
HAL Id: lirmm-01580885
https://hal-lirmm.ccsd.cnrs.fr/lirmm-01580885

Submitted on 3 Sep 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

QoS-aware optimal and automated semantic web service
composition with user’s constraints

Amina Bekkouche, Sidi Mohamed Benslimane, Marianne Huchard, Chouki
Tibermacine, Fethallah Hadjila, Mohammed Mohammed Merzoug

To cite this version:
Amina Bekkouche, Sidi Mohamed Benslimane, Marianne Huchard, Chouki Tibermacine, Fethallah
Hadjila, et al.. QoS-aware optimal and automated semantic web service composition with user’s
constraints. Service Oriented Computing and Applications, 2017, 11 (2), pp.183-201. �10.1007/s11761-
017-0205-1�. �lirmm-01580885�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-01580885
https://hal.archives-ouvertes.fr

Noname manuscript No.
(will be inserted by the editor)

QoS-Aware Optimal and Automated Semantic Web
Service Composition With User’s Constraints

Amina BEKKOUCHE · Sidi Mohammed BENSLIMANE ·
Marianne HUCHARD · Chouki TIBERMACINE · Fethallah

HADJILA · Mohammed MERZOUG

Received: date / Accepted: date

Abstract Automated semantic web service com-

position is one of the critical research challenges

of service-oriented computing, since it allows users

to create an application simply by specifying the

inputs that the application requires, the outputs

it should produce, and any constraints it should

respect. The composition problem has been han-

dled using a variety of techniques, from Artificial

Intelligence (AI) planning to optimization algo-

rithms. However no approach so far has focused

on handling three composition dimensions simul-

Amina BEKKOUCHE
Computer Science Departement, Abou Bekr Belkaid
University of Tlemcen, B.P 119 Faculty of Sciences,
Tlemcen, Algeria
E-mail: ami bekkouche@mail.univ-tlemcen.dz

Sidi Mohammed BENSLIMANE
LabRi Laboratory, École Supérieure en Informatique,
BP 73, El Wiam City, Sidi Bel Abbes, Algeria
E-mail: s.benslimane@esi-sba.dz

Marianne HUCHARD
LIRMM, CNRS and Montpellier University, 161 rue
Ada, 34095 Montpellier, France
E-mail: marianne.huchard@lirmm.fr

Chouki TIBERMACINE
LIRMM, CNRS and Montpellier University, 161 rue
Ada, 34095 Montpellier, France
E-mail: chouki.tibermacine@lirmm.fr

Fethallah HADJILA
Computer Reasearch Laboratory, Abou Bekr Belkaid
University of Tlemcen, B.P. 119 Faculty of Sciences,
Tlemcen, Algeria
E-mail: f hadjila@mail.univ-tlemcen.dz

Mohammed MERZOUG
Computer Reasearch Laboratory, Abou Bekr Belkaid
University of Tlemcen, B.P. 119 Faculty of Sciences,
Tlemcen, Algeria
E-mail: mohamed.merzoug@mail.univ-tlemcen.dz

taneously, producing solutions that are: (1) fully

functional (i.e. fully executable) by using a mecha-

nism of semantic matching between the services in-

volved in the solutions, (2) are optimised according

to non-functional Quality of Service (QoS) mea-

surements, and (3) respect global QoS constraints.

This paper presents a novel approach based on

a Harmony Search (HS) algorithm that addresses

these three dimensions simultaneously through a

fitness function, to select the optimal or near opti-

mal solution in semantic web service composition.

In our approach, the search space is modeled as

a Planning Graph structure which encodes all the

possible composition solutions for a given user re-

quest. To improve the selection process we have

compared the original Harmony Search algorithm

with its recently developed variants Improved Har-

mony Search (IHS) algorithm and Global Best Har-

mony Search (GHS) algorithm. An experimenta-

tion of the approach conducted with an extended

version of the Web Service Challenge 2009 dataset

showed that: 1) our approach is efficient and effec-

tive to extract the optimal or near optimal com-

position in diverse scenarios; and 2) both variants

IHS and GHS algorithms have brought improve-

ments in terms of fitness and execution time.

Keywords Semantic Web Service Composition ·
Semantic Matching · Planning Graph · Harmony

Search Algorithm · Quality of Service (QoS)

1 Introduction

Web services provide a standardized way to achieve

interoperability between heterogeneous software sys-

tems independently from underlying implementa-

tion technologies and platforms. However, the lim-

ited functionality offered by an atomic web ser-

vice cannot always satisfy complex user needs and

appropriately reflect intricate business processes

[2]. Web service composition techniques attempt

to solve such issues by combining and integrating

suitable atomic web services into a composite one.

As the number of web services increases quickly,

it is already beyond the human ability to gener-

ate the composite service manually. Thus the au-

tomated web service composition aiming at find-

ing a composite service to satisfy the user request

becomes an important technique to reuse existing

resources and accelerate the development of web

applications. However, composite services should

go beyond achieving a concrete functionality and

take into account other requirements such as Qual-

ity of Service (QoS) to generate compositions that

fit the needs of users. QoS is a broad concept that

encompasses a group of non functional properties,

such as execution price, execution duration, avail-

ability, execution success rate, and reputation [65].

Given a set of multiple global QoS constraints, the

challenge is how to efficiently construct a compos-

ite service such that its overall QoS is optimal,

while all the QoS constraints are satisfied.

Most conventional approaches consider the search

of correct work plans (automated web service com-

position problem) and the ones that give the op-

timal QoS (web service selection problem) as two

separate sub-problems of the general QoS aware

automated service composition problem.

Research in [65, 39, 19, 4, 66, 58, 18] solves the

QoS aware service selection problem. They assume

the work plan is pre-defined and each task in the

plan is not a concrete service but representing a

service class with multiple candidates of different

QoS measures.

On the other hand, many automated compo-

sition approaches do not take the QoS attributes

into account. For example, AI planning techniques

have been traditionally used in service composi-

tion to generate valid composition plans by map-

ping services to actions in the planning domain

[43, 8, 52, 51, 27, 1]. Some approaches [68] search

all the solutions, while others [16] give priority

to the results with fewer services or simpler work

plans.

The problem of selecting composition solutions

that optimize the overall QoS, while satisfying mul-

tiple global QoS constraints in automated seman-

tic web service composition becomes a -combinatorial-

optimization problem which is known to be NP-

hard [41]. In this type of problem, optimization

techniques are the most appropriate because due

to the large number of similar services that would

lead to a large number of candidate solutions, the

search for the optimal or near optimal solution

should be done in a short time and without pro-

cessing the entire search space. Meta-heuristic al-

gorithms are well known approximate algorithms

which can solve optimization problems with sat-

isfying results [65, 39]. The works in [44, 49, 21,

46] address the problem partially by exploiting AI

planning or graph based automated service compo-

sition algorithms and selecting the optimal compo-

sition based on QoS. However, owning to not con-

sidering QoS constraints, the optimal solution in

their approach may not satisfy user’s needs, such

as price and reputation constraints.

The Harmony Search (HS) algorithm [14, 25]

is one of the most recently developed optimization

algorithms that mimics the behavior of a music or-

chestra when aiming at composing the most har-

monious melody, as measured by an aesthetic stan-

dard. HS has obtained excellent results in many

optimization problems [69, 22, 54] and has become

a popular algorithm in the evolutionary compu-

tation field due to its superiority to many other

algorithms. However, it has never been used for

identifying the optimal composition in QoS aware

automated service composition problem.

In this paper, we propose a novel method based

on planning graph [44] and Harmony Search algo-

rithm [14] for selecting the optimal composition

solution. The user can specify multiple global QoS

constraints and our method finds a composite ser-

vice that optimizes the overall QoS, while satisfy-

ing those specified global constraints.

Our main contributions are :

1. We present an integrated framework for QoS

aware optimal and automated semantic web

service composition.

2. We propose a new mechanism for computing

the semantic matching scores (degrees) between

the services involved in the composition.

3. We also propose an efficient Harmony Search

algorithm for finding the optimal composition

that respects the global QoS constraints.

4. We compare our selection algorithm based on

Harmony search with its recently developed vari-

ants Improved Harmony Search (IHS) algorithm

and Global Best Harmony Search (GHS) algo-

rithm in order to improve the selection process.

2

We experimented our proposal using the Web

Service Challenge 2009 dataset1 (a famous world

competition about automatic composition of web

services). The experimental study demonstrates the

efficiency and the effectiveness of our approach in

different settings. The remainder of the paper is or-

ganized as follows. Section 2 gives an overview of

related work. In Section 3, we present a motivating

scenario.In Section 4, we formalize the web service

composition problem. In Section 5, we give the de-

tails on the proposed framework and in Section 6,

we present the results of a set of experimental eval-

uations. Finally, in Section 7, we conclude with a

summary of our contributions and the perspectives

of this work.

2 State of the Art

Recently, research on web service composition has

been receiving a lot of attention. Existing approaches

can broadly be classified into one of the follow-

ing categories: Automated web service composi-

tion approaches, QoS-aware service composition

approaches and Hybrid approaches.

2.1 Automated web service composition

The automatic composition of services is a funda-

mental and complex problem in the field of Ser-

vice Oriented Computing. Most approaches can

be categorized into: 1) classical AI planning ap-

proaches [42], where the composition problem is

translated into the planning domain and solved

using general planners, and 2) graph-based I/O

driven approaches [60] that build a graph with the

services and their input/output semantic relations,

and apply graph search techniques to extract ser-

vice compositions from the graph. The approaches

discussed below are representative of these two dis-

tinct research paths.

2.1.1 AI planning approaches

Theoretical works, such as the Causal Link Matrix

(CLM)[31], provide a solid background for seman-

tic web service composition through AI techniques.

CLM is a formal theoretical model accommodat-

ing AI planning for web service composition. It

involves precomputing all causal relations between

semantic web services and using them to formulate

valid compositions. Although it takes into account

1 http://ws-challenge.georgetown.edu/wsc09/

semantics, the lack of an implementation and ex-

perimental results does not allow us to draw con-

clusions about its scalability.

SHOP2 [53] was initially created as a general-

purpose, heuristic-driven Hierarchical Task Net-

work (HTN) planning system. It was later used for

automated web service composition. OWL-S pro-

cess models are encoded as SHOP2 domains, while

the web service composition problem is encoded

as a planning problem. Solutions are acquired by

HTN planning. The main disadvantage of this ap-

proach is that the planning process, due to its hi-

erarchical nature, requires certain decomposition

rules to be encoded in advance with the help of a

DAML-S process ontology. For hearing sound de-

composition rules, prior expert knowledge of the

domain is required.

The work in [37] represents atomic services as

state transition operators and employs estimated-

regression planning with heuristics to perform com-

position. In order to be used, it requires extension

to current standards, while scalability results are

not encouraging.

The approach presented in [38] attempts the

modification of GOLOG [34] to adjust it to web

service composition standards. The approach is based

on intelligent agents having the ability to reason

for automated service discovery and composition.

User requirements and constraints are modeled through

situation calculus. Consequently, GOLOG is used

to find an appropriate composition plan. Encoding

and translation processes in this approach are gen-

erally complex, while interoperability with existing

systems and standards is decreased.

The SWORD system [43] describes available

web services with the aid of EntityRelationship

Models and Horn rules. Therefore, domain-specific

knowledge is required. The final composition plan

is derived through a rule-based expert system, re-

quiring user involvement.

OWLS-XPlan [27] uses semantic descriptions

of web services in OWL-S to derive planning do-

mains and problems, and then invokes a planning

module, called XPlan, to generate composite ser-

vices. The system is compliant with an XML di-

alect of PDDL. However, semantic information pro-

vided from domain ontologies is not utilized there-

fore, the planning module requires exact matching

between service inputs and outputs.

The work in [17] presents an integrated ap-

proach for automated semantic Web service com-

position using AI planning techniques. An impor-

tant advantage of this approach is that the com-

3

position process, as well as the discovery of the

atomic services that take part in the composition,

are significantly facilitated by the incorporation

of semantic information. The implementation was

performed through the development and integra-

tion of two software systems, namely PORSCE II

and VLEPPO. However user constraints and QoS

were not addressed in this approach and just out-

lined as future goal.

The authors in [67] provided four strategies to

remove the redundant Web services during a for-

ward planning-graph generating process. They at-

tempted to find a solution in the shortest time.

However, without the backward pruning, the solu-

tions may contain some redundant Web services.

Moreover, they did not consider QoS and Seman-

tics.

[35] focused on the semantic matching prob-

lem in the planning graph-based composition algo-

rithms. In the forward search, it used the concept

similarity and some predefined threshold to cal-

culate the service matching degrees, which were

added into the planning-graph as the weights of

services. In addition, it removed services produc-

ing the same parameter but with lower weights to

keep the planning-graph as simple as possible. It

adopted a backward search to prune the redundant

services. Unfortunately, the threshold is not easy

to define, and this limits the application of this

method.

The authors in [32] present an approach for

performing automated data flow in web service

composition by i) exploiting semantic matchmak-

ing between web service parameters (i.e., outputs

and inputs) to enable their connection and inter-
action,and ii) adapting XML database solutions,

specifically XML Schema mapping, to perform syn-

tactic data transformation and integration of ex-

changed messages. The system is implemented and

interacting with web services dedicated on a Tele-

com scenario but QoS requirements were not con-

sidered in their approach.

2.1.2 Graph-based approaches

In [33], the authors develop an integrated frame-

work for dynamic Web service composition. The

framework exploits the semantic input-output match-

making to discover relevant services and performs

automatic composition using a graph-based ap-

proach, taking into account functional requirements.

However, graph optimization are not considered

and the composition search is non-optimal, since

the selection of the services is merely greedy-based.

In [50], the authors present an approach to au-

tomatic service composition with semantic match-

ing. Given a request (goals, inputs and outputs), a

set of matching services are discovered from the

repository, applying semantic matching between

service properties and the composition request. Then,

a graph is created dynamically by connecting se-

mantically similar nodes (single services) to each

other. Once the graph is created, a search over it

is performed building acyclic tree structures from

goal nodes to start nodes. However, there are no

experimental results to validate the model.

In [57], three different approaches for service

composition were used and compared: 1) an It-

erative Depth-First Search approach; 2) a Greedy

approach; 3) and an Evolutionary approach. These

approaches consider a subsumption-based match-

ing of services, but none of them considers non-

functional characteristics or QoS attributes.

The authors in [60] present an automatic ser-

vice composition algorithm using AND/OR graph.

In this proposal, an AND/OR graph is created

from a request, connecting services by their inputs

and outputs. Then, a search over the graph is per-

formed using the AO* search algorithm. Although

this proposal shows a good performance over large

repositories, the autors have not implemented op-

timization techniques in order to improve the scal-

ability of the algorithm.

The work in [47] define a composition frame-

work by means of integration with fine-grained I/O

service discovery that enables the generation of a

graph-based composition which contains the set

of services that are semantically relevant for an

input-output request. The proposed framework also

includes an optimal composition search algorithm

to extract the best composition from the graph

minimizing the length and the number of services,

and different graph optimisations to improve the

scalability of the system but with no QoS support.

Another interesting graph-based approach has

been presented in [29]. In this paper the authors

present an efficient framework for Web service com-

position that supports semantic Web service dis-

covery. The composition is generated by perform-

ing a forward chaining of operators to find a fea-

sible composition. The authors also evaluated the

system with the datasets of the Web Service Chal-

lenge 2006 and presented a detailed experimen-

tation. Their results demonstrate the capabilities

and the good performance of this system, however

it does not analyse service optimisations to remove

redundant information.

4

2.2 QoS-aware service composition

To guarantee local or global QoS requirements of

service composition, the QoS-aware service com-

position has attracted the attention of a lot of re-

searchers from different fields. Compared to auto-

matic service composition, it assumes the existence

of a predefined work plan with a set of abstract

tasks, while the objective is to select service for

each task from its candidate services to meet local

or global QoS constraints. The QoS-aware service

composition also requires that the QoS informa-

tion attached to the services is predicted in a re-

liable manner. To do so, both the provider and

the customer of the services have to use prediction

algorithms such as collaborative filtering (CF) to

facilitate the composition task.

In [61] the authors predict the QoS of the target

service for a given location and time information.

The proposed solution combine the advantages of

memory-based techniques and model-based tech-

niques, in particular the adoption of small clusters

allows the scalability of the similarity computa-

tion, on the other hand the time information en-

sures the prediction accuracy. In the same line of

thought the authors of [6] leverage model driven

engineering to automatically instantiate the SLA

(Service Level Agreements) of SaaS (Software as

a Service) compositions. They also enrich the re-

sulting model with cloud concepts such as storage,

networks and computation ressources.

Assuming that the prediction of the QoS infor-

mation is correctly performed, the next task con-

sists in reducing the composition problem into a

combinatorial Knapsack problem, which is gener-

ally solved using constraint satisfaction algorithms

(such as Integer Programming) [64, 63] or Evolu-

tionary Algorithms [7, 56, 28].

In [64] the authors present AgFlow, a QoS mid-

dleware for service composition. They analyze two

different methods for QoS optimization, a local se-

lection and a global selection strategy. The second

strategy is able to optimize the global end-to-end

QoS of the composition using an Integer Linear

Programming method, which performs better than

the suboptimal local selection strategy.

In [63], the authors model the problem as a

multichoice 0-1 knapsack problem or a multicon-

straint optimal path problem, and then compute

optimal result according to the objective function.

Similarly, in [3] the authors propose a hybrid QoS

selection approach that combines a global opti-

mization strategy with local selection for large-

scale QoS composition.

The authors in [4] propose an approach for fa-

cilitating web service selection according to user

requirements. These requirements specify the needed

functionality and expected QoS, as well as the com-

posability between each pair of services. The orig-

inality of their approach is embodied in the use of

Relational Concept Analysis (RCA), an extension

of Formal Concept Analysis (FCA). They classify

services by their calculated QoS levels and com-

posability modes. They use a real case study of

901 services to show how to accomplish an effi-

cient selection of services satisfying a specified set

of functional and non-functional requirements.

In [7] and [55], genetic algorithms are used to

find the optimal composition solution.The compo-

sition method is based on a given service abstract

workflow, where each abstract service has a set

of candidate concrete services with different QoS

values associated. Genetic algorithms are used to

bind concrete services to the abstract ones aim-

ing at identifying the optimal workflow instance in

terms of QoS attributes. The genome is encoded

as an integer array in [7] and as a binary string

in [55], where each position is associated to an ab-

stract service in the workflow and indicates the

concrete service which is selected to be used. Both

approaches make use of genetic operators and fit-

ness functions applied on the genome to find the

optimal composition solutions.

A hybrid method combining Particle Swarm

Optimization (PSO)[23] with Simulated Annealing

is proposed in [56] for selecting the optimal service

composition solution based on QoS attributes. A

composition solution is considered as the position

of a particle in PSO, while velocity is used to mod-

ify a composition solution. To avoid the problem of

premature stagnation in a local optimal solution, a

Simulated Annealing-based strategy is introduced

which produces new composition solutions by ran-

domly perturbing an initial solution.

In [59] the authors use an immune algorithm

to tackle the composition problem. First, they en-

code the problem into an antibody. This method

has two steps: the Immune selection operation and

Clonal selection operation. In immune selection,

antibodies are proliferated and suppressed in or-

der to control their density in the mating pool and

also to make sure antibodies that are helpful and

potential (vaccine) will not be destroyed. In Clonal

operation, they use antibodies with a high fitness

as a heuristic information for speeding up conver-

5

gence. They consider several control flow operators

of business process, and take into account several

QoS attributes in the fitness function like service

cost and service response time. Antibodies with

the best fitness are considered as vaccine in the

algorithm.

A hybrid meta-heuristic method that combines

Tabu Search and simulated annealing is proposed

by [28] to search for a high quality constraint-

compliant service composition plan. Applying Tabu

list and probabilistic move to inferior plans enables

this approach to find solutions quickly.

In [10], the authors suggest an efficient ser-

vice selection mechanism based on the social har-

mony search algorithm to help clients select ser-

vices with considering the quality attributes. In or-

der to demonstrate the capabilities of the applied

algorithm in the quality optimization of a compos-

ite service it is compared to a similar optimization

problem with a genetic algorithm approach and

the corresponding results revealed that the pre-

sented algorithm consumes less time finding the

optimum combination and therefore is more effi-

cient.

In [20], a harmony search based method is pro-

posed for web service selection. This research lacks

pitch adjustment parameter in improvisation phase

-which is one of the important parameters of the

algorithm- and this lack is justified by this state-

ment that QoS values of equivalent services are not

relevant to each other. Therefore, pitch adjustment

does not give rise to an improvement of an objec-

tive function value and therefore, it acts just the

same as random selection in improvisation.

2.3 Hybrid approaches

Hybrid approaches combine elements of AI plan-

ning or graph based and optimisation techniques

for solving the composition problem with correct

functionally, optimised QoS solutions [46, 21, 49].

In [46] the authors present a graph-based ap-

proach for automatic composition of web services

that generates semantic input output based com-

positions with optimal end-to-end QoS, minimiz-

ing the number of services of the resulting composi-

tion. The proposed approach has four main steps:

1) generation of the composition graph for a re-

quest; 2) computation of the optimal composition

that minimizes a single objective QoS function;

3) multi-step optimizations to reduce the search

space by identifying equivalent and dominated ser-

vices; and 4) hybrid local-global search to extract

the optimal QoS with the minimum number of ser-

vices.

In [5] the authors propose an approach by con-

sidering a two-phase composition process. The com-

position first proceeds to generate an abstract plan

based on web service types using Dynamic Descrip-

tion Logics (DDL). This abstract plan is then con-

cretized into an executable plan by selecting the

appropriate Web service instances based on non-

functional requirements.

In [9] The authors propose a novel approach

based on the planning-graph to solve the top-k

QoS-aware automatic composition problem of se-

mantic Web services. The approach includes three

sequential stages: a forward search stage to gener-

ate a planning-graph to reduce the search space of

the following two stages greatly, an optimal local

QoS calculating stage to compute all the optimal

local QoS values of services in the planning, and a

backward search stage to find the top-K composed

services with optimal QoS values according to the

planning-graph and the optimal QoS value.

Qsynth in [21] is proposed to address both scal-

ability and accuracy by using QoS objectives of a

service request as the search directives. This ap-

proach effectively prunes the search space and sig-

nificantly improves the accuracy of the search re-

sults. However, these methods can maximize only

one QoS attribute during the planning process and

QoS constraints are not taken into consideration.

In [44], an approach that combines AI planning

and an immune-inspired algorithm is used to per-

form fully automated QoS-aware Web service com-

position, also considering semantic properties. One

significant contribution of this work is the proposal

of an enhanced planning graph, which extends the

traditional planning graph structure by incorpo-

rating semantic information such as ontology con-

cepts. Given this data structure, the composition

algorithm selects the best solution configuration

from a set of candidates. A fitness function con-

sidering QoS values and semantic quality is used

to identify the best solution, and a clonal selec-

tion approach is employed to perform the optimi-

sation. Candidate cells (solutions) are cloned, ma-

tured (mutated by replacing services with others

from the same cluster in the EPG) and the cell

most suited to combating the invading organism

(i.e. the best solution) is discovered. Similarly, in

[49] the authors propose two hybrid algorithms:

Cuckoo Search and Firefly Algorithms, for select-

ing the optimal solution in semantic web service

composition using the same model of enhanced

6

planning graph. The proposed algorithms combine

principles from population-based meta-heuristics

with principles from trajectory-based meta-heuristics

and reinforcement learning to optimize the search

process in terms of execution time and fitness value

reflecting the QoS and semantic quality of a solu-

tion.

2.4 Discussion

In general all these approaches for web service com-

position only consider one or two aspects of QoS

aware automated service composition problem.

Most of the automated web service composi-

tion approaches (Section 2.1) have mainly focused

on exploiting semantic techniques and developing

heuristics to generate valid composition plans. Un-

fortunately, none of these methods generate opti-

mal QoS aware compositions nor respect the user

constraints.

Furthermore, both the composition workflow

and the service candidates for each abstract task

in QoS-aware service composition approaches (Sec-

tion 2.2) are assumed to be predefined beforehand.

So these techniques are not able to produce compo-

sitions with variable size. In addition, they usually

optimize only two or three QoS attributes.

Although the hybrid approaches (Section 2.3)

propose an efficient way to produce optimized QoS

composition solutions, they do not include any dis-

cussion on the issue of producing solutions that

satisfy global QoS constraints, which is crucial in

such service-oriented environments with real busi-

ness settings. The second limit of these methods

is that they focus only on sequential compositions

and they do not deal with more complex compo-

sition structures such as the parallel composition

construct in which multiple web services are exe-

cuted concurrently.

To address the above issues, we propose a novel

approach that simultaneously considers three com-

position dimensions producing solutions that are:

(1) fully functional by using a mechanism of se-

mantic matching between the services involved in

the solutions, (2) are optimised according to non-

functional properties (our approach can handle n

QoS attributes but in the experiments we have

considered 5 attributes), and (3) fulfil global QoS

constraints.

3 Motivating Scenario

In this section we present a motivating scenario to

illustrate our approach for automatic web service

composition. We use an application from the car

brokerage domain [65]. A typical scenario would

be of a customer, say Bob, planning to buy a used

car having a specific model, mark, and mileage. To

purchase an entire car package, Bob would first like

to know the price quote of the selected car and the

vehicle history report. He then needs to get the in-

surance quote. Finally, since Bob needs the financ-

ing assistance, he also wants to know the financing

quote. Consider that all these subtasks are pub-

lished by businesses as web services and our goal is

to compose them for purchasing a car. Examples of

Web services that need to be accessed include Car

Purchase, Car Insurance, and Financing. We also

anticipate that there will be multiple competitors

to provide each of these web services. For instance,

the customers have to choose the most suitable In-

surance company that best meets his preference

and price requirements (i.e. the sum of the price

quote and the insurance cost must not exceed the

predefined budget (the global QoS constraints has

to be preserved). In addition, Bob may choose an

Insurance company that provides the shortest pe-

riods of accident repayments. This QoS criterion

must be optimized during the composition process

(the QoS dimension is very important in this case).

4 Web Service Composition Problem

The automatic composition of services requires a

mechanism to select appropriate services based on

their functional descriptions, as well as to auto-

matic match the services together by linking the

outputs of some services to the inputs of others to

generate executable compositions. To this end, we

introduce in this section the main concepts that we

use to tackle the QoS-aware automatic web service

composition problem.

Definition 1 (QoS) A quality-of-service attribute

Qi is a value representing the non-functional prop-

erty of a web service, such as response time, through-

put, cost, reputation and so on. The QoS attributes

can be categorized into two classes [45]. One is neg-

ative, the higher is the value, the lower is the qual-

ity, such as response time and cost. The other is

positive, the higher is the value, the higher is the

quality, such as throughput and reputation.

Definition 2 (Global QoS Constraints) Given

an n-tuple of QoS attributes 〈Q1, Q2, ...Qn〉, global

7

QoS constraints, denoted as G, is an n-tuple of

QoS values 〈g1, g2, ...gn〉. Each gi ∈ G is a lower

bound on a positive QoS attribute Qi and/or an

upper bound on a negative QoS attribute Qi.

Each global QoS constraint in G is used to re-

strict its corresponding QoS attribute as the global

QoS value of a composition solution.

Definition 3 (Ontology Tree) An ontology tree

is defined as a 2-tuple Γ=〈C,R〉, where:

1. C is the set of concepts represented by nodes in

the ontology tree.

2. R is the set of hierarchical relationships repre-

sented by edges in the ontology tree. If a concept

c2 is a direct sub-concept of another concept c1,

it can be denoted as c2 v c1, (see Definition 5).

Definition 4 (Semantic Web Service) Given an

ontology Γ=〈C,R〉, a semantic web service is de-

fined as a triple wi=〈 Iwi
, Owi

, QoSi 〉, where :

1. Iwi ⊆ C represents the set of concepts that se-

mantically describe the input parameters of the

web service.

2. Owi ⊆ C represents the set of concepts that

semantically describe the output parameters of

the web service.

3. QoSi is an n-tuple 〈Q1
i , Q

2
i , ...Q

n
i 〉, where each

Qj
i denotes the corresponding value of a QoS

attribute of the n-tuple 〈Q1, Q2, ...Qn〉.
Semantic inputs and output parameters are used

to compose the functionality of multiple services

by matching their inputs and outputs together. In

order to measure the quality of the match, we need

a matching mechanism that exploits the semantic

I/O information of the services. In our work we use
the different matching degrees that are introduced

in [26]:

– Exact(≡): An input iwj
∈ Iwj

of a service wj

matches an output owi ∈ Owi of a service wi

with a degree of exact match if both concepts

are equivalent; denoted by, iwj
≡ owi

.

– Plugin(v): An input iwj ∈ Iwj of a service wj

matches an output owi
∈ Owi

of a service wi

with a degree of plugin if iwj
is a direct sub-

concept of owi ; denoted by, iwj v owi .

– Subsume(@): An input iwj
∈ Iwj

of a service

wj matches an output owi
∈ Owi

of a service

wi with a degree of subsume if iwj is an indirect

sub-concept of owi ; denoted by, iwj @ owi .

– Subsumed by(w): An input iwj
∈ Iwj

of a

service wj matches an output owi
∈ Owi

of a

service wi with a degree of subsumed by if iwj

is a direct super-concept of owi
; denoted by,

iwj
w owi

.

– Fail(⊥): When none of the previous matches

are found, then both concepts are incompatible

and the match has a degree of fail; denoted by

iwj
⊥ owi

.

Definition 5 (Compatible Match) Given two sets

of concepts parameters Owi
and Iwj

for services wi

and wj respectively, a compatible match between

Owi and Iwj exists if ∀ iwj ∈ Iwj , ∃ owi ∈ Owi

(iwj
≡ owi

∨ iwj
@ owi

∨ iwj
v owi

∨ iwj
w owi

),

denoted as Owi
⊗ Iwj

.

Definition 6 (Composition Request) Given an

ontology Γ=〈C,R〉, a composition request is de-

fined as a quadruple 〈R = IR, OR, G,W 〉, where:

1. IR ⊆ C represents the set of requested input

parameters.

2. OR ⊆ C represents the set of requested output

parameters.

3. G=〈 g1, g2, ...gn 〉 is an n-tuple of global QoS

constraints for 〈Q1, Q2, ...Qn〉.
4. W = (WQind

,WQglob
,Wsem) such that WQind

,

WQglob
,Wsem ∈ [0, 1] is the set of user provided

weights such that:

– WQind
= 〈WQ1 ,WQ2 , ...WQn〉 represents the

user preferences regarding to the relevance

of an individual value of a QoS attribute for

a composition solution.

– The WQglob
,Wsem weights represent respec-

tively the user preferences regarding to the

relevance of:

– The overall QoS value of a composition

solution;

– The value of the global score of seman-

tic similarity of a composition solution.

Definition 7 (QoS-aware Automatic Service Composition Problem)

Given a set of semantic web services W and a com-

position request 〈R = IR, OR, G,W 〉, the composi-

tion problem considered in this paper consists of

searching for an optimal composition solution that

defines an invocation order over (workflow) a set

of web services {w1, w2, ..., wn} and satisfies the

conditions:

1. {IR ∪Ow1
∪ ... ∪Owi

} ⊗ Iwi+1
(1 ≤ i ≤ n− 1).

2. {Ow1 ∪Ow2 ∪ ... ∪Own} ⊗OR.

3. The overall QoS of the composition solution is

optimal.

4. The global QoS constraints G are satisfied.

Our approach models QoS-aware automatic ser-

vice composition as a multi-layered process which

creates a planning-graph structure. The graph rep-

resents the space of all candidate composition solu-

tions, for a composition request R, which are gen-

erated by computing the semantic similarity scores

8

between services on different layers. Our objective

is not to select any composition solution, but the

one that gives the global optimal QoS and respects

the QoS constraints.

5 The Proposed Framework

In this section we present an integrated frame-

work for QoS aware automated semantic web ser-

vice composition with user’s constraints. Figure 1

shows the overview of the framework with the dif-

ferent steps involved. The process is triggered by

a composition request that specifies the user needs

in terms of functional and non-functional require-

ments. In the composition planning-graph genera-

tion phase the functional requirements are used to

build a planning-graph with all the relevant ser-

vices and the semantic relations between their in-

puts and outputs. The planning-graph [44] is a

directed graph of layers, each layer contains all

services that can be executed with the outputs of

the services of the previous layer. In order to re-

trieve the relevant services, we propose a seman-

tic matching for calculating the semantic similar-

ity scores between services on different layers. The

planning graph contains all possible service com-

positions that satisfy the composition request. Then

these candidate solutions are ranked according to

user QoS requirements and preferences in the selec-

tion phase by using a Harmony Search (HS) Algo-

rithm. Finally the optimal composition is returned.

In this section, we explain each step of the

framework based on the problem formulation pre-

sented in the previous section.

5.1 User Requirements specification

In this phase, the user can specify her/his com-

position request in terms of functional and non-

functional requirements:

1. Ontological concepts representing the semantic

description of the inputs and outputs of the

composed web services.

2. A set of weights that indicate the user pref-

erences regarding the importance of QoS at-

tributes and semantic quality established be-

tween the services involved in the composition.

We consider two categories of weights: one cat-

egory refers to the relevance of QoS attributes

compared to the semantic quality, while the

other category establishes the relevance of each

individual QoS attribute.

3. A set of global QoS constraints on the composi-

tion solution.(i.e., composite service price not

going beyond 100 $, composite service avail-

ability not being under 99.9 %, etc.).

5.2 Composition planning-graph generation

The goal of web service composition is to obtain

an inter-connected set of web services satisfying

the composition request. To achieve this goal, we

adopt the planning-graph structure which is de-

fined in [44]. The planning graph [15] provides a

unique search space where connections between

layers are expressed in a compact way. It has fea-

tures of soundness, completeness, termination, and

can be constructed in polynomial time. We have

chosen the planning graph structure for the fol-

lowing reasons:

– It provides the whole set of composition solu-

tions as response to the composition request.

– It considers multiple web services providing the

same functionality (the functionalty being de-

fined by the inputs/outputs).

– It takes into consideration QoS attributes.

The construction of the planning-graph takes into

account the semantic matching between the output

parameters of some services and the input parame-

ters of other services. First we define how to com-

pute the semantic similarity scores between ser-

vices, then we give the basic concepts and princi-

ples of the planning-graph.

5.2.1 Computing the Score of Semantic Similarity

between two services

For evaluating the semantic similarity between two

services we first define a matching function to com-

pute the degree of match between the concepts de-

scribing the input/output parameters of the ser-

vices.

Definition 8 (Degree Of Match) Given two con-

cepts owi ∈ Owi and iwj ∈ Iwj for services wi

and wj respectively, the degree of match (DoM)

between owi
and iwj

returns a value in [0, 1] such

as:

DoM(owi
, iwj

) =



1 if iwj ≡ owi

0.9 if iwj
v owi

0.8 if iwj
@ owi

0.7 if iwj
w owi

0 Otherwise

(1)

9

Fig. 1: Overview of the proposed framework

Definition 9 (Semantic Similarity Score) The

semantic similarity score (Sims) between the out-

put concepts parameters Owi
of service wi and the

input concepts parameters Iwj of service wj is com-

puted as follows:

Sims(Owi
, Iwj

) =

|Iwj |∑
k=1

max
|Owi |
l=1 DoM(olwi

, ikwj
)∣∣Iwj

∣∣
(2)

Where olwi
∈ Owi

and ikwj
∈ Iwj

.

5.2.2 Planning-Graph Structure

The Planning-graph is obtained by mapping the

concepts of AI-planning graph [48] to semantic web

service composition and also by enhancing the mapped

concepts with the new abstractions of service clus-

ter and literal [44].

Definition 10 (Service Cluster) A service clus-

ter SC groups services which have the same set of

inputs parameters and are in one of the following

matching relations: exact, plugin, subsume or sub-

sumed by. Formally [44]:

∀wi, wj ∈ SC,∀iwi ∈ Iwi ,∀iwj ∈ Iwj , on a: iwi ≡
iwj
∨ iwi

v iwj
∨ iwi

@ iwj
∨ iwi

w iwj
.

Definition 11 (Literal) Let be W a web service

repository, a literal is a set of concepts that se-

mantically describes a set of output and/or input

parameters of a set a web services, formally [44]:

l=li | ∀wi ∈W, li ∈ {Iwi
∪Owi

}.

The construction of planning-graph is an itera-

tive process. At each step, a new layer consisting of

a tuple 〈Ai, Li〉 is added to the graph where Ai rep-

resents a set of service clusters and Li is a literal.

In the tuple 〈A0, L0〉 from layer 0, A0 is an empty

set of services and L0 contains the set of requested

input parameters. For each layer i > 0, Ai is a set

of clusters of services for which the input param-

eters are in Li−1, and Li is a literal obtained by

adding the outputs of the services in Ai to the set

Li−1. The construction of the planning-graph ends

either when the requested outputs are contained

in the current literal or when the sets of service

clusters and literals are the same on two consecu-

tive layers. A composition solution encoded in the

planning-graph consists of a set of services such

that one service is selected from each cluster of

each layer.

An example of a service composition planning

graph for a composition request: IR = {c1, c2}
and OR = {c4, c6, c7, c8} is shown in Figure 2. As

we can see, this graph contains 5 service clusters

(surounded by cicles) and 3 literals (1st, 3rd and

5thcolumns).

Definition 12 (Service Composition planning Graph)

A service composition planning-graph is defined as

a set of tuples [44]:

SCPG={〈Ai, Li〉} , φ ≤ i ≤ n where:

– i ∈ [1...n] represents the index of layer layi in

SCPG.

– Ai = {scij | scij ∈ layi} represents the set of

service clusters from the layer layi in SCPG.

– Li = Li−1 ∪ {c | c ∈ ∪ Owk
, with wk ∈

scij and sc
i
j ∈ layi}, i ≥ 1 .

Note: (A0, L0) is a particular case where A0 = φ

and L0 = IR.

Definition 13 (A Composition Solution) A com-

position solution sol for the SCPG contains a ser-

vice for each cluster belonging to a layer, formally

10

Fig. 2: Example of a service composition planning

graph, SCPG={〈A0, L0〉, 〈A1, L1〉, 〈A2, L2〉}

[44]: ∀ layi ∈ SCPG ∧ ∀scij ∈ layi, ∃! wi
jk ∈ scij |

wi
jk ∈ sol where:

– i represents the index of layer layi in SCPG;

– scij is the cluster j on the layer layi in the

SCPG;

– wi
jk is the service k in cluster j on the layer layi

in the SCPG.

A composition solution for the planning-graph

of Figure 2 consists of a set of subsets of services:

sol= < {w1
11, w

1
21} , {w2

11, w
2
21, w

2
31} >. In each

solution subset, only one service of its cluster is

considered. The services which contribute to the

extension of the planning graph are provided by

a discovery process that finds the appropriate web

services in a repository of services, based on the se-

mantic matching between the services’ inputs and

the set of literals corresponding to the previous

layer.The Matrix of Semantic Links (MSL) stores

the Semantic Links established between the ser-

vices on different layers. One web service could be

linked to several other web services.

Definition 14 (Semantic Similarity Link) A Se-

mantic similarity Link between two services wi, wj

is defined as a tuple [44]:

slij=(V, Sims(Owi
, Iwj

)) where V is a set of

pairs of output parameters of service wi and input

parameters of service wj such as:

V={(owi
, iwj

) | DoM(owi
, iwj

) > 0, owi
∈ Owi

, iwj
∈

Iwj}.

Definition 15 (Semantic Link Matrix) A Se-

mantic Link Matrix is defined in [44]:

SLM=[slmij], i = 1, ...n; j = 1, ...m; such as :

slmij =

{
(φ, 0), if Sims(Owi

, Iwj
) = 0

slij , Otherwise
(3)

Where slij represents the semantic similarity link

between the service on row i and the service on

column j.

5.3 QoS Based Selection

In this section, we describe our selection method

based on Harmony Search (HS) algorithm for solv-

ing the QoS-aware optimal composition problem.

According to the previous studies, HS algorithm

proved to be very successful in a wide range of

optimization problems, such as water distribution

and games [12, 13], and showed better performance

in comparison with other traditional optimization

techniques. The search space of the selection method

is the set of service composition solutions in a com-

pact form of the previous phase.

A Principle of The Harmony Search Algorithm

Harmony Search (HS) is a meta-heuristic evolu-

tionary optimization algorithm, recently developed

by Geem et al [14]. It imitates musical process of

searching for a perfect state of harmony. The Har-

mony Search algorithm has simple concepts and

few parameters [24]. It imposes a few mathemati-

cal requirements and can easily be implemented. In

Harmony Search algorithm, the Harmony Memory

(HM) is a memory location where all current solu-

tion vectors (sets of decision variables) are stored.

In each evolution of Harmony Search, if a solution

vector with relatively good fitness is generated, it

will be saved in HM and might be used in next

generations. The HS steps are as follows [14]:

Step 1 : Initialize the problem and algorithm pa-

rameters.

Step 2 : Initialize the harmony memory.

Step 3 : Improvise a new harmony.

Step 4 : Update the harmony memory.

Step 5 : Repeat Steps 3 and 4 until satisfying ter-

mination criterion.

In Step 1, the objective function with N deci-

sion variables and the set of possible values for each

decision variable are defined. The HS algorithm pa-

rameters are also specified in this step. HS param-

eters include: Harmony Memory Size(HMS), Har-

mony Memory Considering Rate (HMCR), Pitch

11

Adjusting Rate (PAR), and the termination crite-

rion.

In Step 2, the HM matrix is filled with as many

randomly generated solution vectors as the HMS.

In Step 3, a new harmony vector likeX=(x1, x2, ..., xn)

is generated based on three rules: (1)Harmony Mem-

ory Consideration(HMC),(2)Pitch Adjustment(PA)

and (3) Random Selection(RS). In HMC, the value

of a decision variable for the new vector is chosen

from any of the values for that decision variable

in the specified HM. The HMCR, which varies be-

tween 0 and 1, is the rate of choosing one value

from the historical values stored in the memory

while (1- HMCR) is the rate of randomly select-

ing one value from the possible range of values.

Every component obtained by HMC is examined

to determine whether it should be pitch-adjusted.

In PA, the current value of a decision variable is

replaced with one of its neighboring values. The

probability of pitch adjustment is specified by PAR

parameter. During improvisation (generating a new

harmony), HMCR and PAR are used to improve

the solution vector globally and locally respectively.

HMC, PA or RS is applied to each variable of the

new harmony vector in turn.

In Step 4, if the new harmony vector is bet-

ter than the worst harmony in the HM, evaluated

in terms of the objective function value, the new

harmony is included in the HM and the existing

worst harmony is excluded from the HM.

In Step 5, if the stopping criterion (maximum

number of improvisations) is satisfied, evolution

is terminated. Otherwise, Steps 3 and 4 are re-

peated. Finally, the best vector of memory in terms

of objective function value is the (near)-optimal

solution.

B Mapping HS algorithm to the Web Service

Composition Problem

In our web service composition problem, HS is

mapped as follows: (i) an harmony represents a

candidate composition solution, (ii) a music pitch

is represented by a service cluster and (iii) an aes-

thetic standard is represented by a fitness function

that evaluates the composition solution. The HS

algorithm uses the functional and non-functional

(QoS attributes) properties of the web services in

order to find the optimal composition solution.

Such a composition needs to:

– Optimize a function that calculates the score

of semantic similarity between services.

– Optimize the aggregated QoS of the composi-

tion solution.

– Satisfy the QoS global constraints.

B.1) Fitness Evaluation

The fitness function F is a multi-criteria func-

tion that optimizes:

1. The global score of semantic similarity of a

composition solution.

2. The aggregated QoS of a composition solution.

Definition 16 (Global Score of Semantic Similarity)

The global score of semantic similarity (Simg) of

a composition solution sol is computed as follows:

Simg(sol) =

nlinks∑
k=1

Sims(Owl
qi
, Iwp

rj
)

nlinks
(4)

Where :

– Owl
qi

represents the output concepts of the ser-

vice i in cluster q from layer l ;

– Iwp
rj

represents the input concepts of the service

j in cluster r from layer p ;

– wl
qi, w

p
rj are parts of the solution sol, p = l+ 1;

– nLinks is the total number of semantic similar-

ity links (see Definition 14) in the composition

solution sol.

The overall QoS of a composition solution is

calculated by applying QoS aggregation formulas

to normalized QoS values of its component ser-

vices. In this work we consider five QoS attributes:

response time, cost, availability, fiability and repu-

tation. The definitions of these properties and their

computational methods are the same as [64].

Definition 17 (QoS Score of a composition solution)

The overall QoS of a composition solution is com-

puted as follows:

QoS(sol) =

n∑
k=1

wQk
∗Qk (5)

where Qk is the aggregated QoS of a solution for

QoS attribute k, wQk
is the weight of each attribute

(its importance degree defined by user preferences),

n is the number of QoS attributes and
n∑

k=1

wQk
=

1.

By combining the two scores defined by the formu-

las 4 and 5, we obtain the fitness function enabling

the evaluation of a composition solution which is

defined as:

F (sol) = WQglob
∗QoS(sol) +Wsem ∗ Simg(sol)

(6)

12

Where the weights WQglob
,Wsem ∈ [0, 1] represent

the user preferences regarding to:

– The overall QoS value of a composition solu-

tion;

– The value of the global score of semantic simi-

larity of a composition solution.

In addition, the fitness function F (sol) must drive

the evolution towards global QoS constraints sat-

isfaction. To this end compositions that do not

meet the constraints are penalized. Several penalty

functions are proposed in the literature (static, dy-

namic, adaptive functions, etc.), we have chosen a

static function which is adopted by [30], because

the two others functions does not give a signifi-

cant improvement (they only increase the execu-

tion time)(see formula 7).

F ′(sol) = F (sol)− (

n∑
k=1

(
∆Q

gmax
k − gmin

k

))2 (7)

Where gmax
k and gmin

k are respectively the maxi-

mum and the minimum value of the kth QoS con-

straint. n represents the number of QoS constraints

and ∆Q is defined by formula 8.

∆Q =


Qk − gmax

k if Qk > gmax
k

0 if gmin
k ≤ Qk ≤ gmax

k

gmin
k −Qk if Qk < gmin

k

(8)

B.2) The HS-based Selection Algorithm

Our Harmony Search-based selection algorithm

(see Algorithm 1) determines the optimal solu-

tion by considering the set of solutions encoded in

the composition planning-graph generation phase.

The inputs of the selection algorithm are: i) the

SCPG for a composition request, ii) the fitness

function F ′(see formula 7), iii) the adjustable pa-

rameters HMS, HMCR, PAR, IV) pitch num

denotes the set of service clusters, V) pitch bounds

represents the set of services in a given cluster, and

VI) iteration max is the maximum number of it-

erations. The algorithm proceeds as follows:

Step 1. Initialize the Harmony Memory HM with

random solutions generated by the SCPG (Line

1). The HM is encoded as a matrix where each

column represents a service cluster pitch j ∈
pitch num and each row is a harmony (solu-

tion). The solutions initialized in this stage are

improved in an iterative stage which is exe-

cuted until the maximum number of iterations

is reached (Lines 3-23).

Step 2. Evaluate the harmonies in HM according

to F ′ (Line 2).

Algorithm 1: Harmony Search Algorithm

Input : SCPG, F ′, HMS, HMCR, PAR,
pitch num, pitch bounds, iteration max

Output : Best Harmony(optimal solution)
1 HM =

Initialize Harmony Memory(SCPG,HMS,
pitch num, pitch bounds);

2 Evaluate Harmony set(HM,F ′);
3 for i← iteration max do
4 Harmony ← Nil;
5 foreach pitch j ∈ pitch num do
6 if Rand(0, 1) ≤ HMCR then
7 RandomPitch =

Select P itch Random Harmony(HM, pitch j);

8 if Rand() ∈ PAR then
9 Pitch =

Pitch Adjustment(RandomPitch)
10 else
11 Pitch = RandomPitch
12 end

13 else
14 Pitch =

Get Random Pitch(pitch bounds(pitch j))
15 end
16 Update(Harmony, P itch, pitch j)

17 end

18 Harmony =
Evaluate Harmony(Harmony, F ′);

19 if F ′(Harmony) ≤
F ′(Worst Harmony(HM)) then

20 HM = HM − (Worst Harmony(HM));
21 HM = HM ∪ (Harmony)

22 end

23 end

24 Best Harmony = Select Best(HM)

25 return Best Harmony

Step 3. Improvise (create) a new harmony as fol-

lows (Line 3-23) :

(i) Each component pitch j of the solution is

initialized with a web service wi taken from

a random harmony h such that h ∈ HM

with a probability HMCR (Line 6-7).

(ii) With a probability PAR, the previous web

service component is replaced with a neigh-

bor web service w′i of the same service clus-

ter such that F ′(w1, ...w
′
i...wn) is maximized

(Line 8-12).

(iii) If the statements i) and ii) are not executed,

then the component pitch j is initialized

with a random web service wj , such that

wj ∈ pitch bounds(pitch j) (Line 14).

(iv) We update the pitch jth component of the

harmony by using the value of Pitch (Line

16).

Step 4. Evaluate the constructed solution denoted

Harmony (Line 18).

13

Step 5. The worst harmony of HM is replaced by

Harmony if this later is more effective in terms

of fitness value (Lines 19-22).

Step 6. Return the best solution of theHM (Best Harmony)

(Lines 24-25).

6 Experimental Evaluation

This section presents an experimental evaluation

of our approach, focusing on the following research

questions:

– RQ1: What is the performance of our opti-

mization method in terms of optimality and

execution time?

– RQ2: What are the effects of QoS constraints

on the retrieved composition solutions?

– RQ3: How much the variants of the HS algo-

rithm IHS and GHS improve the selection pro-

cess?

In order to perform a standard evaluation, we

selected the Web Service Challenge 2009 dataset

that focuses on the semantic composition of web

services with QoS. WS-Challenge dataset provides

a set of standard testing tools and data sets. This

dataset is well suited to the semantic web service

composition problem since it involves a large num-

ber of web services (˜4000 instances), a large num-

ber of concepts (˜40 000 concepts), and different

solution depth (3 up to 16).

This dataset contains three different files:

– A WDSL file that contains a set of semantically

annotated web services along with annotations

of their input and output parameters. Every

web service has an arbitrary number of param-

eters and the numbers of services vary from 500

to 4000.

– An OWL file containing the ontology relating

the different concepts. The 2009 WSC features

ontologies with between 5000 and 40 000 con-

cepts.

– A WSLA file with the QoS attributes of the ser-

vices. In the dataset, two only QoS attributes

are considered: the response time and the through-

put. In order to take into consideration other

non-functional attributes, we have enriched this

file with four metrics: the cost, the availability,

the fiability and the reputation as suggested

in [62]: Cost: [0, 30]$, Availability : [0.7, 1]%,

Fiability: [0.5, 1]% , Reputation: [0, 5]%, and

Response time: [0, 300] ms.

Our framework for QoS-aware automated se-

mantic web service composition is implemented in

Java. We have used JDOM 2 for handling the web

services and JENA3 for semantic reasoning. The

experiments were conducted on a 1.8 GHZ Intel i5

core CPU and 6 GB of RAM, running under Win-

dows 7. This experimentation can be reproduced

using the programs and the dataset which are pro-

vided in the archive which is downloadable using

the following link:

http://www.lirmm.fr/~tibermacin/experiment.

zip

6.1 Experiment for RQ1

In order to answer the first research question, we

present our methodology for evaluating the selec-

tion algorithm as well as an analysis of the exper-

imental results obtained in different settings.

A Evaluation Methodology

The convergence of an optimization algorithm to-

wards the optimal solution is influenced by a set

of adjustable parameters specific to the algorithm.

We consider that a proper methodology for eval-

uating an optimization algorithm should consist

of two steps: one step for establishing the optimal

values of the adjustable parameters, and another

step for evaluating the algorithm using the optimal

configuration of the adjustable parameters. To es-

tablish the optimal values of the adjustable param-

eters the following two steps need to be addressed

[49].

In the first step, an exhaustive search in the

composition model should be performed to iden-

tify the score of the optimal composition solution.

This score is further used to identify the most ap-

propriate configuration of the adjustable param-

eters which ensures that the optimal or a near-

optimal composition solution is obtained without

processing the entire search space.

In the second step, the initial configuration of

the adjustable parameters is fine-tuned iteratively

to identify their optimal values. During these ex-

periments, the execution time and the deviation of

the optimal solution returned by the algorithm are

compared with the execution time and the optimal

solution returned by the exhaustive search.

2 http://www.jdom.org
3 https://jena.apache.org

14

http://www.lirmm.fr/~tibermacin/experiment.zip
http://www.lirmm.fr/~tibermacin/experiment.zip

B Experimental results

We have tested our approach on three scenarios

with different complexities. In Table 1, we speci-

fied for each scenario: (i) the scenario id, (ii) the

graph configuration in terms of the number of lay-

ers (given by the number of subsets), the number

of clusters from each layer (given by the cardinal-

ity of each subset) and the number of services per

cluster (given by the value of each element in a sub-

set), (iii) the search space complexity in terms of

total number of possible solutions encoded in the

planning-graph structure (the number has been

obtained by counting the number of solutions gen-

erated in an exhaustive search procedure), (iv) the

global optimal fitness value identified by perform-

ing an exhaustive search, and (v) the execution

time in which the optimal solution has been found

when performing the exhaustive search.

Table 1: The configurations of the graph for each

Scenario

Scenario
Id

Graph Con-
figuration

Search
Space
Com-
plexity

Global
Op-
timal
Fitness

Execution
Time
(hour:min:s)

Layer1:{3 5 6}
A Layer2:{6 4 3} 777600 0.891 00:02:10

Layer3:{4 6 5}
Layer1:{2 5 4 6}

B Layer2:{6 4 6 4} 2764800 0.950 00:07:47
Layer3:{4 5}
Layer1:{6 6 3 3}

C Layer2:{5 6 5 3} 26244000 0.920 01:13:18

Layer3:{6 5 6}

The adjustable parameters of the HS Algorithm

are the following: HMS, HMCR, and PAR. We

have varied the values of these parameters by con-

sidering the same ranges as in other works from

the literature [24]: HMS ∈ {200, 400}, HMCR ∈
{0.70, 0.95}, and PAR ∈ {0.01, 0.30}. Tables 2,

3, and 4 illustrate a fragment of the best experi-

mental results (average optimal fitness (Fitness),

average execution time (Time), average deviation

(Deviation)) obtained while varying the values of

the adjustable parameters for scenarios A,B, and C

(each table row represents an average value of the

results obtained while running the algorithm for

50 times on the same configuration of adjustable

parameters). The rows highlighted in bold indicate

the optimal configuration of adjustable parameters

(best compromise between fitness and time).

By analyzing the experimental results, we conclude

that the HS selection algorithm presents a good

performance in terms of optimality (the average

optimal fitness exceeds 0.8 in the case of scenario

B). Besides, it returns the optimal or a near-optimal

solution on average in 7 seconds (in the case of the

three scenarios) which is an acceptable execution

time. This confirms the ability of HS algorithm in

exploring the solution space within a reasonable

time.

15

Table 2: Fragment of the best experimental results

for Scenario A

HMS HMCR PAR Fit-
ness

Time Devia-
tion

1 250 0.70 0.1 0.720 5000 0.171

2 250 0.70 0.2 0.725 5500 0.166

3 250 0.70 0.3 0.730 5500 0.161

4 250 0.80 0.1 0.720 5000 0.171

5 250 0.80 0.2 0.726 5500 0.165

6 250 0.80 0.3 0.735 5500 0.156

7 250 0.95 0.1 0.720 5800 0.171

8 250 0.95 0.2 0.735 6100 0.156

9 250 0.95 0.3 0.730 6200 0.161

10 300 0.70 0.1 0.729 5500 0.162

11 300 0.70 0.2 0.740 5500 0.151

12 300 0.70 0.3 0.741 6000 0.15

13 300 0.80 0.1 0.729 4000 0.162

14 300 0.80 0.2 0.730 4100 0.161

15 300 0.80 0.3 0.732 5000 0.159

16 300 0.95 0.1 0.733 4000 0.158

17 300 0.95 0.2 0.745 5000 0.146

18 300 0.95 0.3 0.744 5910 0.147

19 400 0.70 0.1 0.730 5000 0.161

20 400 0.70 0.2 0.731 6000 0.160

21 400 0.70 0.3 0.732 6100 0.159

22 400 0.80 0.1 0.720 6500 0.171

23 400 0.80 0.2 0.725 6800 0.166

24 400 0.80 0.3 0.725 6800 0.166

25 400 0.95 0.1 0.700 7000 0.191

26 400 0.95 0.2 0.710 7000 0.181

27 400 0.95 0.3 0.720 7100 0.171

Table 3: Fragment of the best experimental results

for Scenario B

HMS HMCR PAR Fit-
ness

Time Devia-
tion

1 250 0.70 0.1 0.8 4500 0.15

2 250 0.70 0.2 0.8 4510 0.15

3 250 0.70 0.3 0.810 4520 0.14

4 250 0.80 0.1 0.810 5000 0.14

5 250 0.80 0.2 0.820 5200 0.13

6 250 0.80 0.3 0.830 5300 0.12

7 250 0.95 0.1 0.80 5100 0.15

8 250 0.95 0.2 0.80 5000 0.15

9 250 0.95 0.3 0.810 5100 0.14

10 300 0.70 0.1 0.810 5000 0.14

11 300 0.70 0.2 0.830 5500 0.12

12 300 0.70 0.3 0.820 5200 0.13

13 300 0.80 0.1 0.828 4900 0.122

14 300 0.80 0.2 0.830 5000 0.12

15 300 0.80 0.3 0.835 5500 0.115

16 300 0.95 0.1 0.82 6000 0.13

17 300 0.95 0.2 0.84 6200 0.11

18 300 0.95 0.3 0.85 6300 0.1

19 400 0.70 0.1 0.821 6300 0.129

20 400 0.70 0.2 0.828 6400 0.122

21 400 0.70 0.3 0.810 6500 0.14

22 400 0.80 0.1 0.829 6800 0.121

23 400 0.80 0.2 0.83 6900 0.12

24 400 0.80 0.3 0.831 7000 0.119

25 400 0.95 0.1 0.810 7100 0.14

26 400 0.95 0.2 0.820 7200 0.13

27 400 0.95 0.3 0.825 7200 0.125

16

Table 4: Fragment of the best experimental results

for Scenario C

HMS HMCR PAR Fit-
ness

Time Devia-
tion

1 250 0.70 0.1 0.77 5000 0.15

2 250 0.70 0.2 0.770 5000 0.15

3 250 0.70 0.3 0.772 5100 0.148

4 250 0.8 0.1 0.776 5200 0.144

5 250 0.8 0.2 0.78 5300 0.14

6 250 0.8 0.3 0.782 5310 0.138

7 250 0.95 0.1 0.79 5300 0.13

8 250 0.95 0.2 0.79 5300 0.13

9 250 0.95 0.3 0.78 5200 0.14

10 300 0.70 0.1 0.771 5000 0.149

11 300 0.70 0.2 0.772 5100 0.148

12 300 0.70 0.3 0.782 5200 0.138

13 300 0.8 0.1 0.77 5000 0.15

14 300 0.8 0.2 0.783 6000 0.137

15 300 0.8 0.3 0.773 5900 0.147

16 300 0.95 0.1 0.79 6700 0.13

17 300 0.95 0.2 0.782 6400 0.138

18 300 0.95 0.3 0.783 6500 0.137

19 400 0.70 0.1 0.787 6600 0.133

20 300 0.70 0.2 0.789 6700 0.131

21 300 0.70 0.3 0.789 6700 0.131

22 400 0.8 0.1 0.790 6800 0.13

23 400 0.8 0.2 0.792 6800 0.128

24 400 0.8 0.3 0.793 6830 0.127

25 400 0.95 0.1 0.789 6800 0.131

26 400 0.95 0.2 0.800 7000 0.12

27 400 0.95 0.3 0.790 7000 0.13

In order to evaluate the performance of the pro-

posed selection algorithm we have used the fitness

graph measure [11], which gives information about

the algorithm performance across several runs of

the algorithm using the same configuration of ad-

justable parameters and different initial popula-

tions (randomly generated). For an algorithm to

be efficient it is desirable that the average fitness

of the individuals in the population as well as the

best fitness values vary little across several runs of

the algorithm. In Figures 3, 4, and 5 we plot the

fitness graphs for the three considered scenarios by

using the optimal configuration of the adjustable

parameters.

By analyzing Figures 3, 4, and 5,we can observe

that the number of clusters as well as the size of

clusters will largely influence the convergence du-

ration. For instance, Scenario A which contains 09

clusters will start the convergence after 60 itera-

tions. However, Scenario B which contains 10 clus-

ters, will start the convergence after 70 iterations,

lastly Scenario C which contains 11 clusters will

start the convergence after 75 iterations. It can

be also noticed that the variation of the average

and best fitness values is little when running the

algorithm multiple times using the same configu-

ration for each scenario. This proves the efficiency

of our selection method for identifying the optimal

composition solution in QoS-aware semantic web

service composition problem.

Fig. 3: Fitness vs. Generations (Scenario A)

17

Fig. 4: Fitness vs. Generations (Scenario B)

Fig. 5: Fitness vs. Generations (Scenario C)

6.2 Experiment for RQ2

To evaluate the effects of the global QoS constraints

on the quality of composition solutions in our ap-

proach, we conducted two experiments. In the first

experiment, we have defined the fitness graphs in

the first place without taking into consideration

the constraints. Then, we incorporate them in the

selection process. Figures 6, 7, and 8 illustrate the

results obtained in the three considered scenarios

by using the same optimal configuration as in the

previous Section. As we can see, the performance

of HS algorithm in terms of optimality without

global constraints is better than its performance

with constraints (the best fitness value exceeds 0.9

in scenario B). In the second experiment, we have

evaluated the performance of our selection method

against the number of QoS constraints. For this

purpose, we varied the number of constraints from

1 to 5 (recall that the number of QoS attributes

considered in our work is 5). The results of this

experiment are shown in Figure 9. In the three

Scenarios, we observe that the second QoS con-

straint adds a little overhead with respect to the

first QoS constraint cost. However, the overhead of

the third, the forth and the fifth QoS constraints

will gradually raise with respect to the previous

computational cost. In summary, we conclude that

the execution time to find the optimal composition

solution increases linearly with the number of con-

straints in the three scenarios.

The results obtained in the two experiments demon-

strated that the problem of finding the composi-

tion that optimizes the overall QoS while satisfy-

ing multiple QoS constraints is much more difficult

than just optimizing the QoS fitness function, in

fact the problem is known to be NP-hard. Any ex-

act solution to this problem is expected to have an

exponential computational complexity. This is the

main reason why we have proposed an optimiza-

tion method based on metaheuristic algorithms.

Fig. 6: Fitness vs. Generations (Scenario A)

Fig. 7: Fitness vs. Generations (Scenario B)

18

Fig. 8: Fitness vs. Generations (Scenario C)

Fig. 9: Execution Time vs. Number of QoS con-

straints

6.3 Experiment for RQ3

In order to answer the third research question, we

have compared the HS algorithm with its recently

developed variants IHS (Improved HS) algorithm

[36] and GHS (Global Best HS) [40] algorithm.

The IHS algorithm is a new harmony algorithm

proposed in 2007 by Mahdavi et al. [36], it ap-

plies a method for generating new solution vectors

based on the dynamic adjustment of the PAR and

HMCR parameters (instead of considering their

fixed values as in the original HS algorithm), thus

improving accuracy and convergence speed. In this

deviation, only the step that creates a new har-

mony is adjusted. PAR and HMCR change dynam-

ically with the number of generations. Besides, the

GHS [40] algorithm was inspired by PSO (Partic-

ule Swarm Optimization) concepts [23], it has ex-

actly the same steps as the IHS algorithm with the

exception that in the new harmony improvisation

step the new harmony vector imitates the best har-

mony (in terms of fitness value) in the Harmony

Memory (HM).

Table 5: Comparative Analysis (Scenario A)

Algorithm Fitness Time Deviation

HS (Harmony Search) 0.745 6000 0.146
IHS (Improved Har-
mony Search)

0.80 5900 0.091

GHS (Global Best
Harmony Search)

0.87 7500 0.021

Table 6: Comparative Analysis (Scenario B)

Algorithm Fitness Time Deviation

HS (Harmony Search) 0.850 6300 0.10
IHS (Improved Har-
mony Search)

0.90 6000 0.05

GHS (Global Best
Harmony Search)

0.947 8000 0.03

Table 7: Comparative Analysis (Scenario C)

Algorithm Fitness Time Deviation

HS (Harmony Search) 0.800 7000 0.12
IHS (Improved Har-
mony Search)

0.89 6500 0.03

GHS (Global Best
Harmony Search)

0.919 9000 0.01

The three selection algorithms have been com-

paratively evaluated according to the following cri-

teria: average optimal fitness (Fitness), average ex-

ecution time (Time), and average deviation (Devi-

ation). For IHS and GHS algorithms we have per-

formed the same procedure in Section 6.1 to estab-

lish the optimal values of adjustable parameters in

the three considered scenarios. The experimental

results obtained by the algorithm versions are il-

lustrated respectively, in Table 5 and Figure 10 for

scenario A, in Table 6 and Figure 11 for scenario

B, and finally in Table 7 and Figure 12 scenario

C. Each row in Tables 5, 6, 7 represents an average

obtained for 50 runs of an algorithm.

Concerning the Scenario A, we notice that the

three variants of HS algorithm have almost the

same duration of convergence, moreover we notice

that GHS algorithm is more effective than IHS al-

gorithm and IHS algorithm is more effective than

HS algorithm. In contrast, in Scenario B, we ob-

serve different durations of convergence. First GHS

algorithm has the largest duration of convergence

19

(90 generations) but it ensures the largest fitness

(0.947), on the other hand IHS has the smallest du-

ration of convergence (60 generations), however it

gives the second best fitness which is equal to 0.9.

Finally HS presents a medium convergence time

(70 generations), but it gives the smallest fitness

which is equal to 0.85. The Scenario C confirms

the same findings of scenario B, i.e, the IHS algo-

rithm has the smallest duration of convergence and

GHS has the largest duration of convergence but

it ensures the highest fitness. The worst behavior

is performed by the HS algorithm. We also notice

that the highest fitness obtained in this Scenario

(0.91) is lesser than the highest fitness obtained in

Scenario B (0.947).

In summary, we can say that both variants IHS

and GHS have brought improvements in terms of

fitness and execution time compared to the origi-

nal version of the algorithm. Considering the three

scenarios, we can conclude that GHS algorithm is

more efficient than the other two HS algorithms in

terms of optimality, but in terms of time it pro-

vides slightly higher values, which are acceptable

(9 seconds in the case of Scenario C). This can

be explained by the fact that GHS takes a lit-

tle more time for searching the best harmony in

the improvisation process. In contrast, execution

time values of IHS are better than those of HS

and GHS (less than 7 seconds in the three scenar-

ios), which implies that IHS provides a better con-

vergence than the HS and GHS algorithms. This

is due to the mechanism for dynamically adjust-

ing algorithm parameters which is benefical to es-

cape from local optimum solutions and improves

the convergence speed.

Fig. 10: Fitness vs. Generations (Scenario A)

Fig. 11: Fitness vs. Generations (Scenario B)

Fig. 12: Fitness vs. Generations (Scenario C)

7 Conclusion

This paper proposes an approach based on AI-

planning and optimization techniques to address

the QoS-aware automated web service composi-

tion problem, which has emerged as a significant

issue in the web services research community. The

novelty of our approach is that it addresses three

composition dimensions simultaneously: the func-

tional correctness of solutions, the optimization of

solutions according to non-functional properties,

and the fulfilment of user’s QoS constraints. The

first dimension was handled by the use of a mech-

anism for computing the semantic matching scores

between the services involved in the composition

solution. The last two dimensions were handled by

the use of three HS algorithms, wherein a fitness

function was proposed to rank solutions accord-

ing to their overal QoS and global constraints. The

experimental results showed that the proposed ap-

proach is efficient and effective to identify the op-

20

timal or near optimal composition in diverse sce-

narios.

Our ongoing research effort aims at introducing

context-awareness to our approach and at evaluat-

ing the efficiency and performance of our solution

to context-awre service composition. We also in-

tend to extend the matching mechanism to han-

dle web service preconditions and effects in order

to make the search results more accurate. Fur-

thermore, we plan to use recent optimization al-

gorithms like Invasive Weed optimization (IWO),

Biogeography Based Optimization (BBO) and Bat-

inspired Algorithms (BA) to improve the selection

process. Finally, we plan to experiment our com-

position approach on more complex and real sce-

narios.

References

1. Akkiraju R, Srivastava B, Ivan A, Goodwin

R, Syeda-Mahmood TF (2006) SEMAPLAN:

combining planning with semantic match-

ing to achieve web service composition. In:

IEEE International Conference on Web Ser-

vices (ICWS), IEEE, pp 37–44

2. Alonso G, Casati F, Kuno HA, Machiraju V

(2004) Web Services - Concepts, Architectures

and Applications. Data-Centric Systems and

Applications, Springer

3. Alrifai M, Risse T (2009) Combining global

optimization with local selection for effi-

cient qos-aware service composition. In: In-

ternational conference on World Wide Web

(WWW), ACM, pp 881–890

4. Azmeh Z, Driss M, Hamoui F, Huchard M,

Moha N, Tibermacine C (2011) Selection of

composable web services driven by user re-

quirements. In: IEEE International Confer-

ence on Web Services (ICWS), IEEE, pp 395–

402

5. Baccar S, Rouached M, Abid M (2013) A user

requirements oriented semantic web services

composition framework. In: IEEE Ninth World

Congress on Services (SERVICES), IEEE, pp

333–340

6. Boukadi K, Grati R, Ben-Abdallah H (2016)

Toward the automation of a qos-driven sla

establishment in the cloud. Service Oriented

Computing and Applications 10(3):279–302

7. Canfora G, Di Penta M, Esposito R, Villani

ML (2005) An approach for QoS-aware service

composition based on genetic algorithms. In:

7th annual Genetic and Evolutionary Compu-

tation COnference (GECCO), ACM, pp 1069–

1075

8. Carman M, Serafini L, Traverso P (2003) Web

service composition as planning. In: ICAPS

2003 Workshop on Planning for Web Services

9. Deng S, Wu B, Yin J, Wu Z (2013) Effi-

cient planning for top-k web service compo-

sition. Knowledge and information systems

36(3):579–605

10. Esfahani PM, Habibi J, Varaee T (2012) Ap-

plication of social harmony search algorithm

on composite web service selection based on

quality attributes. In: Sixth International Con-

ference on Genetic and Evolutionary Comput-

ing (ICGEC), IEEE, pp 526–529

11. Floreano D, Mattiussi C (2008) Bio-inspired

artificial intelligence: theories, methods, and

technologies. MIT press

12. Geem ZW (2000) Optimal design of water dis-

tribution networks using harmony search. PhD

thesis, Korea University

13. Geem ZW (2007) Harmony search algorithm

for solving sudoku. In: Knowledge-Based Intel-

ligent Information and Engineering Systems,

Springer, pp 371–378

14. Geem ZW, Kim JH, Loganathan G (2001)

A new heuristic optimization algorithm: har-

mony search. Simulation 76(2):60–68

15. Ghallab M, Nau D, Traverso P (2004) Auto-

mated planning: theory & practice. Elsevier

16. Gu Z, Li J, Xu B (2008) Automatic service

composition based on enhanced service depen-

dency graph. In: IEEE International Confer-

ence on Web Services (ICWS), IEEE, pp 246–

253

17. Hatzi O, Vrakas D, Nikolaidou M, Bassili-

ades N, Anagnostopoulos D, Vlahavas I (2012)

An integrated approach to automated seman-

tic web service composition through planning.

Services Computing, IEEE Transactions on

5(3):319–332

18. Hwang SY, Lim EP, Lee CH, Chen CH (2008)

Dynamic web service selection for reliable web

service composition. IEEE Transactions on

Services Computing 1(2):104–116

19. Jaeger MC, Rojec-Goldmann G, Muhl G

(2004) QoS Aggregation for Web Service

Composition using Workflow Patterns. In:

17th IEEE International Enterprise Dis-

tributed Object Computing Conference

(EDOC), IEEE, pp 149–159

20. Jafarpour N, Khayyambashi MR (2010) QoS-

aware selection of web service compositions us-

21

ing harmony search algorithm. Journal of Dig-

ital Information Management 8(3):160–166

21. Jiang W, Zhang C, Huang Z, Chen M, Hu S,

Liu Z (2010) Qsynth: A tool for qos-aware au-

tomatic service composition. In: IEEE Inter-

national Conference on Web Services (ICWS),

IEEE, pp 42–49

22. Kaveh A, Ahangaran” M (2012) Discrete cost

optimization of composite floor system using

social harmony search model. Applied Soft

Computing 12(1):372 – 381

23. Kennedy J (2011) Particle swarm optimiza-

tion. In: Encyclopedia of machine learning,

Springer, pp 760–766

24. Kim JH, Geem ZW (2015) Harmony Search

Algorithm: Proceedings of the 2nd Interna-

tional Conference on Harmony Search Algo-

rithm (ICHSA2015), vol 382. Springer

25. Kim JH, Geem ZW, Kim ES (2001) Param-

eter estimation of the nonlinear muskingum

model using harmony search1. JAWRA Jour-

nal of the American Water Resources Associ-

ation 37(5):1131–1138

26. Klusch M, Kapahnke P (2008) Semantic web

service selection with sawsdl-mx. In: 7th Inter-

national Semantic Web Conference, Citeseer,

p 3

27. Klusch M, Gerber A, Schmidt M (2005) Se-

mantic web service composition planning with

owls-xplan. In: AAAI Fall Symposium on Se-

mantic Web and Agents, AAAI Press

28. Ko JM, Kim CO, Kwon IH (2008) Quality-

of-service oriented web service composition al-

gorithm and planning architecture. Journal of

Systems and Software 81(11):2079–2090
29. Kona S, Bansal A, Blake MB, Gupta G (2008)

Generalized semantics-based service composi-

tion. In: IEEE International Conference on

Web Services (ICWS), IEEE, pp 219–227

30. Lécué F (2009) Optimizing qos-aware semantic

web service composition. Springer

31. Lécué F, Léger A (2006) A formal model for

semantic web service composition. In: The Se-

mantic Web-ISWC 2006, Springer, pp 385–398

32. Lécué F, Salibi S, Bron P, Moreau A (2008) Se-

mantic and syntactic data flow in web service

composition. In: IEEE International Confer-

ence onWeb Services (ICWS), IEEE, pp 211–

218

33. Lécué F, Silva E, Pires LF (2008) A frame-

work for dynamic web services composition.

In: Emerging Web Services Technology, Vol-

ume II, Springer, pp 59–75

34. Levesque HJ, Reiter R, Lesperance Y, Lin F,

Scherl RB (1997) Golog: A logic programming

language for dynamic domains. The Journal of

Logic Programming 31(1):59–83

35. Li W, Dai X, Jiang H (2010) web services com-

position based on weighted planning graph. In:

First International Conference on Networking

and Distributed Computing (ICNDC), IEEE,

pp 89–93

36. Mahdavi M, Fesanghary M, Damangir E

(2007) An improved harmony search algorithm

for solving optimization problems. Applied

mathematics and computation 188(2):1567–

1579

37. McDermott DV (2002) Estimated-regression

planning for interactions with web services. In:

AIPS, vol 2, pp 204–211

38. McIlraith S, Son TC (2002) Adapting golog

for composition of semantic web services. KR

2:482–493

39. Menascé DA (2004) Composing Web Ser-

vices: A QoS View. IEEE Internet Computing

8(6):88–90

40. Omran MG, Mahdavi M (2008) Global-best

harmony search. Applied Mathematics and

Computation 198(2):643–656

41. Papadimitriou CH, Steiglitz K (1982) Combi-

natorial Optimization: Algorithms and Com-

plexity. Prentice-Hall, Inc., Upper Saddle

River, NJ, USA

42. Peer J (2005) Web service composition as ai

planning-a survey, university of st. Gallen,

Switzerland

43. Ponnekanti SR, Fox A (2002) Sword: A devel-

oper toolkit for web service composition. In:

Eleventh International World Wide Web Con-

ference (WWW), vol 45

44. Pop CB, Chifu VR, Salomie I, Dinsoreanu M

(2009) Immune-inspired method for selecting

the optimal solution in web service composi-

tion. In: Resource Discovery, Springer, pp 1–

17

45. Ran S (2003) A model for web services discov-

ery with qos. ACM Sigecom exchanges 4(1):1–

10

46. Rodriguez-Mier P, Mucientes M, Lama M

(2015) Hybrid optimization algorithm for

large-scale qos-aware service composition.

IEEE Transactions on Services Computing

47. Rodriguez Mier P, Pedrinaci C, Lama M, Mu-

cientes M (2016) An integrated semantic web

service discovery and composition framework.

IEEE Transactions on Services Computing 9

22

48. Russell S, Norvig P, Intelligence A (1995)

A modern approach. Artificial Intelligence

Prentice-Hall, Egnlewood Cliffs 25:27

49. Salomie I, Chifu VR, Pop CB (2014) Hy-

bridization of cuckoo search and firefly algo-

rithms for selecting the optimal solution in se-

mantic web service composition. In: Cuckoo

Search and Firefly Algorithm, Springer, pp

217–243

50. Shiaa MM, Fladmark JO, Thiell B (2008)

An incremental graph-based approach to au-

tomatic service composition. In: IEEE Inter-

national Conference on Services Computing

(SCC), IEEE, vol 1, pp 397–404

51. Sirin E, Parsia B (2004) Planning for semantic

web services. In: Semantic Web Services Work-

shop at 3rd International Semantic Web Con-

ference, pp 33–40

52. Sirin E, Parsia B, Wu D, Hendler J, Nau D

(2004) HTN Planning for Web Service Com-

position Using SHOP2. Web Semant 1(4):377–

396

53. Sirin E, Parsia B, Wu D, Hendler J, Nau D

(2004) Htn planning for web service compo-

sition using shop2. Web Semantics: Science,

Services and Agents on the World Wide Web

1(4):377–396

54. Tangpattanakul P, Meesomboon A, Artrit P

(2010) Optimal trajectory of robot manipula-

tor using harmony search algorithms. In: Re-

cent Advances In Harmony Search Algorithm,

Springer, pp 23–36

55. Wang J, Hou Y (2008) Optimal web service se-

lection based on multi-objective genetic algo-

rithm. In: International Symposium on Com-
putational Intelligence and Design (ISCID),

IEEE, vol 1, pp 553–556

56. Wang P, Chao KM, Lo CC (2010) On opti-

mal decision for qos-aware composite service

selection. Expert Systems with Applications

37(1):440–449

57. Weise T, Bleul S, Comes D, Geihs K (2008)

Different approaches to semantic web service

composition. In: Third International Confer-

ence on Internet and Web Applications and

Services (ICIW), IEEE, pp 90–96

58. Wu B, Chi C, Xu S (2007) Service selection

model based on qos reference vector. In: IEEE

International Conference on Services Comput-

ing - Workshops (SCW 2007), IEEE, pp 270–

277

59. Xu J, Reiff-Marganiec S (2008) Towards

heuristic web services composition using im-

mune algorithm. In: IEEE International Con-

ference on Web Services (ICWS), IEEE, pp

238–245

60. Yan Y, Xu B, Gu Z (2008) Automatic ser-

vice composition using and/or graph. In:

10th IEEE Conference on E-Commerce Tech-

nology and the Fifth IEEE Conference on

Enterprise Computing, E-Commerce and E-

Services, IEEE, pp 335–338

61. Yu C, Huang L (2016) A web service qos pre-

diction approach based on time-and location-

aware collaborative filtering. Service Oriented

Computing and Applications 10(2):135–149

62. Yu Q, Bouguettaya A (2009) Foundations for

efficient web service selection. Springer Science

& Business Media

63. Yu T, Zhang Y, Lin KJ (2007) Efficient algo-

rithms for web services selection with end-to-

end qos constraints. ACM Transactions on the

Web (TWEB) 1(1):6

64. Zeng L, Benatallah B, Ngu AH, Dumas

M, Kalagnanam J, Chang H (2004) Qos-

aware middleware for web services compo-

sition. Software Engineering, IEEE Transac-

tions on 30(5):311–327

65. Zeng L, Benatallah B, Ngu AHH, Dumas

M, Kalagnanam J, Chang H (2004) Qos-

aware middleware for web services composi-

tion. IEEE Trans Software Eng 30(5):311–327

66. Zhang W, Yang Y, Tang S, Fang L (2007) Qos-

driven service selection optimization model

and algorithms for composite web services.

In: 31st Annual International Computer Soft-

ware and Applications Conference (COMP-

SAC) Volume 2, pp 425–431

67. Zheng X, Yan Y (2008) An efficient syntac-

tic web service composition algorithm based

on the planning graph model. In: IEEE Inter-

national Conference on Web Services (ICWS),

IEEE, pp 691–699

68. Zhou A, Huang S, Wang X (2007) BITS: A bi-

nary tree based web service composition sys-

tem. Int J Web Service Res 4(1):40–58

69. Zou D, Gao L, Li S, Wu J (2011) Solving

0–1 knapsack problem by a novel global har-

mony search algorithm. Applied Soft Comput-

ing 11(2):1556–1564

23

	Introduction
	State of the Art
	Motivating Scenario
	Web Service Composition Problem
	The Proposed Framework
	Experimental Evaluation
	Conclusion

