Skip to main content
Log in

Contour detection based on binocular parallax perception mechanism

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

We propose a new method of image contour detection, considering the close relationship between binocular parallax in the biological vision system and the hierarchical transmission of visual channel information flow. Firstly, we present the dynamic adjustment mechanism of different opponent cell connection weights in a color channel to obtain the initial contour response diagram. Subsequently, we introduce the binocular parallax energy model to separate the image feature information to receive the response of position and phase differences; we then construct the end-stopped cells with different phases to extract the primary contour of the image to a significant extent. At the same time, we propose a multi-scale receptive field fusion strategy to suppress the local texture with multi-intensity. Finally, we use the feedforward mechanism across the hierarchy to refine the textured background and improve the primary contour contrast to obtain the final contour response. Our image processing method based on binocular parallax compensation can provide a new idea for subsequent studies on the higher visual cortex's image understanding and visual cognition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Mignotte, M.: A biologically inspired framework for contour detection. Pattern Anal. Appl. 20, 365–381 (2017)

    Article  MathSciNet  Google Scholar 

  2. Trokielewicz, M., Czajka, A., Maciejewicz, P.: Post-mortem iris recognition with deep-learning-based image segmentation. Image Vis. Comput. 94, 103866 (2020)

    Article  Google Scholar 

  3. Rasheed, W., Neoh, Y.Y., Bin, H., Nor, H., Reza, F., Idris, Z., Tang, T.B.: Early visual analysis tool using magnetoencephalography for treatment and recovery of neuronal dysfunction. Comput. Biol. Med. 89, 573–583 (2017)

    Article  Google Scholar 

  4. Tao, H.J., Lu, X.B.: Contour-based smoky vehicle detection from surveillance video for alarm systems. Signal Image Video Process. 13, 217–225 (2019)

    Article  Google Scholar 

  5. Gupta, D., Anand, R.S.: A hybrid edge-based segmentation approach for ultrasound medical images. Biomed. Signal Process. Control 31, 116–126 (2017)

    Article  Google Scholar 

  6. David, W., Daisuke, D., Yasutomo, K., Ichiro, I., Hiroshi, M.: Regression of feature scale tracklets for decimeter visual localization. Image Vis. Comput. 68, 53–63 (2017)

    Article  Google Scholar 

  7. Kosala, G., Harjoko, A., Hartati, S.: Robust license plate detection in complex scene using MSER-dominant vertical sobel. IAENG Int. J. Comput. Sci. 47, 214–222 (2020)

    Google Scholar 

  8. Goulart, J.T., Bassani, R.A., Bassani, J.W.M.: Application based on the Canny edge detection algorithm for recording contractions of isolated cardiac myocytes. Comput. Biol. Med. 81, 106–110 (2017)

    Article  Google Scholar 

  9. Sun, X., Shang, K., Ming, D., Tian, J., Ma, J.: A biologically-inspired framework for contour detection using superpixel-based candidates and hierarchical visual cues. Sensors. 15(10), 26654–26674 (2015)

    Article  Google Scholar 

  10. Akbarinia, A., Parraga, C.A.: Feedback and surround modulated boundary detection. Int. J. Comput. Vision 126, 1367–1380 (2018)

    Article  Google Scholar 

  11. Michael, W.: Spratling, Image segmentation using a sparse coding model of cortical area v1. IEEE Trans. Image Process. 22, 1631–1643 (2013)

    Article  MathSciNet  Google Scholar 

  12. Lin, C., Zhang, Q., Cao, Y.: Multi-scale contour detection model based on fixational eye movement mechanism. Signal Image Video Process. 14, 57–65 (2020)

    Article  Google Scholar 

  13. Fang, T., Fan, Y.L., Wu, W.: Salient contour detection on the basis of the mechanism of bilateral asymmetric receptive fields. Signal Image Video Process. 14, 1461–1469 (2020)

    Article  Google Scholar 

  14. Wang, G., Beats, B.D.: Contour detection based on anisotropic edge strength and hierarchical superpixel contrast. Signal Image Video Process. 11, 1–9 (2019)

    Google Scholar 

  15. Cao, Y.J., Lin, C., Pan, Y.J., Zhao, H.Z.: Application of the center-surround mechanism to contour detection. Multimed. Tools Appl. 78, 1–21 (2019)

    Article  Google Scholar 

  16. Anzai, A., Ohzawa, I., Freeman, R.D.: Neural mechanisms underlying binocular fusion and stereopsis: position vs. phase. Proc. Natl. Acad. Sci. USA. 94, 5438–5443 (1997)

    Article  Google Scholar 

  17. Zeng, C., Li, Y.J., Li, C.Y.: Center-surround interaction with adaptive inhibition: a computational model for contour detection. Neuroimage 55, 49–66 (2011)

    Article  Google Scholar 

  18. Kruger, N., Janssen, P., Kalkan, S., Lappe, M., Leonardis, A., Piater, J., Rodriguez-Sanchez, A.J., Wiskott, L.: Deep hierarchies in the primate visual cortex: What Can we learn for computer vision? IEEE Trans. Pattern Anal. Mach. Intell. 35, 1847–1871 (2013)

    Article  Google Scholar 

  19. Freeman, J., Ziemba, C.M., Heeger, D.J., Simoncelli, E.P., Mocshon, J.A.: A functional and perceptual signature of the second visual area in primates. Nat. Neurosci. 16, 974–981 (2013)

    Article  Google Scholar 

  20. Rodríguez-Sánchez AJ, Tsotsos JK (2011) The importance of intermediate representations for the modeling of 2D shape detection: endstopping and curvature tuned computations. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp 4321–4326

  21. Chen, Z.K., Cai, R.T.: Contour detection by simulating the curvature cell in the visual cortex and its application to object classification. IEEE Access. 8, 74472–74484 (2020)

    Article  Google Scholar 

  22. Arbeláez, P., Maire, M., Fowlkes, C., Maliket, J.: Contour detection and hierarchical image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 33, 898–916 (2010)

    Article  Google Scholar 

  23. Yang, K.F., Gao, S.B., Guo, C.F., Li, C.Y., Li, Y.J.: Boundary detection using double-opponency and spatial sparseness constraint. IEEE Trans. Image Process. 24, 2565–2578 (2015)

    Article  MathSciNet  Google Scholar 

  24. He, J.Z., Zhang, S.L., Yang, M.: BDCN: Bi-directional cascade network for perceptual edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 44, 100–113 (2019)

    Article  Google Scholar 

  25. Wang, Y., Wang, L., Qiu, J., Yang, Y.Y.: Feature enhancement: predict more detailed and crisper edges. Signal Image Video Process. 15, 1635–1642 (2021)

    Article  Google Scholar 

  26. Mély, D.A., Kim, J., Mcgill, M.: A systematic comparison between visual cues for boundary detection. Vis. Res. 120, 93–107 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China through Grant No. 61871427.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yingle Fan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, C., Fang, T., Fan, Y. et al. Contour detection based on binocular parallax perception mechanism. SIViP 16, 1935–1943 (2022). https://doi.org/10.1007/s11760-022-02154-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-022-02154-x

Keywords

Navigation