Skip to main content
Log in

Formal modeling and analysis of resource management for cloud architectures: an industrial case study using Real-Time ABS

  • Special Issue Paper
  • Published:
Service Oriented Computing and Applications Aims and scope Submit manuscript

Abstract

We demonstrate by a case study of an industrial distributed system how performance, resource consumption, and deployment on the cloud can be formally modeled and analyzed using the abstract behavioral specification language Real-Time ABS. These non-functional aspects of the system are integrated with an existing formal model of the functional system behavior, achieving a separation of concerns between the functional and non-functional aspects in the integrated model. The resource costs associated with execution in the system depend on the size of local data structures, which evolve over time; we derive corresponding worst-case cost estimations by static analysis techniques and integrate them into our resource-sensitive model. The model is further parameterized with respect to deployment scenarios which capture different application-level management policies for virtualized resources. The model is validated against the existing system’s performance characteristics and used to simulate, analyze, and compare deployment scenarios on the cloud.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Agha GA (1986) ACTORS: a model of concurrent computations in distributed systems. MIT Press, Cambridge, MA

    Google Scholar 

  2. Albert E, Arenas P, Genaim S, Gómez-Zamalloa M, Puebla G (2011) Cost analysis of concurrent OO programs. In: The 9th Asian symposium on programming languages and systems (APLAS’11), LNCS, vol 7078. Springer, Berlin, pp 238–254

  3. Albert E, Arenas P, Genaim S, Gómez-Zamalloa M, Puebla G (2012) COSTABS: a cost and termination analyzer for ABS. In: Kiselyov O, Thompson S (eds) Proceedings of the workshop on partial evaluation and program manipulation (PEPM’12). ACM, pp 151–154

  4. Albert E, Arenas P, Genaim S, Puebla G, Zanardini D (2012) Cost analysis of object-oriented bytecode programs. TCS 413(1):142–159

    Google Scholar 

  5. Albert E, de Boer F, Hähnle R, Johnsen EB, Laneve C (2013) Engineering virtualized services. In: Babar MA, Dumas M (eds) Proceedings of the 2nd nordic symposium on cloud computing & internet technologies (NordiCloud’13). ACM, pp 59–63

  6. Albert E, Bubel R, Genaim S, Hähnle R, Puebla G, Román-Díez G (2011) Verified resource guarantees using COSTA and KeY. In: ACM SIGPLAN workshop on partial evaluation and semantics-based program manipulation (PEPM’11). ACM Press

  7. Albert E, Genaim S, Gómez-Zamalloa M, Johnsen EB, Schlatte R, Tapia Tarifa SL (2011) Simulating concurrent behaviors with worst-case cost bounds. In: Butler M, Schulte W (eds) FM 2011, LNCS, vol 6664. Springer, Berlin, pp 353–368

  8. Albert E, Østvold BM, Rojas JM (2012) Automated extraction of abstract behavioural models from JMS applications. In: Formal methods for industrial critical systems (FMICS’12), LNCS, vol 7437. Springer, Berlin, pp 16–31

  9. Amnell T, Fersman E, Mokrushin L, Pettersson P, Yi W (2003) TIMES: a tool for schedulability analysis and code generation of real-time systems. In: Larsen KG, Niebert P (eds) Proceeding of the first international workshop on formal modeling and analysis of timed systems (FORMATS 2003), LNCS, vol 2791. Springer, Berlin, pp 60–72

  10. Armstrong J (2007) Programming Erlang: software for a concurrent world. Pragmatic Bookshelf (2007)

  11. Bai X, Li M, Chen B, Tsai WT, Gao J (2011) Cloud testing tools. In: Gao JZ, Lu X, Younas M, Zhu H (eds) Proceedings of the 6th international symposium on service oriented system engineering (SOSE’11). IEEE, pp 1–12

  12. Baier C, Haverkort BR, Hermanns H, Katoen JP (2010) Performance evaluation and model checking join forces. Commun ACM 53(9):76–85

    Article  Google Scholar 

  13. Barbanera F, Bugliesi M, Dezani-Ciancaglini M, Sassone V (2007) Space-aware ambients and processes. TCS 373(1–2):41–69

    MATH  MathSciNet  Google Scholar 

  14. Benoy F, King A (1997) Inferring argument size relationships with CLP(R). In: Proceedings of the LOPSTR’97, LNCS, vol 1207. Springer, Berlin, pp 204–223

  15. Bjørk J, de Boer FS, Johnsen EB, Schlatte R, Tapia Tarifa SL (2012) User-defined schedulers for real-time concurrent objects. Innov Syst Softw Eng 9(1):29–43

    Google Scholar 

  16. Bohnenkamp HC, D’Argenio PR, Hermanns H, Katoen JP (2006) MODEST: a compositional modeling formalism for hard and softly timed systems. IEEE Trans Softw Eng 32(10):812–830

    Article  Google Scholar 

  17. Bouyer P, Fahrenberg U, Larsen KG, Markey N (2011) Quantitative analysis of real-time systems using priced timed automata. Commun ACM 54(9):78–87

    Article  Google Scholar 

  18. Bruno EJ, Bollella G (2009) Real-Time Java Programming: with Java RTS. Prentice Hall PTR, Englewood Cliffs, NJ

    Google Scholar 

  19. Buyya R, Yeo CS, Venugopal S, Broberg J, Brandic I (2009) Cloud computing and emerging IT platforms: vision, hype, and reality for delivering computing as the 5th utility. Future Gener Comput Syst 25(6):599–616

    Article  Google Scholar 

  20. Calheiros RN, Netto MA, Rose CAD, Buyya R (2012) EMUSIM: an integrated emulation and simulation environment for modeling, evaluation, and validation of performance of cloud computing applications. Softw Pract Exp 43(5):595–612

    Google Scholar 

  21. Calheiros RN, Ranjan R, Beloglazov A, Rose CAFD, Buyya R (2011) CloudSim: a toolkit for modeling and simulation of cloud computing environments and evaluation of resource provisioning algorithms. Softw Pract Exp 41(1):23–50

    Article  Google Scholar 

  22. Caromel D, Henrio L (2005) A theory of distributed objects. Springer, Berlin

    MATH  Google Scholar 

  23. Chander A, Espinosa D, Islam N, Lee P, Necula GC (2007) Enforcing resource bounds via static verification of dynamic checks. ACM ToPLaS 29(5), art no 28

    Google Scholar 

  24. de Boer FS, Hähnle R, Johnsen EB, Schlatte R, Wong PYH (2012) Formal modeling of resource management for cloud architectures: an industrial case study. In: Paoli FD, Pimentel E, Zavattaro G (eds) Proceedings of the European conference on service-oriented and cloud computing (ESOCC 2012), LNCS, vol 7592. Springer, Berlin, pp 91–106

  25. Douglass BP (2004) Real Time UML—advances in the UML for Real-Time systems, 3rd edn. Addison-Wesley, Reading, MA

    Google Scholar 

  26. ESOCC panel discussion (2012) Global management in service-oriented and cloud computing: challenges and open issues. In: European conference on service-oriented and cloud computing (ESSOC)

  27. Foster H, Emmerich W, Kramer J, Magee J, Rosenblum DS, Uchitel S (2007) Model checking service compositions under resource constraints. In: Crnkovic I, Bertolino A (eds) Proceeding of the 6th joint meeting of the European software engineering Conference and the ACM SIGSOFT international symposium on foundations of software engineering (ESEC/FSE’07). ACM, pp 225–234

  28. Gulwani S, Mehra KK, Chilimbi TM (2009) Speed: precise and efficient static estimation of program computational complexity. In: POPL. ACM, pp 127–139

  29. Hoffmann J, Hofmann M (2010) Amortized resource analysis with polynomial potential. In: The 19th European symposium on programming (ESOP’10), LNCS, vol 6012. Springer, Berlin, pp 287–306

  30. Johnsen EB, Hähnle R, Schäfer J, Schlatte R, Steffen M (2011) ABS: a core language for abstract behavioral specification. In: Aichernig B, de Boer FS, Bonsangue MM (eds) Proceeding of the 9th international symposium on formal methods for components and objects (FMCO 2010), LNCS, vol 6957. Springer, Berlin, pp 142–164

  31. Johnsen EB, Owe O (2007) An asynchronous communication model for distributed concurrent objects. Softw Syst Model 6(1):35–58

    Article  Google Scholar 

  32. Johnsen EB, Owe O, Schlatte R, Tapia Tarifa SL (2010) Dynamic resource reallocation between deployment components. In: Dong JS, Zhu H (eds) Proceedings of the international conference on formal engineering methods (ICFEM’10), LNCS, vol 6447. Springer, Berlin, pp 646–661

  33. Johnsen EB, Owe O, Schlatte R, Tapia Tarifa SL (2011) Validating timed models of deployment components with parametric concurrency. In: Beckert, B Marché C (eds) Proceedings of the international conference on formal verification of Object-Oriented software (FoVeOOS’10), LNCS, vol 6528. Springer, Berlin, pp 46–60

  34. Johnsen EB, Schlatte R, Tapia Tarifa SL (2012) Modeling resource-aware virtualized applications for the cloud in Real-Time ABS. In: Aoki T, Tagushi K (eds) Proceedings of the 14th international conference on formal engineering methods (ICFEM’12), LNCS, vol 7635. Springer, Berlin, pp 71–86

  35. Kirner R, Puschner PP (2005) Classification of WCET analysis techniques. In: ISORC. IEEE Computer Society, pp 190–199

  36. Kramer J (2007) Is abstraction the key to computing? Commun ACM 50(4):36–42

    Article  Google Scholar 

  37. Larsen KG, Pettersson P, Yi W (1997) UPPAAL in a nutshell. Int J Softw Tools Technol Transf 1(1–2):134–152

    Article  MATH  Google Scholar 

  38. Lee EA (2009) Computing needs time. Commun ACM 52(5):70–79

    Article  Google Scholar 

  39. Moreau L, Queinnec C (2005) Resource aware programming. ACM ToPLaS 27(3):441–476

    Google Scholar 

  40. Netjes M, van der Aalst WM, Reijers HA (2005) Analysis of resource-constrained processes with Colored Petri Nets. In: Jensen K (ed) Proceedings of the sixth workshop on the practical use of coloured petri nets and CPN tools (CPN 2005), DAIMI, vol 576. University of Aarhus

  41. Nuñez A, Vázquez-Poletti J, Caminero A, Castañé G, Carretero J, Llorente I (2012) iCanCloud: A flexible and scalable cloud infrastructure simulator. J Grid Comput 10:185–209

    Article  Google Scholar 

  42. Petriu DB, Woodside CM (2007) An intermediate metamodel with scenarios and resources for generating performance models from UML designs. Softw Syst Model 6(2):163–184

    Article  Google Scholar 

  43. Sgroi M, Lavagno L, Watanabe Y, Sangiovanni-Vincentelli A (1999) Synthesis of embedded software using free-choice Petri nets. In: Proceedings of the 36th ACM/IEEE design automation conference (DAC’99). ACM, pp 805–810

  44. Verhoef M, Larsen PG, Hooman J (2006) Modeling and validating distributed embedded real-time systems with VDM++. In: Misra J, Nipkow T, Sekerinski E (eds) Proceedings of the 14th international symposium on formal methods (FM’06), LNCS, vol 4085. Springer, pp 147–162

  45. Vulgarakis A, Seceleanu CC (2008) Embedded systems resources: views on modeling and analysis. In: Proceeding of the 32nd IEEE international computer software and applications conference (COMPSAC’08). IEEE Computer Society, pp 1321–1328

  46. Wilhelm R, Engblom J, Ermedahl A, Holsti N, Thesing S, Whalley DB, Bernat G, Ferdinand C, Heckmann R, Mitra T, Mueller F, Puaut I, Puschner PP, Staschulat J, Stenström P (2008) The worst-case execution-time problem—overview of methods and survey of tools. ACM Trans Embed Comput Syst 7(3)

  47. Wong PYH, Albert E, Muschevici R, Proença J, Schäfer J, Schlatte R (2012) The ABS tool suite: modelling, executing and analysing distributed adaptable object-oriented systems. Int J Softw Tools Technol Transf (STTT) 14(5):567–588

    Article  Google Scholar 

  48. Wong PYH, Diakov N, Schaefer I (2012) Modelling distributed adaptable object oriented systems using HATS approach: a fredhopper case study (invited paper). In: 2nd international conference on formal verification of object-oriented software, LNCS, vol 7421. Springer, Berlin (2012)

Download references

Acknowledgments

Although the author list of this article is rather long already, we gratefully thank the many more people who have been involved in the development of the ABS and Real-Time ABS languages, their toolset, as well as the COSTABS system. Without their effort, the research reported here would not have been possible.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Einar Broch Johnsen.

Additional information

Partly funded by the EU projects FP7-231620 HATS: Highly Adaptable and Trustworthy Software using Formal Models (http://www.hats-project.eu) and FP7-610582 ENVISAGE: Engineering Virtualized Services (http://www.envisage-project.eu).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Albert, E., de Boer, F.S., Hähnle, R. et al. Formal modeling and analysis of resource management for cloud architectures: an industrial case study using Real-Time ABS. SOCA 8, 323–339 (2014). https://doi.org/10.1007/s11761-013-0148-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11761-013-0148-0

Keywords

Navigation