image registration uncertainty estimation without ground truth. IEEE Trans. Med. Imag. 19(1), 64–73 (2010)

    Article  MathSciNet  Google Scholar 

  17. Kybic, J.: Fast no ground truth image registration accuracy evaluation: comparison of bootstrap and Hessian approaches. In: IEEE International Symposium on Biomedical Imaging: From Nano to Macro (ISBI), pp. 792–795, (2008)

  18. Datteri, R., Dawant, B.M.: Estimation of rigid-body registration quality using registration networks. Medical Imaging: Image Processing 8314, (2012)

  19. Simpson, I.J.A., et al.: Validation of a nonrigid registration error detection algorithm using clinical MRI brain data. IEEE Trans. Med. Imag. 34(1), 86–96 (2015)

    Article  Google Scholar 

  20. Sofka, M., Stewart, C.V.: Location registration and recognition (LRR) for longitudinal evaluation of corresponding regions in CT volumes. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 989–997, (2008)

  21. Muenzing, S., et al.: Supervised quality assessment of medical image registration: application to intra-patient CT lung registration. Med. Image Anal. 16(8), 1521–1531 (2012)

    Article  Google Scholar 

  22. Lotfi, T., et al.: Improving probabilistic image registration via reinforcement learning and uncertainty evaluation. International Workshop on Machine Learning in Medical Imaging, pp. 187–194, (2013)

  23. Eppenhof, K.A.J., et al.: Supervised local error estimation for nonlinear image registration using convolutional neural networks. Medical Imaging 2017: Image Processing, 101331U, (2017)

  24. Saygili, G., et al.: Confidence estimation for medical image registration based on stereo confidences. IEEE Trans. Med. Imag. 35(2), 539–549 (2016)

    Article  Google Scholar 

  25. Sokooti, H., et al.: Accuracy estimation for medical image registration using regression forests. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 107–115, (2016)

  26. Heinrich, M.P., et al.: MIND: Modality independent neighbourhood descriptor for multi-modal deformable registration. Med. Image Anal. 16(7), 1423–1435 (2012)

    Article  Google Scholar 

  27. Saygili, G.: Local-search based prediction of medical image registration error. Image Perception. Observer Performance, and Technology Assessment, Medical Imaging (2018)

  28. Saygili, G.: Predicting medical image registration error with block-matching using three orthogonal planes approach. Signal, Image and Video Processing pp. 1–8, (2020)

  29. Sokooti, H., et al.: Quantitative error prediction of medical image registration using regression forests. Med. Image Anal. 56, 110–121 (2019)

    Article  Google Scholar 

  30. Penney, G.P., et al.: A comparison of similarity measures for use in 2-D-3-D medical image registration. IEEE Trans. Med. Imag. 17(4), 586–595 (1998)

    Article  Google Scholar 

  31. Pluim, J.P.W., et al.: Mutual-information-based registration of medical images: a survey. IEEE Trans. Med. Imag. 22(8), 986–1004 (2003)

    Article  Google Scholar 

  32. Debella-Gilo, M., Kääb, A.: Sub-pixel precision image matching for measuring surface displacements on mass movements using normalized cross-correlation. Remote Sens. Environ. 115(1), 130–142 (2011)

    Article  Google Scholar 

  33. Castillo, R., et al.: A framework for evaluation of deformable image registration spatial accuracy using large landmark point sets. Phys. Med. Biol. 54(7), 2009 (1849)

    Google Scholar 

  34. Castillo, E., et al.: Four-dimensional deformable image registration using trajectory modeling. Phys. Med. Biol. 55(1), 305 (2009)

    Article  Google Scholar 

  35. Vandemeulebroucke, J., et al.: Spatiotemporal motion estimation for respiratory-correlated imaging of the lungs. Med. Phys. 38(1), 166–178 (2011)

    Article  Google Scholar 

  36. Hammers, A., et al.: Three-dimensional maximum probability atlas of the human brain, with particular reference to the temporal lobe. Human Brain Map. 19(4), 224–247 (2003)

    Article  Google Scholar 

  37. Klein, S., et al.: Elastix: a toolbox for intensity-based medical image registration. IEEE Trans. Med. Imag. 29(1), 196–205 (2010)

    Article  Google Scholar 

  38. Hosni, Asmaa, et al.: Secrets of adaptive support weight techniques for local stereo matching. Comput. Vis. Image Underst. 117(6), 620–632 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gorkem Saygili.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saygili, G. Predicting medical image registration error through independent directions. SIViP 15, 223–230 (2021). https://doi.org/10.1007/s11760-020-01784-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-020-01784-3

Keywords

Navigation