Skip to main content
Log in

Off-Grid direction of arrival estimation in the presence of measurement noise and heavy cluttered environment

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

In this paper, we focus on estimating Direction of Arrival (DOA) and removing heavy clutter embedded with measurement noise. A correlated Gaussian process is chosen to model destructive effects of clutter. Also, a white Gaussian process is selected to describe measurement noise caused by sensor array. After adding these distortions to the off-grid model, we utilize Sparse Bayesian Learning and principal component analysis (as a preprocessing stage) in order to remove these distortions as well as estimating of true DOAs. Finally, at the end we will show how ignorance of clutter from model or combine it with measurement noise degrade DOA estimation. This will be demonstrated by various numerical simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Schmidt, R.: Multiple emitter location and signal parameter estimation. IEEE Trans. Antennas Propag. 34(3), 276–280 (1986)

    Article  Google Scholar 

  2. Ghofrani, S., Amin, M.G., Zhang, Y.D.: High-resolution direction finding of non-stationary signals using matching pursuit. Signal Process. 93(12), 3466–3478 (2013)

    Article  Google Scholar 

  3. Boroujeny, B.F.: Adaptive Filters: Theory and Applications, 2nd edn. Wiley, New York (2013)

    Book  Google Scholar 

  4. Ciuonzo, D., Romano, G., Solimene, R.: Performance analysis of time-reversal music. IEEE Trans. Signal Process. 63(10), 2650–2662 (2015)

    Article  MathSciNet  Google Scholar 

  5. He, J., Swamy, M.N.S., Ahmad, M.O.: Efficient application of music algorithm under the coexistence of far-field and near-field sources. IEEE Trans. Signal Process. 60(4), 2066–2070 (2012)

    Article  MathSciNet  Google Scholar 

  6. Devaney, A.J.: Time reversal imaging of obscured targets from multistatic data. IEEE Trans. Antennas Propag. 53(5), 1600–1610 (2005)

    Article  Google Scholar 

  7. Ciuonzo, D., Rossi, P.S.: Noncolocated time-reversal music: high-snr distribution of null spectrum. IEEE Signal Process. Lett. 24(4), 397–401 (2017)

    Article  Google Scholar 

  8. Ciuonzo, D.: On time-reversal imaging by statistical testing. IEEE Signal Process. Lett. 24(7), 1024–1028 (2017)

    Article  Google Scholar 

  9. Shaghaghi, M., Vorobyov, S.A.: Subspace leakage analysis and improved DOA estimation with small sample size. IEEE Trans. Signal Process. 63(12), 3251–3265 (2015)

    Article  MathSciNet  Google Scholar 

  10. Malioutov, D., Cetin, M., Willsky, A.S.: A sparse signal reconstruction perspective for source localization with sensor arrays. IEEE Trans. Signal Process. 53(8), 3010–3022 (2005)

    Article  MathSciNet  Google Scholar 

  11. Qin, S., Zhang, Y.D., Amin, M.G.: Doa estimation of mixed coherent and uncorrelated signals exploiting a nested mimo system. In: 2014 IEEE Benjamin Franklin Symposium on Microwave and Antenna Sub-systems for Radar, Telecommunications, and Biomedical Applications (BenMAS), pp. 1–3 (2014)

  12. Yang, Z., Li, J., Stoica, P., Xie, L.: Chapter 11–sparse methods for direction-of-arrival estimation. In: Chellappa, R., Theodoridis, S. (eds.) Academic Press Library in Signal Processing, vol. 7, pp. 509–581. Academic Press, New York (2018)

    Chapter  Google Scholar 

  13. Zhu, H., Leus, G., Giannakis, G.B.: Sparsity-cognizant total least-squares for perturbed compressive sampling. IEEE Trans. Signal Process. 59(5), 2002–2016 (2011)

    Article  MathSciNet  Google Scholar 

  14. Yang, Z., Xie, L., Zhang, C.: Off-grid direction of arrival estimation using sparse Bayesian inference. IEEE Trans. Signal Process. 61(1), 38–43 (2013)

    Article  MathSciNet  Google Scholar 

  15. Bhaskar, B.N., Tang, G., Recht, B.: Atomic norm denoising with applications to line spectral estimation. IEEE Trans. Signal Process. 61(23), 5987–5999 (2013)

    Article  MathSciNet  Google Scholar 

  16. Chen, Y., Chi, Y.: Robust spectral compressed sensing via structured matrix completion. IEEE Trans. Inf. Theory 60(10), 6576–6601 (2014)

    Article  MathSciNet  Google Scholar 

  17. Joachim, H.G.: Ender. On compressive sensing applied to radar. Sig. Process. 90(5), 1402–1414 (2010)

    Article  Google Scholar 

  18. Yao, Yu., Sun, Shunqiao, Petropulu, Athina P.: A capon beamforming method for clutter suppression in colocated compressive sensing based MIMO radars. In: Ahmad, Fauzia (ed.) Compressive Sensing II. volume 8717, pp. 142–148. International Society for Optics and Photonics, SPIE (2013)

    Google Scholar 

  19. Chong, C.Y., Pascal, F., Ovarlez, J., Lesturgie, M.: Mimo radar detection in non-Gaussian and heterogeneous clutter. IEEE J. Sel. Top. Signal Process. 4(1), 115–126 (2010)

    Article  Google Scholar 

  20. Salari, S., Chan, F., Chan, Y., Kim, I., Cormier, R.: Joint DOA and clutter covariance matrix estimation in compressive sensing mimo radar. IEEE Trans. Aerosp. Electron. Syst. 55(1), 318–331 (2019)

    Article  Google Scholar 

  21. Gerstoft, Peter, Xenaki, Angeliki, Mecklenbräuker, Christoph F.: Multiple and single snapshot compressive beamforming. J. Acoust. Soc. Am. 138(4), 2003–2014 (2015)

    Article  Google Scholar 

  22. Gorodnitsky, I.F., Rao, B.D.: Sparse signal reconstruction from limited data using focuss: a re-weighted minimum norm algorithm. IEEE Trans. Signal Process. 45(3), 600–616 (1997)

    Article  Google Scholar 

  23. Stoica, P., Babu, P., Li, J.: Spice: a sparse covariance-based estimation method for array processing. IEEE Trans. Signal Process. 59(2), 629–638 (2011)

    Article  MathSciNet  Google Scholar 

  24. Bishop, C.: Pattern Recognition and Machine Learning. Springer, New York (2006)

    MATH  Google Scholar 

  25. Anderson, T.W.: An Introduction to Multivariate Statistical Analysis, 3rd edn. Wiley, New York (2003)

    MATH  Google Scholar 

  26. Dai, J., Bao, X., Xu, W., Chang, C.: Root sparse Bayesian learning for off-grid doa estimation. IEEE Signal Process. Lett. 24(1), 46–50 (2017)

    Article  Google Scholar 

  27. Cotter, S.F., Rao, B.D., Engan, Kjersti, Kreutz-Delgado, K.: Sparse solutions to linear inverse problems with multiple measurement vectors. IEEE Trans. Signal Process. 53(7), 2477–2488 (2005)

    Article  MathSciNet  Google Scholar 

  28. Zhang, Q.T.: Probability of resolution of the music algorithm. IEEE Trans. Signal Process. 43(4), 978–987 (1995)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ghazaleh Sarbishaei.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ebrahimi, S., Sarbishaei, G. & Hodtani, G.A. Off-Grid direction of arrival estimation in the presence of measurement noise and heavy cluttered environment. SIViP 15, 695–703 (2021). https://doi.org/10.1007/s11760-020-01787-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-020-01787-0

Keywords

Navigation