Skip to main content
Log in

Supervoxel-based brain tumor segmentation with multimodal MRI images

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

Magnetic resonance imaging (MRI) has high accuracy, which does not only causes less damage to the patients, but also has a high spatial resolution. Besides, MRI is often used in brain tumor detection. With the gradual improvement of two-dimensional image segmentation research, people’s demand for higher-level image segmentation technology is gradually increasing. Therefore, three-dimensional (3D) image segmentation has become an important part of medical image segmentation. In this paper, a novel 3D supervoxel segmentation method is proposed for the brain tumor in multimodal MRI images. The method can directly process a 3D image, divide the image into several voxel blocks of the same size, and find the minimum distance according to the image features to generate the supervoxel segmentation boundary. The experimental results demonstrate the usefulness of the proposed method. Some comparisons also show that the performance of the proposed method is more competitive than other state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Liu, H., Du, H., Zeng, D., Tian, Q.: Cloud detection using super pixel classification and semantic segmentation. J. Comput. Sci. Technol. 34(3), 622–633 (2019)

    Article  Google Scholar 

  2. Daimary, D., Bhargab-Bora, M., Amitab, K., Kandar, D.: Brain tumor segmentation from MRI images using hybrid convolutional neural networks. Proc. Comput. Sci. 167, 2419–2428 (2020)

    Article  Google Scholar 

  3. Yang, T., Song, J., Li, L., Tang, Q.: Improving brain tumor segmentation on MRI based on the deep U-net and residual units. J. X-ray Sci. Technol. 28(1), 95–110 (2020)

    Article  Google Scholar 

  4. Li, L., Liu, Z.: An improved method of MRI segmentation based on variational level set. J. Image Process. Theory Appl. 1(1), 3–7 (2016)

    MathSciNet  Google Scholar 

  5. Angulakshmi, M., Lakshmi-Priya, G.G.: Walsh Hadamard kernel-based texture feature for multimodal MRI brain tumour segmentation. Int. J. Imag. Syst. Technol. 28(4), 254–266 (2018)

    Article  Google Scholar 

  6. Kishorjit-Singh, N., Johny-Singh, N., Kanan-Kumar, W.: Image classification using SLIC superpixel and FAAGKFCM image segmentation. IET Image Process. 14(3), 487–494 (2020)

    Article  Google Scholar 

  7. Wu, W., Chen, A.Y.C., Zhao, Liang: Brain tumor detection and segmentation in a CRF (conditional random fields) framework with pixel-pairwise affinity and superpixel-level features. Int. J. Comput. Assist. Radiol. Surg. 9(2), 241–253 (2014)

    Article  Google Scholar 

  8. Njeh, I., Sallemi, L., Ayed, I.B., Chtourou, K., Leheric, S., Galanaud, D., Hamida, A.B.: 3D multimodal MRI brain glioma tumor and edema segmentation: a graph cut distribution matching approach. Computer. Med. Imag. Graph. 40, 108–119 (2015)

    Article  Google Scholar 

  9. El-Melegy, M.T., Mokhtar, H.M.: Tumor segmentation in brain MRI using a fuzzy approach with class center priors. Eurasip J. Image Video Process. 2014(1), 1–14 (2014)

    Article  Google Scholar 

  10. Amami, A., Azouz, Z.B., Alouane, T.H.: AdaSLIC: adaptive supervoxel generation for volumetric medical images. Multimed. Tools Appl. 78(3), 3723–3745 (2019)

    Article  Google Scholar 

  11. Na, L., Zhiyong, X., Tianqi, D., Kai, R.: Automated brain tumor segmentation from multimodal MRI data based on Tamura texture feature and an ensemble SVM classifier. Int. J. Intell. Comput. Cybern. 12(4), 466–480 (2019)

    Article  Google Scholar 

  12. Fu, H., Cao, X., Tang, D., et al.: Regularity preserved superpixels and supervoxels. IEEE Trans. Multimedia 16(4), 1165–1175 (2014)

    Article  Google Scholar 

  13. Zhang, L., Kong, H., Liu, S., Wang, T., Chen, S., Sonka, M.: Graph-based segmentation of abnormal nuclei in cervical cytology. Comput. Med. Imag. Graph. 56, 38–48 (2017)

    Article  Google Scholar 

  14. Gao, Z., Bu, W., Zheng, Y., Wu, X.: Automated layer segmentation of macular OCT images via graph-based SLIC superpixels and manifold ranking approach. Comput. Med. Imag. Graph. 55, 42–53 (2017)

    Article  Google Scholar 

  15. Han, D., Bayouth, J., Song, Q., Taurani, A., Sonka, M., Buatti, J., Wu, X.: Globally optimal tumor segmentation in PET-CT images: a graph-based co-segmentation method. Information processing in medical imaging: Proceedings of the 22nd international conference on Information processing inmedical imaging 22, 245–256 (2011)

    Article  Google Scholar 

  16. Ghosh, P., Mali, K., Das, S.K.: Use of spectral clustering combined with normalized cuts (N-Cuts) in an Iterative k-means clustering framework (NKSC) for superpixel segmentation with contour adherence. Pattern Recogn. Image Anal. 28(3), 400–409 (2018)

    Article  Google Scholar 

  17. Dimauro, G., Simone, L.: Novel biased normalized cuts approach for the automatic segmentation of the conjunctiva. Electronics. (to be published). https://doi.org/10.3390/electronics9060997

  18. Chen, Y., Lu, D.: Registration-based image segmentation using lattice Boltzmann method. IOP Conf. Ser. Mater. Sci. Eng. 490(7), 1414–1418 (2019)

    Google Scholar 

  19. Serra, J.: A lattice approach to image segmentation. J. Math. Imag. Vis. 24(1), 83–130 (2006)

    Article  MathSciNet  Google Scholar 

  20. Li, R., Heidrich, W.: Hierarchical and view-invariant light field segmentation by maximizing entropy rate on 4D ray graphs. ACM Trans. Graph. 38(6), 1–15 (2019)

    Google Scholar 

  21. Chang, H., Chen, Z., Huang, Q., Shi, J., Li, X.: Graph-based learning for segmentation of 3D ultrasound images. Neurocomputing 151, 632–644 (2015)

    Article  Google Scholar 

  22. Dai, S., Lu, K., Dong, J., Zhang, Y., Chen, Y.: A novel approach of lung segmentation on chest CT images using graph cuts. Neurocomputing. 168, 799–807 (2015)

  23. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 22(8), 888–905 (2000)

    Article  Google Scholar 

  24. Ranjbarzadeh, R., Saadi, S.B.: Automated liver and tumor segmentation based on concave and convex points using fuzzy c-means and mean shift clustering. Measurement. (to be published). https://doi.org/10.1016/j.measurement.2019.107086

  25. Wu, Q., Lane, C.R., Wang, L., Vanderhoof, M.K., Christensen, J.R., Liu, H.: Efficient Delineation of nested depression hierarchy in digital elevation models for hydrological analysis using level-set method. JAWRA J. Am. Water Resour. Assoc. 55(2), 354–368 (2019)

    Article  Google Scholar 

  26. Yang, Y., Wang, R., Feng, C.: Level set formulation for automatic medical image segmentation based on fuzzy clustering. Sig. Process. Image Commun. (to be published). https://doi.org/10.1016/j.image.2020.115907

  27. Li, Y., Zhao, Y.-Q., Zhang, F., Liao, M., Yu. L-L., Chen, B.-F., Wang Y.-J.: Liver segmentation from abdominal CT volumes based on level set and sparse shape composition. Comput. Methods Prog. Biomed. (to be published). https://doi.org/10.1016/j.cmpb.2020.105533

  28. Chen, J., Li, Z., Huang, B.: Linear spectral clustering superpixel. IEEE Trans. Image Process. Publ. IEEE Sig. Process. Soc. 26(7), 3317–3330 (2017)

    Article  MathSciNet  Google Scholar 

  29. Baek, J., Chung, B., Yim, C.: Linear spectral clustering with mean shift filtering for superpixel segmentation. In International conference on electronics, information and communication (ICEIC). 1–4 (2018)

  30. Zimudzi, E., Sanders, I., Rollings, N., Omlin, C.: Segmenting mangrove ecosystems drone images using SLIC superpixels. Geocarto Int. 34(14), 1648–1662 (2019)

    Article  Google Scholar 

  31. Krishan, A., Mittal, D.: Effective segmentation and classification of tumor on liver MRI and CT images using multi-kernel K-means clustering. Biomed. Eng./ Biomedizinische Technik. 65(3), 301–313 (2020)

    Article  Google Scholar 

  32. Li, Z., Chen, J.: Superpixel segmentation using linear spectral clustering. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 26(7), 3317–3330 (2015)

    MATH  Google Scholar 

  33. Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Süsstrunk, S.: SLIC uperpixels compared to state-of-the-art superpixel methods. IEEE Trans. Pattern Anal. Mach. Intell. 34(11), 2274–2282 (2012)

    Article  Google Scholar 

  34. Li, X.X., Shen, X.J., Chen, H.P., Feng, Y.C.: Image clustering segmentation based on SLIC superpixel and transfer learning. Pattern Recognit. Image Anal. 27(4), 838–845 (2017)

    Article  Google Scholar 

  35. Aloni, D., Yitzhaky, Y.: Effects of elemental images’ quantity on three-dimensional segmentation using computational integral imaging: publisher’s note. Appl. Opt. 56(21), 2132–2140 (2017)

    Article  Google Scholar 

  36. Sandeep, R.N.: Image segmentation by using linear spectral clustering. J. Telecommun. Syst. Manag. 5(3), 1–5 (2016)

    Google Scholar 

  37. Angulakshmi, M., Lakshmi-Priya, G.G.: Walsh hadamard transform for simple linear iterative clustering (SLIC) superpixel based spectral clustering of multimodal MRI brain tumor segmentation. IRBM. 40(5), 253–262 (2019)

    Article  Google Scholar 

  38. Kavzoglu, T.: An experimental comparison of multi-resolution segmentation, SLIC and K-means clustering for object-based classification of VHR imagery. Int. J. Remote Sens. 39(18), 6020–6036 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundations of China Under Grant 61801202.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lingling Fang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, L., Wang, X., Lian, Z. et al. Supervoxel-based brain tumor segmentation with multimodal MRI images. SIViP 16, 1215–1223 (2022). https://doi.org/10.1007/s11760-021-02072-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-021-02072-4

Keywords

Navigation