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Abstract
To improve the performance of local learned descriptors, many researchers pay primary attention to the triplet loss network.
As expected, it is useful to achieve state-of-the-art performance on various datasets. However, these local learned descriptors
suffer from the inconsistency problem without considering the relationship between two descriptors in a patch. Consequently,
the problem causes the irregular spatial distribution of local learned descriptors. In this paper, we propose a neat method to
overcome the above inconsistency problem. The core idea is to design a triplet loss function of vertex-edge constraint (VEC),
which takes the correlation between two descriptors of a patch into account. Furthermore, to minimize the non-matching
descriptors’ influence, we propose an exponential algorithm to reduce the difference between the long and short sides. The
competitive performance against state-of-the-art methods on various datasets demonstrates the effectiveness of the proposed
method.

Keywords Local learned descriptors · Inconsistency issue · The triplet loss function

1 Introduction

Image matching, which is a fundamental problem in com-
puter vision, has been widely used in numerous fields,
including structure from motion [1], wide-baseline stereo
[2,3], 3D reconstruction [4] and simultaneous localiza-
tion and mapping (SLAM) [5,6]. Generally, a patch-based
matching method includes extracting the feature points and
matching their feature descriptors. The stable descriptors
with properties of scale and rotation invariance are crucial for
correcting image matching. Traditional methods, including
SIFT [7] and SURF [8], have been proven to be effective in
various applications. Meanwhile, to accelerate matching and
reduce storage, several algorithms [9–11] adopt the binary
descriptors instead of the float descriptors. Nora Al-Garaawi
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et al. [12] extract some binary face descriptors with the
BRIEF algorithm to achieve well performance on automatic
facial expression recognition.

However, handcrafted descriptors are limited in terms
of robustness and precision due to the lack of high-level
structural information. Recently, with the development of
convolutional neural networks (CNNs), the research hotspot
focuses on the learned descriptors [13–17] instead of the
handcrafted descriptors. These learned descriptors achieve
much higher performance than the handcrafted ones in vari-
ous areas, including image matching and patch verification.
Specifically, To improve the performance of learned descrip-
tors, the triplet loss [14] encourages that the distance between
matching descriptors is less than the distance between non-
matching ones. Inspired by the triplet loss, recent works [16,
17] try to minimize the distance between matching descrip-
tors and maximize the distance between non-matching
descriptors. These experimental results demonstrate the
triplet loss is effective on various datasets, improving the
robustness of learned descriptors in extreme conditions,
including weather, season, illumination, and distortion.

Although these triplet loss methods achieve impressive
performance, they suffer from an inconsistency issue, as
shown in Fig. 1a. Specifically, Fig. 1 shows the Euclidean
distance of four image patches involving twomatching pairs.
The symbols ai and pi (i =1,2) refer to descriptors of anchor
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Fig. 1 Comparison between the
descriptors w/wo the edge
constraint. a A previous method
with vertex constraint and b our
method with VEC. The
descriptors ai and pi (i =1, 2)
are detected from anchor
patches and positive patches.
The parameter d denotes the
Euclidean distance between two
descriptors. The different value
between da1a2 and dp1 p2 from
1.16 (a) to 0.05 (b).
Furthermore, our method
minimizes the difference
between da1 p1 and da2 p2 from
0.29 to 0.05)

patches and positive patches, and d represents the Euclidean
distance between two descriptors. If a1-p1 and a2-p2 is two
matching descriptors pairs, da1a2 is equal to dp1 p2 . How-
ever, the difference between da1a2 and dp1 p2 obtained in
the traditional method is relatively large, which leads to the
inconsistency issue. As presented in Fig. 1a, the distance
(da1a2 =1.05) betweendescriptorsa1 anda2 in anchor patches
is significantly smaller than that (dp1 p2 =2.21) between their
descriptors p1 and p2 in positive patches. The learned
descriptors suffer from the inconsistency issue in terms of
representing the difference between two image patches. This
issue would cause irregular spatial relationships of descrip-
tors and further reduce matching accuracy, even though the
distancebetweenmatchingdescriptors is smaller than thedis-
tance between non-matching ones. The reason for the issue
is that these works are less effective in exploiting the inter-
relation between the two descriptors of anchor (or positive)
patches in the traditional triplet loss function.

Generally, vertex information contains several properties,
and an edge represents the relationship between two vertexes.
Descriptors and the distance between two descriptors can be
naturally illustrated as a graph, in which the vertex repre-
sents the descriptor, and the edge denotes the relationship
between two descriptors. To solve this inconsistency prob-
lem, we introduce the vertex-edge constraint (VEC) to the
triplet loss function: the vertex constraint denotes the distance
between two vertexes in different images; the edge constraint
represents the distance between two descriptors in a patch.
To exploit the vertex constraint, we propose a strategy to
increase the distance between two non-matching descriptors
and decrease the distance between matching ones. Further-
more, we encourage reducing the difference between the
longer and shorter sides in the edge constraint. Fig. 1b shows
the VEC algorithm’s result, which demonstrates that our
method effectively reduces the difference between opposite
sides and further promotes matching accuracy of descriptors.

We summarize the main contributions of the work as fol-
lows:

(1) We introduce VEC to the triplet loss function (denoted
as VEC-loss), containing vertex constraint and edge con-
straint.

(2) To facilitate regular distribution of descriptors in high
dimensional Euclidean space, we design an exponential
algorithm to reduce the difference between the long and
short sides in the image matching pair.

(3) To avoid the influence of the distance between non-
matching descriptors, we design an strategy that enlarges
the distance of two descriptors.

2 Related work

Descriptors’ detection is a critical technique for image
pair matching. We briefly review descriptors detected by
the handcrafted method and the learned method in sec-
tion 2.1. Furthermore, we discuss some practical algorithms
with metric learning to improve the performance of learned
descriptors in section 2.2.

2.1 Descriptors detecting

The handcrafted method and the learned descriptor method
are two main methods to detect local feature descriptors.
Early works on the local descriptor mainly focused on the
handcrafted method with gradient filters and intensity com-
parisons. SIFT [7], which computes histogramswith gradient
ltering approach, possibly is the most classical and popular
handcrafted method. These handcrafted methods, including
SIFT [7], SURF [8], BRIEF [9], DSP-SIFT [18] and PCA-
SIFT [19], have limited in several aspects, such as unable to
get semantic segmentation information and weak robustness
in image classification.

With the emergence of the CNNs, more researches focus
on the learned method instead of the traditional handcrafted
method in recent years. TheMatchNet [20] method proposes
a Siamese network, containing feature network and metric-
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learning loss function, to train samples. Compared with the
traditional handcrafted method, MatchNet [20] significantly
improves images matching performance and demonstrates
the extraordinary potential of learned descriptors. The recent
methods [13,21–23] study detecting learned descriptor on
the Siamese network. Kumar et al. [21] explore a central-
surround two-stream network to improve image matching
performance. DeepDesc [22] introduces a stochastic sam-
pling strategy into the Siamese network to distinguish the
positive and negative samples. TFeat [23] demonstrates that
the triplets of training samples, with in-triplet mining of hard
negatives, can improve the performance of learned descrip-
tors. L2Net [13] designs a deeper network and produces
descriptor normalized to the unit norm by L2 distance. The
architecture of L2Net is an application and foundation of
learned descriptors in the later works [14,16,17]. However,
the metric-learning loss function of L2Net is less effective
in finding hard samples from negative and anchor samples.
Unlike the above-mention methods, we propose a new triplet
loss function to train the metric network.

2.2 Metric learning

Metric learning, which is a classical method depending on
learned distance function, has been successfully applied to
various fields including face action detection [24], tracking
[25], classification [26], and information retrieval [27]. Yu
et al. [28] propose a triplet loss as metric learning to signifi-
cantly improve the face verification performance. Yoshida
et al. [29] defines an interpretable graph metric learning
(IGML)method for graph classification. RFNet [30] extracts
learned descriptors from corresponding patches by comput-
ing Euclidean distance. Kumar et al. [21] propose a global
loss to minimize the classification error and produce the best
performance in patch matching.

In summary, metric learning is a foundation in various
fields. Many previous works of metric learning focused on
learning Mahalanobis distance [31,32], while much more
efforts are spent on the learning vectors with Euclidean
distance metrics [33,34]. Particularly, several main stud-
ies [14,16,17] , which adopt L2Net structure, redefine the
improved triplet loss functionwith Euclidean distancemetric
to improve performance of learned descriptors. HardNet [14]
introduces a new triplet loss into L2Net, which can minimize
the distance between the matching descriptors and closest
non-matching descriptors. DOAP [15] proposes optimizing
average precision (OAP) to L2Net and achieves more com-
petitive results on many datasets. ExpTLoss [16] introduces
the exponential Siamese and triplet loss function into L2Net,
and achieve better performance on many tasks. CDF [17]
assigns a nonparametric soft margin instead of a hard margin
in L2Net and improves the performance of learned descrip-
tors. However, learned descriptors with these above methods

suffer from an inconsistency issue, which can cause irregular
spatial relationship of descriptors and further reduce match-
ing accuracy. Unlike the above methods, we propose VEC
to the triplet loss function, an effective approach in exploit-
ing the mutual relationship between adjacent descriptors of
a patch.

3 Methodology

In this section, we firstly review the traditional triplet
loss function and then propose VEC-loss to detect learned
descriptors. Furthermore, to achieve regular distribution of
descriptors in Euclidean space, we exploit a new strategy to
reduce the opposite sides’ difference in image matching pair.

3.1 Graph information

Generally, a graph is composed of vertexes and edges. The
edge indicates the relationship between the two vertexes.
Descriptors and the distance between descriptors can be natu-
rally illustrated as a graph, in which the vertex represents the
descriptor, and the edge denotes the distance between two
descriptors. Supposedly, anchor sample set GA =(VA, EA)
and positive sample set GP =(VP, EP) are generated, where
V stands for the descriptor and E for the distance.

3.2 Problem formulation

To improve the performance of local learned descriptors,
recent researchers focus on the triplet loss function. Suppos-
edly, the spatial relationship between two adjacent descrip-
tors is linearly invariant and rigid, preserving the distance
between corresponding descriptors. Thus, the triplet loss
function S can be formulated as:

S = 1

N

N∑

i = 0

max(0, α + F+
i (ai , pi ) − F−

i (ai , p j )), (1)

where α is the margin, F+
i (ai , pi ) represents the dis-

tance between matching descriptors in positive sample and
F−
i (ai , p j ) denotes the distance between non-matching

descriptors in negative sample. In our implementation,
the margin parameter α equals to 1.0, which has been
demostrated to achieve good performance in HardNet [14].

3.3 Vertex constraint

Due to the promising performance of Euclidean distance in
images matching, this metric has been widely used for local
learned descriptors, including L2Net [13], RFNet [30], Hard-
Net [14]. In this section, we introduce L2 pairwise distance
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into the vertex-constraint function. The loss function evalu-
ates the distance between pair descriptors from the anchor
and positive patches, which are as the input of L2Net [13].

Supposedly,we extract a batchX = {VA,VP} ofmatching
local patches, where VA = {a1, a2,..., ak} stands for the
descriptors of the anchor patches and VP = {p1, p2,..., pk}
represents the descriptors of the positive patches, and k is the
batch size. We adopt the Euclidean distance to evaluate the
distance between two descriptors ai and p j . Furthermore, the
descriptor vectors ai and p j should be unit-length (||ai ||2 =1)
to reduce the computational cost. As such, the Euclidean
distance between the unit-length descriptor vectors can be
computed as following:

d(ai , p j ) = √
2− 2aip j , (2)

where d(ai , p j ) refers to the vertex-constraint function
Fvertex .

To reduce the distance between matching descriptors
and enlarge the distance between the closest non-matching
descriptors, we propose the vertex constraint to find hard
negatives. It can be formulated as:

F−
i (ai , p j ) = min (d(ai , p jmin ), d(aimin , p j )), (3)

where d is the Euclidean distance between descriptor pair,
p jmin is the closest non-matching positive descriptor to ai ,
and aimin is the closest non-matching anchor descriptor to
p j , respectively.

3.4 Edge constraint

In addition to the vertex information, a graph contains the
edge information indicating the relationship between two
vertexes. Similar to the graph information, an image patch
has descriptors and their adjacent edge. In this section, we
propose an edge constraint to reduce the difference between
the long and short sides.

We calculate the Euclidean distance between two different
unit-length descriptor vectors in a patch to construct the edge
equation. Furthermore, to promote the spatial stability of
descriptors, we design an exponential algorithm to lengthen
the shorter side and shorten the longer side. To reduce the
computational cost, we propose a normalizedmethod to keep
its value within the range between 0 and 1. In this way, the
edge constraint function can be formulated as:

Fedge(i, j) = 1− exp(−(
d(ai , a j ) − d(pi , p j )

(d(ai , a j ) + d(pi , p j ))/2
)2),(4)

where d(ai , a j ) is the Euclidean distance between two
descriptors of anchor patch and d(pi , p j ) is the Euclidean
distance between two descriptors of positive patch.

3.5 Dynamic for loss

This section proposes a strategy to find the positives where
the diagonal elements correspond to the matching descrip-
tors pair distance. In summary, we redefine the positive loss
function as following:

F+
i (ai , pi ) = λFvertex (i, i) + (1− λ)Fedge(i, i), (5)

where λ is a weight parameter used to balance the vertex-
constraint and the edge-constraint loss functions. The param-
eter λ = 1 (or λ = 0) indicates that the positive loss
function only consider the vertex constraint (or the edge con-
straint). When λ is greater than 0 and less than 1, the positive
loss function takes the vertex constraint and the edge con-
straint into account.

4 Experiments

The main contribution of this paper is to introduce VEC
into the triplet loss function. To measure performance of our
method, we experiment with four benchmarks: UBC Photo-
Tourism [35], HPatches [36], W1BS benchmark [37] and
Oxford Affine benchmark [38]. As a classical and popu-
lar patch-based benchmark, UBC PhotoTourism effectively
evaluates descriptor performance on patch verification tasks.
As a comprehensive and complicated dataset, HPatches is
used to evaluate learned descriptors’ performance by three
different tasks (Patch Verification, Image Matching, and
Patch Retrieval). As a novel dataset of ground-truthed image
pairs,W1BS is used to evaluate two images’ correspondences
in a wide baseline stereo. The Oxford Affine benchmark,
containing various distorted images, is helping to improve
the stability of descriptors.

4.1 Implementations

Similar to the previous study, we adopt the training settings
to ensure that the VEC-loss function is the main factor for
better performance in the following datasets. For these exper-
iments, we introduce VEC-loss function into HardNet [14]
and CDF [17], denoted as HN+-VEC and CDF-VEC. The
HN+-VEC or CDF-VEC method adopts the algorithm VEC
to replace the triplet loss function in HardNet or CDF, and
the other parts remain unchanged. The network consists of
seven convolutional layers and is regularizedwithBatchNor-
malization and Dropout. We adopt the UBC PhotoTourism
dataset [40] as training data. The dataset has three subsets,
known as Liberty, Yosemite, and Notredame. We propose
one subset for training data and the other two subsets for
testing data. HardNet [14] and CDF [17] adopt L2Net as the
descriptors extractor, where the input image size is required
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Table 1 Evaluation on the UBC
PhotoTourism benchmark,
demonstrating that the learned
descriptors with our method
outperform state of the art
(λ=0.85)

Test Liberty Notredame Yosemite Mean
Train Notredame Yosemite Liberty Yosemite Liberty Notredame FPR95

SIFT(2004) 29.84 22.53 27.29 26.55

DeepDesc(2015) 10.9 4.4 5.69 7.00

L2-Net+(2017) 2.36 4.70 0.72 1.29 2.57 1.71 2.23

CSL2-Net+(2017) 1.71 3.87 0.56 1.09 2.07 1.30 1.76

HardNet(2018) 1.47 2.67 0.62 0.88 2.14 1.65 1.57

HardNet+(2018) 1.49 2.51 0.53 0.78 1.96 1.84 1.52

DOAP+ (2018) 1.54 2.62 0.43 0.87 2.00 1.21 1.45

DOAP-ST+(2018) 1.47 2.29 0.39 0.78 1.98 1.35 1.38

ExpTLoss(2019) 1.16 2.01 0.47 0.67 1.32 1.10 1.12

CDF(2019) 1.21 2.01 0.39 0.68 1.51 1.29 1.18

HN+-VEC(ours) 1.31 1.93 0.38 0.68 1.50 1.17 1.16

CDF-VEC(ours) 1.13 1.86 0.31 0.64 1.25 1.08 1.05

Numbers shown are FPR95(%). The lower FPR95 indicates the better performance of learned descriptors.
“+” denotes training with data augmentation. The best results are in bold

to be 32x32. Because the size of image patches in the UBC
PhotoTourism is 64x64, we adopt a downsample method to
obtain the patch size of 32x32 as the input of the L2Net [13].
As the input data augmentation, the image patches are flipped
randomly and rotated by 90,180 or 270 degrees. Similar to
HardNet [14] and CDF [17], we set momentum and weight
of stochastic gradient descent (SGD) to 0.9 and 10−4. Fur-
thermore, the learning rate decays linearly from 0.1 to 0. To
match the result of HardNet and CDF, we set the batch size
to 1024.

4.2 UBC PhotoTourism

As one of the Brown databases, the UBC PhotoTourism
dataset has been widely used to detect local learned descrip-
tors. It contains three subsets: Liberty, Notredame, and
Yosemite. Each subgroup contains more than 400k nor-
malized 64x64 patches. These patches are reoriented with
Difference-of-Gaussians (DOG)keypoints,which are extracted
from 3D reconstruction scenes. The dataset comprises 100k
matching and non-matching pairs. Furthermore, we assign
one subset for training and the other two subsets for test-
ing. For example, we adopt Liberty as the training dataset
and the other two subsets as test datasets. For a fair com-
parison and without losing of generality, we keep the input
approach of dataset consistent [14,17]. We propose the false
positive rate of 0.95 accurate positive recall (FPR95) to eval-
uate the learned descriptors’ performance. The lower FPR95
indicates a better understanding.

We introduce VEC to the HardNet [14] which is the first
to adopt the triplet loss for learned descriptor, and CDF [17]
which is the state-of-the-art method of learned descriptor. To
verify performance of our method, we compare with a col-
lection of a handcrafted method (SIFT [7]) and some learned

methods (DeepDesc [22], L2-Net [13], HardNet [14], DOAP
[15], ExpTLoss [16] and CDF [17]). The results of all meth-
ods are shown in Table 1.

As presented in Table 1, the mean FPR95 of HN+-VEC
and CDF-VEC is less than the two original methods Hard-
Net+ and CDF. The mean FPR95 of HN+-VEC is reduced
from 1.52 to 1.16, and the mean FPR95 of CDF-VEC
is decreased from 1.18 to 1.05. Furthermore, the learned
descriptor with our method achieves the best performance in
these subtasks. Compared with these state-of-the-art meth-
ods, the learned descriptors’ version of CDF-VEC is the best
(the average of FPR95=1.05). Unlike the other methods,
our approach considers the interrelation between the adja-
cent descriptors in the same patch. The UBC PhotoTourism
is a testament to the generalization of our algorithm.

4.3 HPatches

HPatches dataset contains more than 1.5 million patches,
which are extracted from 116 sequences. The dataset con-
sists of 59 sequences affected by geometric deformation and
57 sequences affected by illumination. In these images, the
feature keypoints are detected by DoG, Hessian, and Harris
detectors.HPatches dataset defines three evaluation subtasks:
Patch Verification, Patch Retrieval, and Image Matching. In
each subtask, the extracted patches can be divided into three
geometric noise levels: Easy, Hard, and Tough. We adopt the
mean average precision(mAP) to evaluate learned descrip-
tors’ performance in the dataset. The higher mAP indicates
a better understanding.

For a fair comparison and without losing of generality,
we use the model trained on the Liberty subset to generate
learned descriptors in the HPatches.We compare our method
with a collection of methods, such as SIFT [7], DOAP [15],
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(a) (b) (c)

Fig. 2 Evaluating on the HPatches benchmark. In the middle figure,
three colors of points indicate three levels of subtask: easy (red), hard
(green), tough (blue). In the right figure, DIFFSEQ (�) and SAMESEQ

(�) represent the source of negative examples in the verification task. In
the left figure, ILLUM (x) and VIEWPT (�) indicate the influence of
illumination and viewpoint changes in the matching study

HardNet [14],CDF [17]. The results of allmethods are shown
in Fig. 2.

As presented in Fig. 2, our CDF-VEC method achieves
promising performance with the best mAP score in task
Image matching (mAP = 50.95) and task Patch Retrieval
(mAP = 70.44). Furthermore, CDF-VEC is the second-
best in task Patch Verification (mAP = 88.47), close to
the primary method CDF. We attribute these gains to the
regular spatial relative of learned descriptors, enabling the
performance more robustly and accurately in three subtasks.
HPatches is also a testament to the generalization of our
method.

4.4 Wide baseline stereo (W1BS)

To verify the generalization and the application in these
extreme conditions, we propose the VEC method to gener-
ate learned descriptors onW1BS dataset [42]. Wide baseline
stereo matching considers pair images matching in many
extreme conditions, such as weather, season, illumination,
etc. W1BS dataset contains 40 image pairs, which can be
divided into five groups according to the image acquisition
factor.

Appearance (A): difference in appearance according to
season or weather changes; Geometry (G): difference in
object position, camera, and scale; Illumination (L): differ-
ence in wavelength, direction, and intensity of light source;
Sensor(S): difference in sensor type (IR, MR); Map to photo
(map2photo): object image and map image.

In the W1BS dataset, the local affine-covariant features
are detected by FOCI [39], Hessian-Affine [40] and MSER
[41] for the reference image pairs. Furthermore, W1BS
normalizes the patch size into 41x41 to explore descriptor
performance in extreme conditions. We adopt mean Area
Under Curve (mAUC) to evaluate learned descriptors’ per-
formance. The larger mAUC means a better understanding.

Similar to the above experiments, we use the Liberty as a
training dataset to generate learned descriptors in the W1BS

dataset. We compare our method with a collection of meth-
ods, SIFT [7], HardNet [14], ExpTLoss [16], and CDF [17].
The results of all methods are shown in Fig. 3.

As presented in Fig. 3, it is not surprising to CDF-
VEC achieves better performance than CDF in subsets,
which is consistent with our observation on UBC Photo-
Tourism subsets. HN+-VEC produces better performance
than HardNet+ in many subsets. Furthermore, Our approach
in HardNet+ [14] performs better than the other meth-
ods, which achieves the best performance with the average
mAUC score of 8.41(HN+-VEC), and CDF-VEC is the
third-best(mAUC=8.24). The rigid and regular relationship
between adjacent descriptors is the leading factor of better
performance. W1BS is also a testament to the generalization
of our method.

4.5 Oxford affine dataset

To verify the learned descriptor generalization and robust-
ness in the various distortion types, we test the VEC
algorithm to evaluate image pairs matching performance on
the Oxford Affine dataset [38]. These images on Oxford
Affine dataset undergo some particular distortion types, such
as JPEG compression, rotation, blur, viewpoint, and light.
The dataset consists of 8 groups, which are bikes (blur),
trees(blur), graf(viewpoint), wall(viewpoint), bark(rotation),
boat(rotation), leuven (light), and ubc (JPEG compression).
Every group contains six images in PPM or PGM format and
homographs image pairs. The feature keypoints are extracted
by the Harris-Affine detector, and the image patches are
croppedwith amagnification factor of 6.We adopt thematch-
ing score to evaluate learned descriptors’ performance. The
larger matching score means a better understanding.

We use the model trained on the Liberty subset to gen-
erate learned descriptors in the Oxford Affine dataset. We
compare our method with a collection of methods, HardNet
[14], CDF [17], Sosnet [42], and ExpTLoss [16]. The results
of all methods are shown in Fig. 4.
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Fig. 3 Evaluating the W1BS patch dataset. W1BS dataset consists of 40 image pairs divided into 5 parts by the nuisance factor: Appearance (A),
Geometry (G), Illumination (L), Sensor (S) and Map to photo. The larger mAUC indicates the better performance of learned descriptors

Fig. 4 Evaluating on the Oxford Affine dataset. Oxford Affine dataset consists of 8 groups: bark, bikes, boat, graf, leuven, trees, ubc, and wall. The
larger matching score indicates the better performance of learned descriptors

As presented in Fig. 4, thematching performance with our
methodCDF-VEC achieves the best (averagematching score
= 36.38), compared with these state-of-the-art methods in
the dataset. Furthermore, the future performance of learned
descriptors with the CDF-VEC algorithm achieves state-of-
art results in the other six groups, except for leuven and ubc.
The better understanding shows learned descriptors with the
VEC method can withstand various distortion types in the
Oxford Affine dataset. We can attribute the VEC method’s
contribution, which considers the interrelation between the
adjacent descriptors in the same patch. The Oxford Affine
dataset is also a testament to the generalization of our algo-
rithm. It is demonstrated that the performance of learned
descriptors in most tasks achieves state of the art.

5 Conclusion

We introduce theVECalgorithm into the triplet loss function,
inspired by learned descriptors’ consistency. Furthermore,
we reduce the difference between non-matching descrip-
tors to facilitate regular distribution of learned descriptors in
high-dimensional Euclidean space. To achieve better perfor-
mance of stable distribution, we enlarge the distance between
non-matching descriptors and reduce the distance between
matching descriptors. We test the VEC method to validate

the generalization and application on four datasets, includ-
ing some extreme conditions. It has been demonstrated that
the performance of learned descriptors inmost tasks achieves
state of the art.
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