Skip to main content
Log in

SOFT: salient object detection based on feature combination using teaching-learning-based optimization

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

Salient object detection is a challenging task in the computer vision due to complexity of images and insufficiency of a single feature for saliency map generation. The performance of saliency detection depends upon the manner in which these visual features are combined. In this paper, we propose an efficient features combination model in which different features are combined in an appropriate manner. To meet this objective, a metaheuristic optimization algorithm called teacher-learning-based optimization (TLBO) is employed to find an optimal weight vector for feature combination. TLBO is a parameterless, efficient, and robust algorithm as it does not require parameter tuning during its implementation. Furthermore, the optimization criteria of TLBO is modified using a novel fitness function for improved performance. To check the performance of the proposed model, we have conducted extensive experiments over six benchmark datasets and compared the results against seven state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Achanta, R., Hemami, S., Estrada, F., Susstrunk, S.: Frequency-tuned salient region detection. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1597–1604. IEEE (2009)

  2. Alpert, S., Galun, M., Basri, R., Brandt, A.: Image segmentation by probabilistic bottom-up aggregation and cue integration. In: 2007 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8. IEEE (2007)

  3. Borji, A., Cheng, M.M., Jiang, H., Li, J.: Salient object detection: a benchmark. IEEE Trans. Image Process. 12(24), 5706–5722 (2015)

    Article  MathSciNet  Google Scholar 

  4. Cheng, M.M., Mitra, N.J., Huang, S.X., Torr, P.H., Hu, S.M.: Global contrast based salient region detection. IEEE Trans. Pattern Anal. Mach. Intell. 37(3), 569–582 (2015)

    Article  Google Scholar 

  5. Cheng, M.M., Mitra, N.J., Huang, X., Hu, S.M.: Salientshape: Group saliency in image collections. Vis. Comput. 30(4), 443–453 (2014)

    Article  Google Scholar 

  6. Deb, K.: An efficient constraint handling method for genetic algorithms. Comput. Methods Appl. Mech. Eng. 186(2–4), 311–338 (2000)

    Article  Google Scholar 

  7. Donoser, M., Urschler, M., Hirzer, M., Bischof, H.: Saliency driven total variation segmentation. In: 2009 IEEE 12th International Conference on Computer Vision, pp. 817–824. IEEE (2009)

  8. Fu, H., Cao, X., Tu, Z.: Cluster-based co-saliency detection. IEEE Trans. Image Process. 22(10), 3766–3778 (2013)

    Article  MathSciNet  Google Scholar 

  9. Goferman, S., Zelnik-Manor, L., Tal, A.: Context-aware saliency detection. In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2376–2383. IEEE (2010)

  10. Han, J., Zhang, D., Hu, X., Guo, L., Ren, J., Wu, F.: Background prior-based salient object detection via deep reconstruction residual. IEEE Trans. Circuits Syst. Video Technol. 25(8), 1309–1321 (2014)

    Google Scholar 

  11. Hou, X., Zhang, L.: Saliency detection: A spectral residual approach. In: CVPR’07. IEEE Conference on Computer Vision and Pattern Recognition, 2007, pp. 1–8. IEEE (2007)

  12. Huang, X., Zhang, Y.J.: 300-fps salient object detection via minimum directional contrast. IEEE Trans. Image Process. 26(9), 4243–4254 (2017)

    Article  MathSciNet  Google Scholar 

  13. Itti, L., Koch, C., Niebur, E.: A model of saliency-based visual attention for rapid scene analysis. IEEE Trans. Pattern Anal. Mach. Intell. 20(11), 1254–1259 (1998)

    Article  Google Scholar 

  14. Li, Y., Hou, X., Koch, C., Rehg, J.M., Yuille, A.L.: The secrets of salient object segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 280–287 (2014)

  15. Liu, T., Sun, J., Zheng, N.N., Tang, X., Shum, H.Y.: Learning to detect a salient object. In: 2007 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8. IEEE (2007)

  16. Liu, Y., Han, J., Zhang, Q., Shan, C.: Deep salient object detection with contextual information guidance. IEEE Trans. Image Process. 29, 360–374 (2020)

    Article  MathSciNet  Google Scholar 

  17. Murray, N., Vanrell, M., Otazu, X., Parraga, C.A.: Saliency estimation using a non-parametric low-level vision model. In: Computer vision and pattern recognition (cvpr), 2011 ieee conference on, pp. 433–440. IEEE (2011)

  18. Navalpakkam, V., Itti, L.: An integrated model of top-down and bottom-up attention for optimizing detection speed. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 2, pp. 2049–2056. IEEE (2006)

  19. Rao, R.V., Savsani, V.J., Vakharia, D.: Teaching-learning-based optimization: a novel method for constrained mechanical design optimization problems. Comput. Aided Des. 43(3), 303–315 (2011)

    Article  Google Scholar 

  20. Seo, H.J., Milanfar, P.: Static and space-time visual saliency detection by self-resemblance. J. Vis. 9(12), 15 (2009)

    Article  Google Scholar 

  21. Simon, D.: Biogeography-based optimization. IEEE Trans. Evol. Comput. 12(6), 702–713 (2008)

    Article  Google Scholar 

  22. Singh, N., Arya, R., Agrawal, R.: A novel approach to combine features for salient object detection using constrained particle swarm optimization. Pattern Recogn. 47(4), 1731–1739 (2014)

    Article  Google Scholar 

  23. Wang, L., Wang, L., Lu, H., Zhang, P., Ruan, X.: Salient object detection with recurrent fully convolutional networks. IEEE Trans. Pattern Anal. Mach. Intell. 41(7), 1734 (2019)

    Article  Google Scholar 

  24. Wang, Y., Peng, G.: Salient object detection via incorporating multiple manifold ranking. SIViP 13(8), 1603–1610 (2019)

    Article  Google Scholar 

  25. Wang, Z., Wu, X.: Salient object detection using biogeography-based optimization to combine features. Appl. Intell. 45(1), 1–17 (2016)

    Article  Google Scholar 

  26. Wang, Z.J., Ma, L., Lin, X., Wu, X.: Msgc: A new bottom-up model for salient object detection. In: 2018 IEEE International Conference on Multimedia and Expo (ICME), pp. 1–6. IEEE (2018)

  27. Yan, Q., Xu, L., Shi, J., Jia, J.: Hierarchical saliency detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1155–1162 (2013)

  28. Yan, Y., Ren, J., Sun, G., Zhao, H., Han, J., Li, X., Marshall, S., Zhan, J.: Unsupervised image saliency detection with gestalt-laws guided optimization and visual attention based refinement. Pattern Recogn. 79, 65–78 (2018)

    Article  Google Scholar 

  29. Yang, C., Zhang, L., Lu, H., Ruan, X., Yang, M.H.: Saliency detection via graph-based manifold ranking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3166–3173 (2013)

  30. Yang, J., Yang, M.H.: Top-down visual saliency via joint CRF and dictionary learning. IEEE Trans. Pattern Anal. Mach. Intell. 39(3), 576–588 (2016)

    Article  Google Scholar 

  31. Zhang, L., Tong, M.H., Marks, T.K., Shan, H., Cottrell, G.W.: Sun: A bayesian framework for saliency using natural statistics. J. Vis. 8(7), 32 (2008)

    Article  Google Scholar 

  32. Zhang, W., Wu, Q.J., Wang, G., Yin, H.: An adaptive computational model for salient object detection. IEEE Trans. Multimedia 12(4), 300–316 (2010)

    Article  Google Scholar 

  33. Zhou, Q., Cheng, J., Lu, H., Fan, Y., Zhang, S., Wu, X., Zheng, B., Ou, W., Latecki, L.J.: Learning adaptive contrast combinations for visual saliency detection. Multimed. Tools Appl. 79(21), 14419–14447 (2020)

    Article  Google Scholar 

  34. Zhu, W., Liang, S., Wei, Y., Sun, J.: Saliency optimization from robust background detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2814–2821 (2014)

Download references

Acknowledgements

We acknowledge Ministry of Human Resource Development Government of India, India for supporting this research by providing fellowship to one of the authors Mr. Vivek Kumar Singh.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vivek Kumar Singh.

Ethics declarations

Conflicts of interest

All the authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, V.K., Kumar, N. SOFT: salient object detection based on feature combination using teaching-learning-based optimization. SIViP 15, 1777–1784 (2021). https://doi.org/10.1007/s11760-021-01917-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-021-01917-2

Keywords

Navigation