Skip to main content
Log in

The relationship between graph Fourier transform (GFT) and discrete cosine transform (DCT) for 1D signal and 2D image

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

Graph Fourier transform (GFT) is an important theoretical tool in spectral analysis of graph signal. This paper focuses on Laplacian-based GFT on two special cases of graph data. The relationship between GFT and discrete cosine transform (DCT) is revealed and proved formally. For 1D signal, we prove that GFT is unique and is equivalent to DCT. For 2D image, GFT has more than one basis, one of which is the DCT basis. The work in this paper would help reduce the computational complexity of GFT in special cases and contribute to a deeper understanding of GFT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gupta, V., Mittal, M., Mittal, V., et al.: ECG signal analysis using CWT, spectrogram and autoregressive technique. Iran J. Comput. Sci. 6, 260–285 (2021)

    Google Scholar 

  2. Gupta, V., Mittal, M.: QRS complex detection using STFT, Chaos analysis, and PCA in standard and real-time ECG databases. J. Inst. Eng. 100, 489–497 (2019)

  3. Gupta, V., Mittal, M.: A comparison of ECG signal pre-processing using FrFT, FrWT and IPCA for improved analysis. Innov. Res. Biomed. En 40(3), 145–156 (2019)

    Google Scholar 

  4. Onuki, M., Ono, S., Yamagishi, M., et al.: Graph signal denoising via trilateral filter on graph spectral domain. IEEE Trans. Signal Inf. Process. Over Netw. 2(2), 137–148 (2016)

    Article  MathSciNet  Google Scholar 

  5. Tang, Y., Sun, J., Jiang, A., et al.: Adaptive graph filtering with intra-patch pixel smoothing for image denoising. Circuits Syst. Signal Process. 40, 5381–5400 (2021)

    Article  Google Scholar 

  6. Ferreira, F.A.B.S., Lima, J.B.: A robust 3D point cloud watermarking method based on the graph Fourier transform. Multimed. Tools Appl. 79, 1921–1950 (2020)

    Article  Google Scholar 

  7. Qi, W., Guo, S., Hu, W.: Generic reversible visible watermarking via regularized graph Fourier transform coding. IEEE Trans. Image Process. 31, 691–705 (2022)

    Article  Google Scholar 

  8. Xu, L., Huang, D., Zaidi, S.F.A., et al.: Graph Fourier transform based audio zero-watermarking. IEEE Signal Process. Lett. 28, 1943–1947 (2021)

    Article  Google Scholar 

  9. Zou, X., Feng, L., Sun, H.: Compressive sensing of multichannel EEG signals based on graph Fourier transform and cosparsity. Neural Process. Lett. 51, 1227–1236 (2020)

    Article  Google Scholar 

  10. Herrera, M., Proselkov, Y., Perez-Hernandez, M., Parlikad, A.K.: Mining graph-Fourier transform time series for anomaly detection of internet traffic at core and metro networks. IEEE Access 9, 8997–9011 (2021)

    Article  Google Scholar 

  11. Shu-Juan, G.: Fast incremental spectral clustering in titanate application via graph Fourier transform. IEEE Access 8, 57,252-57,259 (2020)

    Article  Google Scholar 

  12. Wu, Z., Pan, S., Chen, F., et al.: A comprehensive survey on graph neural networks. IEEE Trans. Neural Netw. Learn. Syst. 32(1), 4–24 (2021)

    Article  MathSciNet  Google Scholar 

  13. Shafipour, R., Khodabakhsh, A., Mateos, G., et al.: A directed graph Fourier transform with spread frequency components. IEEE Trans. Signal Process. 67(4), 946–960 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  14. Sardellitti, S., Barbarossa, S., Lorenzo, P.D.: On the graph Fourier transform for directed graphs. IEEE J. Sel. Top. Signal Process. 11(6), 946–960 (2017)

    Article  Google Scholar 

  15. Deri, J.A., Moura, J.M.F.: Spectral projector-based graph Fourier transforms. IEEE J. Sel. Top. Signal Process. 11(6), 785–795 (2017)

    Article  Google Scholar 

  16. Deri, J.A., Moura, J.M.F.: Extended adjacency and scale-dependent graph Fourier transform via diffusion distances. IEEE Trans. Signal Inf. Process. Over Netw. 6, 592–604 (2020)

    Article  MathSciNet  Google Scholar 

  17. Le Magoarou, L., Gribonval, R., Tremblay, N.: Approximate fast graph Fourier transforms via multilayer sparse approximations. IEEE Trans. Signal Inf. Process. Over Netw. 4(2), 407–420 (2018)

  18. Rusu, C., Rosasco, L.: Constructing fast approximate eigenspaces with application to the fast graph Fourier transforms. IEEE Trans. Signal Process. 69, 5037–5050 (2021)

  19. Domingos, J., Moura, J.M.F.: Graph Fourier transform: a stable approximation. IEEE Trans. Signal Process. 68, 4443–5050 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  20. Ortega, A., Frossard, P., Kovacevic, J., et al.: Graph signal processing: overview, challenges, and applications. Proc. IEEE 106(5), 808–828 (2018)

    Article  Google Scholar 

  21. Sandryhaila, A., Mour, J.M.F.: Discrete signal processing on graphs: frequency analysis. IEEE Trans. Signal Process. 62(12), 3042–3054 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  22. Püschel, M., Moura, J.M.F.: Algebraic singal processing theory: 1-D space. IEEE Trans. Signal Process. 56(8), 3586–3599 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  23. Ahmed, T.N.N., Rao, K.R.: Discrete cosine transform. IEEE Trans. Comput. C–23(1), 90–93 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  24. Lensu, L.: Discrete cosine transform. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.27.4601 &rep=rep1 &type=pdf (1998)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Xie.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, L., Xie, J. & Zheng, X. The relationship between graph Fourier transform (GFT) and discrete cosine transform (DCT) for 1D signal and 2D image. SIViP 17, 445–451 (2023). https://doi.org/10.1007/s11760-022-02249-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-022-02249-5

Keywords

Navigation