
Service Oriented Computing and Applications (2021) 15:323–338
https://doi.org/10.1007/s11761-020-00313-x

ORIG INAL RESEARCH PAPER

A third-party replication service for dynamic hidden databases

Stefan Hintzen1 · Yves Liesy2 · Christian Zirpins3

Received: 21 August 2020 / Revised: 2 December 2020 / Accepted: 9 December 2020 / Published online: 8 January 2021
© The Author(s) 2021

Abstract
Much data on the web is available in hidden databases. Users browse their contents by sending search queries to form-based
interfaces or APIs. Yet, hidden databases just return the top-k result entries and limit the number of queries per time interval.
Such access restrictions constrict those tasks that require many/specific queries or need to access many/all data entries. For a
temporary solution, an unrestricted local snapshot can be created by crawling the hidden database. Yet, keeping the snapshot
permanently consistent is challenging due to the access restrictions of its origin. In this paper, we propose a replication
approach providing permanent unrestricted access to the local copy of a hidden database with dynamic changes. To this end,
we present an algorithm to effectively crawl hidden databases that outperforms the state of the art. Furthermore, we propose
a new way to continuously control the consistency of the replicated database in an efficient manner. We also introduce the
cloud-based architecture of a replication service for hidden databases. We show the effectiveness of the approach through a
variety of reproducible experimental evaluations.

Keywords Dynamic hidden databases · Crawling · Replication-as-a-service

1 Introduction

A broad variety of providers are offering contents to the
public by means of hidden databases. Hidden databases are
online-accessible sources of data that provide a public inter-
face for the controlled utilization of underlying database
systems. They are widely established asweb databases offer-
ing form-based interfaces or web APIs. Other types include
public LDAP services.

Beyond different interface technologies, hidden databases
impose significant restrictions on the utilization of their
underlying database systems. They generally limit the means
of data acquisition to Boolean search queriesmatching some
(ranges of) attribute values [14]. Also, hidden databases fol-
low a ranked retrieval model. They do not return all but

B Christian Zirpins
christian.zirpins@hs-karlsruhe.de

Stefan Hintzen
stefan.hintzen@siemens.com

Yves Liesy
yves.liesy@siemens.com

1 Siemens AG, Munich, Germany

2 Siemens AG, Mannheim, Germany

3 University of Applied Sciences, Karlsruhe, Germany

a subset of top-k results to the client following some pro-
prietary ranking function [7]. Moreover, hidden databases
impose strict query rate restrictions [12]. In doing so, they
limit the number of queries that each user can issue per time
period to a given maximum.

Hidden databases aim for fast and compact results when
interactively browsing a specific subset of data entries. How-
ever, there are cases where unrestricted access to a large part
or even the full range of all entries is required. An exam-
ple would be the indexing of all available contents in a web
database by a crawler [18]. In other situations the re-ranking
of query results is desired that requires to apply an individual
ranking function to the full set of all relevant entries [3,7].
Then again, a local copy of all data entries can be used to
implement data analysis by means of any possible operation
without external restrictions [12]. Finally, it can be beneficial
to maintain a client-side cache of entries for the purpose of
serving queries locally and reducing expensive requests to
the hidden database.

The problem of gathering all entries from a hidden
database is known as crawling. Crawling all n entries of
a hidden database is non-trivial because a naive query for
any entry would just return the top-k results. Yet, querying
each entry individually by enumerationwould quickly hit the
query rate limit. Algorithms like rank-shrink [18] create a set

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11761-020-00313-x&domain=pdf
http://orcid.org/0000-0002-0838-2846

324 Service Oriented Computing and Applications (2021) 15:323–338

of optimized range queries covering all entries. They show
a theoretical minimum cardinality of O(d · n

k) for d-many
numeric domains.

Crawling a hidden database for a current snapshot of
entries is an essential step for their unrestricted access. For
example, a web crawler might then create an index of all
contents. Beyond that, we are especially interested in those
cases, where unrestricted access is permanently required. For
example, a client-side cache server must answer any query at
any time with the same (but possibly more complete) results
than the hidden database. However, by turning frommomen-
tary to permanent usage scenarios, we need to consider that
the original contents may change. Entries might be inserted,
updated or deleted in the hidden database at any time. In other
words, we are concerned with dynamic hidden databases. In
such cases, a reasonable solution for permanent unlimited
access to the entries must include means for their mainte-
nance including the management of updates.

Generally, maintaining the same data on multiple loca-
tions for improved quality of access while ensuring the
consistency of the copies is known as replication. From that
perspective, we are looking for a way of replicating dynamic
hidden databases. Here, the autonomous nature of hidden
databases leads to a limitation of possible replication meth-
ods. With no means to change the functionality of a hidden
database itself, all we can do is to establish a client-initiated
passive replication strategy with pull-based updates (aka
cache). Clientsmust be caching entries individually and need
to pull updates by means of re-crawling entries of the hidden
database. This situation introduces various challenges:

1. Initiating the cache requires an efficient method for
crawling the hidden database. While the theoretic cost of
this task is known [18], there is still room for improved
algorithms to increase performance.

2. A naive approach for updating the cache by continuous
re-crawling of all data entries would lead to an infeasible
amount of update queries. The high effort of such updates
calls for a consistencymodel that allows to relax the level
of consistency in order to optimize the amount of update
queries.

3. The cost of operating a cache might be prohibitive
for individual clients. Thus a practical software system
must be designed that allows for adequate utilization of
resources. Usually this involves a service model enabling
to share between multiple clients.

To concretize the underlying problem,we assume a hidden
database to offer a set of records U . Entries conform to a
given schema with at least one continuous domain uniquely
identifying any entry. We further expect that programmatic
access of U is given via a query function Q that is part of a
public API. For a conjunctive range query A, Q(A) yields an

effective result E ⊆ U , but returns a pseudo-random subset
Eg ⊆ E of maximum size g. The query rate is restricted and
any two consecutive calls Q(A) of the same query may yield
different results due to the dynamics of U .

A hidden database cache is a local copy Uloc of U that
is once initiated and continuously maintained by means of
remote queries to Q with restricted results. Its local query
function Qloc is identical to Q. For any query, we require
the result sets for Qloc(A) and Q(A) to guarantee a given
level of consistency at all time. In our work, we use devia-
tion of staleness [22] as the measure of consistency. That is,
query results from cached entries are guaranteed to show a
maximum update delay.

The problem is then to find a replication method for the
hidden database cache Uloc that allows to specify and main-
tain a given level of consistency while causing a minimum
number of hidden database queries.

In this paper, we propose a general holistic solution for the
problem of replicating dynamic hidden databases including
two complementary methods of replication management and
a cloud-based implementation. The first method (TRENCH)
crawls all entries of a hidden database in order to create
the initial contents of a cache replica. The second method
(MINCORE) manages continuous updates of these cache
contents in order to maintain a required level of consistency.
A cloud-based system architecture adopts TRENCH and
MINCORE in order to provide hidden database replication
as a third-party service. More concretely, our contributions
are as follows:

1. We present the TRENCH algorithm for efficiently crawl-
ing arbitrary ranges of a hidden database. The algorithm
dynamically adjusts query ranges to the varying density
of data entities with respect to the domains of U . Fur-
thermore, TRENCH can effectively deal with subsets of
similar values that exceed the top-k results and interrup-
tions by query rate restrictions.

2. We introduce the MINCORE approach to plan and con-
trol optimized update strategies for a hidden database
cache. It computes the effective minimal set of range
queries for full cache updates. Yet, it adopts a client-
centric, continuous consistency model controlling the
staleness of the cache.We guarantee that a user will never
see query results representing an older state of the hidden
database than before a fixed timespan t . For this con-
sistency model, MINCORE just requires partial cache
updates.

3. We propose a cloud-based architecture for providing hid-
den database replication as a service. We show how
the fundamental algorithms of TRENCH and MIN-
CORE can be efficiently operated on top of the Amazon
cloud platform. A prototype implementation is utilized

123

Service Oriented Computing and Applications (2021) 15:323–338 325

for extensive experimental evaluation of our approach
including lab and field studies.1

We have shown the performance of TRENCH to surpass
state-of-the-art solutions by around 10%on average. Further-
more, MINCORE clearly outperforms the baseline of naive
updating as we have shown for search-based access patterns.
All results are based on lab studies using realistic datasets.
Beyond that, we have conducted a field study with a real
world public LDAP service underpinning practical feasibil-
ity of our approach.

Our results suggest that the improvements of crawling
with TRENCH as well as the novel update approach ofMIN-
CORE provide contributions that can clearly improve the
utilization of hidden databases. With a growing number of
such data sources at literally everybody’s fingertips, these
contributions can be expected to be significant in various
practical cases.

In the following, Sect. 2 discusses related work. Sec-
tion 3 prepares some definitions and terminology. Section 4
introduces our fundamental algorithms for crawling a hidden
database to gather its entries. Section 5 proposes data consis-
tency strategies and related mechanisms. Section 6 outlines
the architecture and implementation of a cloud-based repli-
cation service. Section 7 presents a variety of evaluations
that we have conducted with the replication system. Finally,
Sect. 8 concludes this paper.

2 Related work

Most of thework that is relevant to hidden databases has been
conducted on the broader field of deep web data extraction.
Some focus on the identification of access points to deep web
databases [1,4,10,13,23], like web forms and APIs. Others
study valid call patterns for those databases [5,8,12,15]. All
of them underpin the problem context of this paper, since the
access point and domains of a hidden database have to be
known to apply our approach.

The extraction of data through incomplete queries is
another topic that has been addressed. A lot of work deals
with queries that are incomplete with respect to missing
attribute values in the entries of the (otherwise complete)
result set [2,9,14,17,19,21]. A common solution to resolve
this kind of incompleteness, as well as fuzzy searches over
hidden databases in general, builds on query refactoring
[14,17,21] and educated guessing of values [2,9,19]. How-
ever, such approaches are not usable in our problem context,
since our notion of incomplete queries relates to restrictions
of the result set size. Research focussing such incomplete

1 We provide all source code and datasets on Github at https://github.
com/HSKA-IWI-VSYS/hd-cache.git.

queries is mostly addressing topics of aggregate functions
and data sampling [11,16,20], as well as query re-ranking
[3,7].

Algorithms proposed for query re-ranking might be appli-
cable for hidden database crawlers. However, to the best of
our knowledge, [18] is the only work proposing an algorithm
to completely crawl a hidden database over ranged domains.
Therefore, we consider its rank-shrink algorithm as state of
the art for our use case and compare our crawling solution
against it. Also, to the best of our knowledge, there has not
been any research regarding the most performant way to re-
crawl an existing hidden database copy for updates as we
do.

3 Definitions and terminology

In the following section, we introduce the terminology and
basic definitions used in this paper. The problem revolves
around a finite set of data entries d1, ..., di stored in a foreign
databaseU thatwewant to gather and re-offer by a replication
service. Each entry consists of one or multiple values, where
each value relates to one of a finite set of domains referred
as namespaces. In this paper, we do not assume that each
entry has a value for every namespace. However, we expect
that there is at least one universal namespace that contains
a unique identifier for each entry. Namespaces might be dis-
crete or continuous domains, as long as lower bound and
upper bound values can be specified.

To execute a query A against the database U , we use the
query function Q(A). An execution of A through Q(A) will
return a full result set E containing all entriesmatching thefil-
ter criteria specified in A. When executing a query A against
a local database copy, we mark the respective query function
as Qloc(A).

Entries in the database U are queryable over the different
namespaces through an API, which we will call the foreign
API. The foreignAPI is definedby its behavior,where a query
A is restricted to a result set Eg with maximum cardinality
g. Hereby, g is a fixed value specified by the foreign API.
When the complete result would contain more than g-many
entries, the foreign API will return a pseudorandom subset of
g-many distinct entries from the full result set.We define this
behavior by means of a restriction function over the original
query

Bg(Q(A)) =
{

|E | ≤ g : E

|E | > g : Rg(E)

Rg(E) = pseudorandom subset of E with cardinality g

Each query A consists of at least one range filter a =
〈av, astart , aend〉. Hereby, astart and aend define the range

123

https://github.com/HSKA-IWI-VSYS/hd-cache.git
https://github.com/HSKA-IWI-VSYS/hd-cache.git

326 Service Oriented Computing and Applications (2021) 15:323–338

[astart , aend) of the filter a, while av defines its volume
dimension. The term volume dimension refers to the view
of an entry or a set of entries restricted to the values of one
namespace. For example, the volume dimension “last name”
related to a telephone book is a view restricted to the last
name of each entry ignoring all other namespaces such as
“first name” or “address”. A volume dimension only con-
tains entries that provide a value for the specified namespace.
Entries without a value for the namespace are ignored. A data
entry d or an entry set E might be projected to a volume
dimension v by applying the volume dimension function V
as Vv(d) and Vv(E). We define Nv = Vv(U) as the set of all
existing values in the namespace viewed through v.

We check whether an entry d resides in the range and
volume dimension of a filter a using the filter function

F(a, d) = astart ≤ Vav (d) < aend

Subsequently, we define the execution of a query A with
filters (a1, ..., an) against the database U as

Q(A) = {d ∈ U |
n∧

i=1

F(ai , d)}, A = (a1, ..., an)

This formula also applies for executing A against a local
database copy through Qloc(A), where U is replaced by
Uloc. We refer to the desired state of the local database copy
Uloc as volume consistency. Volume consistency on a range
[xstart , xend) for a volume dimension v means that Uloc can
fully serve any query with a filter a = 〈v, xi , x j 〉. Here,
[xi , x j) is a sub-range of [xstart , xend). We define volume
consistency on a range [xstart , xend) for a volume dimension
v as

∀d ∈ U : (xstart ≤ Vv(d) < xend → d ∈ Uloc)

Every range query with a sufficiently small result set in
order not to get restricted by the foreign API, will return
a result set that contains every entry in its specified range.
Therefore, we call the result of a query A to be volume con-
sistent if Q(A) = Bg(Q(A)). Note that a volume consistent
range is bound to one volume dimension. As a result, queries
A = (a1, . . . , an) with more than one filter cannot return
volume consistent results. The reason is that a filter ai might
exclude entries that match another filter a j and would be
required for volume consistency on the range specified by
a j .

In contrast, volume inconsistency means that not every
query on the specified range and volume dimension can be
answered completely from the local copy Uloc. Note that
volume consistency and inconsistency are anti-equivalent to
each other.

4 Data acquisition

In this section, we will explain how to gather the complete
amount of data entries by crawling a foreign API with the
minimal amount of queries.

First, in Sect. 4.1, we introduce the algorithm behind the
data extraction process. Next, in Sect. 4.2, we show how
to extend the algorithm to handle parts of namespaces that
cannot be crawled reliably with a single volume dimension.
Finally, Sect.in 4.3, we show how to prepare gathered data
for further update operations.

4.1 Extracting hidden data

To locally answer queries for the foreign API, we need to
make sure that the local system returns at least the same
results. Moreover, we aim to return all matching entries, not
only a limited subset. This requires access to all data entries
stored in the databaseU behind the foreignAPI,which is only
achievable by creating and maintaining a consistent copy
Uloc ofU . This is a challenge as we neither know how many
entries exist in the hidden database, nor how they are dis-
tributed across the namespace. Moreover, responses for our
queries to the foreign API are restricted to g-many entries.

For the task of gathering all entries with the minimal
amount of queries, we introduce the TRENCH algorithm.
It aims to issue range queries with volume consistent results
against the foreign API. This is done in such a way that the
combined ranges completely cover a whole namespace from
its lower to upper bound values. Thus it is guaranteed that
every existing entry in the namespace is included.

Tominimize the number of queries sent to the foreignAPI,
TRENCH modifies the search range of subsequent queries.
This optimization depends on the results of prior queries
as well as the already found entries stored in Uloc. Since
TRENCH is also applied to update entries (Sect. 5), we
describe the algorithm in a more universal context. Here, it
can gather data for any range [xstart , xend) of a namespace.
We will refer to the special case of gathering the full range
as TRENCH f ull . Algorithm 1 shows the pseudocode.

123

Service Oriented Computing and Applications (2021) 15:323–338 327

TRENCH consists of multiple consecutive rounds of
SC AN -ning local results (lines 7-19) and subsequently
EXT RACT -ing additional entries from the foreign database
(lines 20-29). The SC AN -procedure prepares a sample
resloc of the current top-(g + 1) local result entries con-
taining values on the volume dimension v in the search
range [xstart , xend). It also identifies the leftmost sub-range
[xstart , resloc[step]) of a minimum size step within this
sample that may vary in width based on the density of entries
in the given range. The EXT RACT -procedure then probes
the sub-range for value consistency by querying the same
range from the foreign API. resloc is sorted by ascending
order and limited to the first g + 1 values, since a range
[xstart , resloc[step]) with step ≥ g + 1 would contain at
least g+1-many entries forcing a volume inconsistent result.

A step width of g/2 results in low numbers of queries
against the foreignAPI for searching ranges completely. This
value showed to be optimal for a uniform distribution of

values in the namespace independent from the foreign API’s
limit g and the search range.

When the query for [xstart , resloc[step]) returns a volume
consistent result, the algorithm proceeds to the next round
with resloc[step] as new lower search bound, thus replacing
the old value of xstart . This behavior repeats until the condi-
tion xend ≤ xstart is met. When this case applies, TRENCH
has finally reached the upper search border and terminates.

We also enter a new round on a volume inconsistent result,
but keep xstart unchanged. However, we let the SC AN pro-
cedure extend the current sample resloc with the values of
the volume inconsistent result and proceed on that. This way,
we inject enough new values into resloc to make it impossi-
ble for resloc[step] to keep the same value. Moreover, since
the upper border of a range is excluded in a query filter,
all injected values have to be smaller than the old value of
resloc[step]. Thus, we can guarantee that the value of the
upper border as well as the search range decrease for each
new round triggered by a volume inconsistent result. It thus
converges towards the smallest possible search range of just
one value that will have to return a volume consistent result
and thus advance the lower search border.

For TRENCH f ull that gathers all data entries in U , we
simply run the algorithm on the range [xmin, xmax), where
xmin is the lower bound of the namespace and xmax its theo-
retical upper bound. This range covers every possible value
and thus every data entry in U .

TRENCH can be run in one or multiple rounds. This is
necessary when dealing with hidden databases, since for-
eign APIs block requests after a specific maximum amount
of requests have been answered in a given timeframe. In
that case, it is necessary to wait until the next timeframe
begins before the foreign API starts to answer requests again.
TRENCH can work under such conditions, since the algo-
rithm can be paused after every round. Thus, after saving the
current search bounds, it is possible to resume the algorithm
anytime by restarting it on the remaining search range.

4.2 Handling indivisible ranges

To avoid TRENCH querying empty ranges, we increase step
until the interval [xstart , resloc[step]) does not show the
same value for upper and lower bounds (lines 11-13). How-
ever, if resloc already contains more than g-many values
equal to xstart , there is no value for step with resloc[step]
=
xstart . Here, the smallest non-empty range [xstart , xstart] on
the searched volume v would yield a volume inconsistent
result. Thus, there is no way for TRENCH to search a range
volume consistently if it contains a value shared bymore than
g-many entries. Therefore, we propose the LODIS algorithm
extending TRENCH for Lower Dimension Search.

When we recognize the need for lower dimension search
in TRENCH (violation of assertion in line 14), we pause exe-

123

328 Service Oriented Computing and Applications (2021) 15:323–338

cution and remember the current value of xstart as xp. Then
we start a separate run of L-TRENCH on a different volume
dimension vunique that provides a view over a namespace
with unique values for all data elements. Note that such a
volume dimension is always guaranteed to enable a parti-
tioning of volume consistent search ranges over any set of
elements including thosewith value xp on volume dimension
v.

L-TRENCH is nearly identical to TRENCH, with the
only difference that any range query A that would be exe-
cuted to crawl volume dimension vunique is substituted by
Alodis = A ∪ alodis . Alodis extends A by an additional fil-
ter alodis = 〈v, xp, xpsucc〉 representing range [xp, xp] with
xpsucc being the successor of value xp on volume dimension
v. This way, we will not crawl the whole namespace in L-
TRENCH again, but only the range not queryable through
TRENCH on its volume dimension v. We turn back to the
former TRENCH once L-TRENCH reaches the upper bound
value of the namespace viewed over vunique and therefore
terminates. To this end, we increase xstart to xpsucc, the
next possible value on the namespace viewed through v, and
resume the execution of TRENCH.

4.3 Planning for updates

Since we aim to return every entry of U on request, we
initially run TRENCH once with a complete namespace as
search range. For completeness, this namespacemust contain
a value for every entry in U . Entries sharing the same value
are handled by TRENCH for up to g-many occurrences and
by L-TRENCH otherwise. The result is a copy Uloc of the
hidden database U .

This copy Uloc is a momentary snapshot of U . In order
to maintain Uloc in a state that remains consistent with U ,
we need a strategy to update Uloc with a minimal amount
of queries. To this end, we introduce MINCORE, an update
plan dividing the initially queried range into a set of disjunct
sub-ranges called splinters.

We optimize each splinter’s sub-range to query a max-
imum number of entries while keeping the result volume
consistent. The set of splinters covering the full namespace
represents the minimal number of queries against the foreign
API that is necessary to updateUloc. Sincewe calculate splin-
ters based on the initial snapshot ofU , we need to anticipate
interim changes. In particular, ranges of size g would lead to
volume inconsistent queries for any added entry in the same
range of U . Thus we create splinters of size g − p, where p
is a buffer for possible new entries. The value of p should
be chosen dependent on the expected update frequency of
U . We will further study the impact of p on MINCORE’s
performance in 7.3.3.

The optimum splinter size of g − p has to be further
decreased for the special case that the upper bound of a

splinter’s range is a non-exclusive value shared by multi-
ple entries on the same volume dimension v. Here, the range
would cover all of those entries andmayexceed themaximum
number of g− p result entries. In order to decrease the prob-
ability of a volume inconsistent query result, we introduce
an acceptable error oa for filter a = 〈v, xi , x j 〉 represent-
ing range [xi , x j). This reduces the optimum splinter size to
g − p − oa = |Qloc(a)| if |Qloc(a)| + |{d ∈ Uloc|Vv(d) =
x j }| > g − p else oa = 0.

We refer to the final range that touches the upper bound
xmax of the namespace as head splinter. The head splinter is
also likely to fall below the optimum splinter size as it has to
cover the remaining part. This also applies for areas crawled
through LODIS, where the LODIS head splinter touches the
upper bound value of the namespace viewed through vunique.

Note that aMINCORE Mv is only applicable for updating
Uloc over one volume dimension v. However, we can mini-
mize the number of queries to the foreign API by updating
Uloc through a variety of volume dimensions. Therefore, we
build one MINCORE for every queryable volume dimen-
sion. Thus, we can handle updates on all volume dimensions
queried by users.

5 Datamaintenance

Wehave discussed update concepts in Sect. 4.3 and presented
MINCORE as an update plan. Next, Sect. 5.1 shows how to
prepare the hidden database cache for our proposed update
process. In Sect. 5.2, we explain how to use MINCORE in
order to realize a client-centric model to keep the cacheUloc

consistent with U .

5.1 Update preparations

Entries inU might change during or after the initial execution
of TRENCH, which would lead to Uloc not being consistent
to U anymore. Since full consistency between U and Uloc

in a query’s range is required in order to serve the correct
entries, we will now show how to use MINCORE to capture
relevant changes and transfer them into Uloc.

A splinter of a MINCORE Mv is a log of the last
time, when a range [sstart , send) was queried on volume
dimension sv . We define a splinter s as a 6-tuple s =
〈sv, sstart , send , sts, sstart L , sendL〉 representing a query on
sv for range [sstart , send) that was run last on timestamp sts .
If a range was crawled by LODIS (because sstart existed in
more than g-many entries inU), thenwe narrow the search on
volume dimension vunique through the range [sstart L , sendL)
that is absent otherwise. For brevity, we refer to a splinter as
L-splinter if sstart L and sendL are present.

Also, we define querying a splinter s by Q(s) as query-
ing the corresponding filter as = 〈sv, sstart , send〉 through

123

Service Oriented Computing and Applications (2021) 15:323–338 329

Q(as) and querying an L-splinter sl through Q(sl) as query-
ing the corresponding filter set AL = {〈sv, sstart , send〉,
〈vunique, sstart L , sendL〉} by Q(AL).

A MINCORE Mv on volume dimension v is considered
complete, if every possible value x ∈ Nv is covered by the
range of exactly one regular splinter s or a set of L-splinters
L ⊂ Mv . If x is covered by L , then each value y ∈ Nvunique

has to be covered by exactly one L-splinter sl ∈ L . Formally,
Mv is complete on v if ∀x ∈ Nv,∀y ∈ Nvunique , ∃!s ∈
Mv : (sstart ≤ x < send ∧ sstart L = NIL)XOR (sstart =
x ∧ sstart L ≤ y < sendL). We define a complete MINCORE
Mv = (s1, ..., sn, shead) without L-splinters to be perfect if
∀i ∈ [1..n] : |Qloc(si)| = g− p−osi ∧|Qloc(shead)| ≤ g− p
is given.

Similar conditions apply ifMv covers some range crawled
by LODIS, but then all head splinters of L-splinters might
also be smaller than g − p. A perfect state corresponds to
the optimal structure of a MINCORE since the update plan
it represents covers the whole namespace with the smallest
amount of queries.

Using MINCORE, we could periodically perform com-
plete updates of Uloc by executing all queries specified by
its splinters. However, any MINCORE Mv contains at least
|Vv(U)|/(g− p) splinters, whichwould lead to an unfeasibly
large number of periodical queries.

Thus, we propose a demand-driven approach that utilizes
real-time updates for limited sub-ranges ofUloc as requested
by user queries. Ranges that are not requested will not be
updated. In other words, we follow a client-centric consis-
tency model, where consistency is only guaranteed for those
parts of Uloc that are visible to users, while others might
be outdated. Assuming that user queries hit popular ranges
more often, this decreases the number of update queries sig-
nificantly.

5.2 Integrated updatemethod

Before serving a request toUloc for some query Areq , we uti-
lize MINCORE to run corresponding updates. In particular,
we identify the filter a f resh ∈ Areq that intersects with the
smallest amount of outdated splinters. The combined ranges
of these splinters constitute the update queries. It is unnec-
essary to query intersecting splinters of any other filter from
Areq , since these just narrowdown the requested range. Thus,
updating data entries in the range of a f resh covers the com-
plete query Areq . A splinter s is considered outdated when
a fixed timespan t has passed since sts . Choosing t is subject
to customization, where smaller t lead to more queries and
higher consistency of Uloc.

Wedonot obtain outdated splinters directly from the splin-
ter database table, but a separate maintenance list. Outdated
splinters get transferred into the maintenance list on a reg-
ular basis, e.g., daily. Utilizing the maintenance list allows

managing the ranges due for updates without manipulating
the MINCORE itself. As a result, we can delete an outdated
splinter from the maintenance list as soon as an update over
its range has started. In practice, this prevents an outdated
splinter from wrongly triggering an update while another
one is still processing on the same range.

Outdated splinters represent a past state of Uloc older
than t . Thus, their ranges might no more cover the opti-
mal number of entries because Uloc changed. Therefore,
we adjust outdated splinters (s1, . . . , sn) to the current
state of Uloc before we query the foreign API for updates.
First, we check whether any ranges of outdated splin-
ters (si , . . . , s j) from (s1, . . . , sn) are neighbors on the
same volume dimension. We combine neighboring ranges
into [minsstart(si , . . . , s j), maxsend (si , . . . , s j)). Function
maxx (si , . . . , s j) returns the biggest value and function
minx (si , . . . , s j) the smallest value for element x of tuples
(si , . . . , s j). For L-splinters we use sstart L and sendL instead,
but only combine the ranges of two L-splinters if they share
the same value for sstart .

Next, we create a new set of perfect MINCOREs for the
combined ranges and all remaining ranges of preselected
outdated splinters. The newly created splinters, referred as
navigators, represent the optimal update plan reduced to out-
dated parts of user-requested ranges. Formally, a navigator z
is a 5-tuple 〈zv , zstart , zend , zstart L , zendL〉. Thus, navigators
are similar to splinters, except for themissing timestamp, and
can be queried through the query function Q(z).

Note that each of the newly created MINCOREs contains
a head splinter that is likely to cover a suboptimal number
of entries. Hence we extend the upper range bounds of head
navigators zi in such a way that each one covers exactly
g − p − ozi entries. Such head navigators might reach into
parts of the namespace that are neither due for an update,
nor requested by the user. However, since a query is required
anyway, we can use it to update as much of the namespace
as possible. Yet, if the head navigator overlaps with the nav-
igator of another newly created MINCORE, it is better to
recalculate a single MINCORE for the combined ranges.

Each extended head navigator zi also intersects a splinter
si+ j with j ≥ 1 on the same volume dimension. Hence, we
adapt the lower range bound of si+ j to the value of zi ’s upper
range bound after extending zi to optimal size. Splinters com-
pletely covered by zi are obsolete, since the update specified
by them is already covered by querying zi . Therefore, we
delete them from the splinter table and the maintenance list
to prevent simultaneous updates over the same range.

After calculating all navigators,we send respective queries
to the foreign API and check each result set for volume con-
sistency. If the result of some query for navigator zi is volume
consistent, we substitute the entries in the respective range of
Uloc with the result set. If the result set is volume inconsistent,
then the gap betweenU andUloc became too big to calculate

123

330 Service Oriented Computing and Applications (2021) 15:323–338

an update plan from Uloc. Here, we resort to TRENCH to
completely search the range and reestablish volume consis-
tency. If multiple neighboring ranges need to be searched by
TRENCH, we combine them into one range before execut-
ing the algorithm. Once all updates got processed, Uloc is
volume consistent again in the range of Areq and the local
result set can be returned to the client.

The final step is to adapt the MINCORE Mv to represent
the updated state of Uloc. We do this by deleting all splin-
ters intersecting the range of a navigator that got queried on
the volume dimension v. This leads to a number of volume
consistent ranges, referred to as holes, that are not covered
by any splinters. To fix a hole in Mv , we calculate a perfect
MINCORE Mtemp in the hole’s range on v and merge Mtemp

into Mv . This way, we cover the hole in Mv with splinters
from Mtemp.

A MINCORE is complete again once the holes are fixed.
Yet, fixing a hole might make it lose its perfect state. For-
tunately, MINCOREs will regain perfect state over time as
calculatingMtemp merges all suboptimal-sized splinters in its
range into optimal-sized splinters and only one suboptimal-
sized head splinter.

6 Hidden database replication service

From the concepts described so far, we have designed a data
replication service for hidden databases and a prototype of
this replication service has been implemented for theAmazon
Web Services (AWS) platform.

In the following, Sect. 6.1 first outlines the service model
for hidden database replication and then explains its archi-
tectural design. Sect. 6.2 describes the AWS-based services
used to implement a prototype.

6.1 Service model and architectural overview

Our approach is meant to improve the access to hidden
databases regarding the type of queries clients can issue and
the amount of results they receive in return. We translate this
into the model of a cloud-based Hidden Database Replica-
tion Service (HDRS) as follows.

AHDRS relates to a given foreign databaseU for which it
maintains a single local database copyUloc. All clients of the
HDRS share the same instance of Uloc and access it through
Qloc(A) by an API. In this paper, we confine Qloc(A) to
be identical to Q(A) but it could choose to offer extended
query functions. Note that no data isolation is required as all
tenants access identical public data. On the contrary, queries
from different tenants help improving consistency for each
other.

As described before, there are three main tasks that the
HDRS has to handle. This includes 1) serving user requests,

Fig. 1 Architecture of the HDRS in UML-notation

2) updatingUloc with retransmitted data fromU and 3) opti-
mizing the MINCOREs to schedule future updates. These
tasks translate into two services of an architectural design
that is shown in Fig. 1.

Generally, update control is tightly coupled to serving user
requests and thus combined into theProcessing Service (PS).
The Batch Search Service (BSS) retrieves ranges in a volume
consistentway throughTRENCHand handlesmanipulations
of MINCOREs.

Before starting to accept user requests, the system exe-
cutes an initial run of TRENCH in the BSS to extract all data
fromU . This functionality is not exposed to the API but only
triggered internally.

For any user request A, the PS executes update queries as
deducted from the outdated splinters in the requested range.
Then, it adjusts the maintenance list and splinter table and
queriesUloc for all existing entries fitting the filters of A. This
way, all tasks necessary for serving requests are bundled in
one service process thus avoiding request forwarding. Since
the PS aims to answer requests as fast as possible, it dele-
gates time-consuming tasks to the BSS. Those tasks include
execution of TRENCHongiven ranges and subsequent recal-
culation of the respective MINCORE.

PS and BSS communicate asynchronously by messaging
to realize non-blocking service requests. Optionally, the PS
may issue blocking update requests towait for theBSSfinish-
ing its TRENCHrun. Thisway, user queries are synchronized
with the update procedure and therefore guaranteed to return
the latest results from U . However, TRENCH sends many
requests to the foreign API synchronously, which may result
in high latency. The default behavior of the PS is to instantly
respond to user requests while TRENCH still executes.

When the PS or BSS need to query the foreign API,
the request is forwarded to the Parser Service. Its purpose
is to translate query requests into the format required by
the foreign API and pass them on. This decouples generic

123

Service Oriented Computing and Applications (2021) 15:323–338 331

replication logic from a specific foreign API and bundles
all dependent configurations and code. For further decou-
pling, we utilize a message broker that routes task messages
between the services. The message broker needs to provide
means for asynchronous as well as one way requests with
QoS-guarantees.

Users issue query requests to the HDRS through an API
gateway. It exposes a public REST-API and forwards user
requests to the PS for further handling. Other services and
components are encapsulated behind the API gateway. Fur-
thermore, to secure the PS from unwanted access, e.g.,
through bots, the API gateway is connected to an Access
Service. It handles the authentication and authorization of
user requests. This way, we may block users or bots, e.g., if
they send an unreasonable high amount of requests.

Handling of API Lockdowns So far the proposed architecture
can replicate a hidden database, as long as the foreign API
answers queries. However, there might be times when this
is not possible. Hidden databases stop serving queries once
they have answered an upper bound number of requests per
time [1,11]. We refer to this state as a lockdown. In order
to remain functional during API lockdown, we temporarily
adapt behavior.

Data gathering through TRENCH is most likely to
encounter lockdowns as it includes many queries to the for-
eign API in short time. Once a lockdown occurs, the HDRS
needs to stop its TRENCH run and persist remaining ranges.
Since TRENCH is pauseable, we restart it once the for-
eign API releases the lockdown. That is, an external process
scheduler periodically triggers TRENCH on the remaining
search range. Following this procedure, we can handle data
extractions for ranges of all sizes, even if a lockdown occurs
in between.

Unlike data gathering, we cannot postpone the execution
of a user request when a foreign API enters lockdown state.
Therefore, we answer the request with data fromUloc in such
cases even if outdated splinters intersect the requested range.
While this will lower the quality of results, it still returns the
most up-to-date data available. When expecting lockdowns,
it is also advisable to delete splinters only once a result set
got returned for their queries. This way, we can prevent holes
in a MINCORE that cannot be fixed due to the foreign API
suddenly locking down.

6.2 Prototype implementation

We have implemented a prototype of the HDRS architec-
ture to show its feasibility and effectiveness. It builds on the
AWS PaaS-Cloud that provides platform services for most
infrastructure-related tasks. In detail, we implemented the
parts of the HDRS as follows:

API gateway. We use the AWS-service API-Gateway to
expose a public REST-API as entry point.

Access service. Access to to the API-Gateway is controlled
by the AWS Cognito service. A Cognito user pool is used to
manage user credentials for accessing the API. Users might
be banned from the HDRS by removing them from the user
pool.

Process service, batch search service.These services run on
the AWS Lambda platform as Function-as-a-Service (FaaS).
Each service is represented by a separate stateless function
basedonNode.js.AWSLambda routes requests to the respec-
tive functions and automatically launches their runtimes on
demand. Moreover, it handles the scaling of services by dis-
tributing function calls over servers of selected data centers.
As a result, the interactive parts of the HDRS run and scale
on demand, which saves resources in the long run.

Message broker.The prototype does not use an explicit mes-
saging service, as the AWS-SDK already provides routing
functions. These include event-based requests for communi-
cation between PS and BSS.

Parser service. In terms of the parser service, we have also
simplified the proposed architecture. The added modularity
of a separate service seems favorable for production systems.
For the prototype we have integrated the parser functionality
into the PS and BSS directly.

Process scheduler. Rescheduling of TRENCH runs has not
been implemented in the prototype but AWS CloudWatch
could be used to implement this feature.

Local Database. The database for Uloc, splinter table and
maintenance list builds on MariaDB that is provided by the
AWS Relational Database Service (RDS).

All services operate inside an AWSVirtual Private Cloud.
It provides a cluster inside a logically separated sub-area
of the AWS cloud. This way, we prevent illegal access
from external systems inside and outside of the AWS cloud.
Communication between the AWS services is handled auto-
matically by AWS. For calls to other AWS services inside
the code of an AWS Lambda function, we utilize the AWS-
SDK. The only exception is for RDS, where we connect to
MariaDB directly by means of a native driver.

7 Evaluation

Following, we present an experimental evaluation of the
proposed concepts. We have compared the performance of
TRENCH and MINCORE against current state-of-the-art
solutions under various conditions. Furthermore, we present
a field study of the replication service in a real-world setting
underpinning its feasibility.

Initially, Sect. 7.1 describes the general setup regard-
ing storage and compute resources as well as datasets used

123

332 Service Oriented Computing and Applications (2021) 15:323–338

for experiments. Next, section 7.2 shows a comparison of
TRENCH with rank-shrink [18], the current state-of-the-
art algorithm for crawling hidden databases. Then, section
7.3 compares MINCORE with periodic rebuilds of Uloc via
TRENCH f ull . This is currently the most relevant alternative,
because, to the best of our knowledge, updating a database
over a hidden database API has not been subject to former
research. Finally, sect. 7.4 shows the feasibility of our pro-
totype by replicating parts of a public LDAP directory. This
confirms the results gathered under laboratory conditions in
a real-world context.

7.1 Experimental setup

We run all lab experiments in an environment equivalent
to the cloud-based implementation described in 6.2 using a
machine with six cores, 2,6 GHz Intel processor and 16GiB
memory. The field study described in 7.4 was conducted on
the cloud implementation itself. Here, we used a t2.small-
instance of MariaDB for RDS with 1vCPU (3,3 GHz Intel
processor) and 1GiB memory. AWS Lambda functions have
been configured to use 1024MB of RAM.We configured the
database (tables) with the collation utf16_bin. Thereby, com-
parisons in node.js and the database yield the same results.
Also, the system compares and sorts case-insensitive to sup-
port protocols like LDAP.

Confirming the correctness of evaluation results requires
some ground truth. More concretely, we need information
on size and content of U to compare it with Uloc. Unfor-
tunately, this is not available in the context of a real foreign
API, whereU is hidden. Therefore, we evaluate the effective-
ness of TRENCH and MINCORE against a local database
Uhd emulating a foreign API. Uhd returns a pseudo-random
selection of g-many entrieswhen anunrestricted querywould
return a larger result set. The contents of Uhd build on two
datasets that have been used for different experiments:

NAMES. A family of datasets have been derived from the
most common surnames according to the U.S. Census from
2000. The names dataset2 includes a total of 151671 sur-
names (name attribute) together with the numbers of U.S.
households carrying each name (count attribute). We use
names to derive multiple datasets NAMESx that vary in size
while preserving the original frequency of surnames in rela-
tion to other surnames.

For a dataset NAMESx , we create an amount ni =
�names[i].count ∗ C� of 2-tuples (names[i].name, idi, j)
for each i ∈ (1, . . . , x) and j ∈ (1, . . . , ni). Each idi, j
is a unique identifier and C is a constant factor with C =
1/names[x].count that scales the occurrences of surnames
thus controlling the dataset size.

2 Get the Census dataset from https://www.census.gov/topics/
population/genealogy/data/2000_surnames.html.

LANDSLIDES. The LANDSLIDES dataset contains infor-
mation on rainfall-triggered landslide events gathered by
NASA in the Global Landslide Catalog. In contrast to
NAMES, LANDSLIDES is not an artificial dataset and will
be used as provided by NASA3 to show that TRENCH and
MINCORE are usable on real data from the public web. The
original dataset contains a number of 11033 entries with
31 attributes (retrieved 12/31/2019). We have transformed
them into6-tuples of (event_id, event_t i tle, source_name,
event_date, countr y_name, landslide_setting) where
event_id is representing a unique identifier.

NCSU. Unlike former static datasets, NCSU is a public for-
eign LDAP API4 It is operated by the North Carolina State
University (NCSU) and provides public information on stu-
dents, employees and the campus. The foreign API enforces
a limit of g = 500 result entries.

We use NAMES and LANDSLIDES to run controlled
experiments evaluating the performance of the TRENCH
and MINCORE algorithms compared with state-of-the-art
approaches. We measure individual performance by the
amount of queries that need to be send to the foreign API
for a predefined task, where less queries indicate better per-
formance. This is because queries are responsible for the vast
majority of time and resources required by the given prob-
lem class. We use NCSU for a field study to underpin the
feasibility of our system. Here, we report on running times
and data sizes experienced under real-world conditions.

Generally, we took measures to comply with privacy
laws. We strictly used datasets from the public domain for
N AMES and L ANDSL I DES as well as the data offered
through NCSU . We also studied the Terms of Service for
NCSU tomake sure that it does not forbid automated queries
as well as storing of the queried data. Uloc was set up on a
secured database in a private AWS VPC, which ensured that
the database was not publicly accessible. Furthermore, we
also operated all other parts of our system in that VPC to
secure them from unauthorized access. Finally, we disposed
all personal data gathered through NCSU as soon as it was
no longer required for evaluation.

7.2 Evaluating TRENCH

ToevaluateTRENCH,wehave compared itwith rank-shrink,
the state-of-the-art for crawling hidden databases. In 7.2.1we
let both algorithms crawl several NAMESx of varying size
|U |. In 7.2.2 we run the algorithms on LANDSLIDES with
varying restrictions g.

3 Get LANDSLIDES from https://data.nasa.gov/Earth-Science/
Global-Landslide-Catalog-Export/dd9e-wu2v.
4 NCSU is queryable at ldap://ldap.ncsu.edu:389.

123

https://www.census.gov/topics/population/genealogy/data/2000_surnames.html
https://www.census.gov/topics/population/genealogy/data/2000_surnames.html
https://data.nasa.gov/Earth-Science/Global-Landslide-Catalog-Export/dd9e-wu2v
https://data.nasa.gov/Earth-Science/Global-Landslide-Catalog-Export/dd9e-wu2v

Service Oriented Computing and Applications (2021) 15:323–338 333

282 2000 4000 6000 8049
0

100

200

300

400

500

|U |

Q
ue

ri
es

to
th

e
fo
re
ig
n
A
P
I

EV1: TRENCH with varying |U | (g = 50)

15 20 30 40 50
500

750

1000

1250

1500

1750

2000

g

Q
ue

ri
es

to
fo
re
ig
n
A
P
I

EV2: TRENCH with varying g g(|U | = 11033)

rank-shrink TRENCH |U|/g = 10 |U|/g = 20 |U|/g = 30

697 1000 1500 2000 2500 3000 3500 4018
0

10

20

30

40

50

60

70

80

90

100

Q
ue

ri
es

to
fo
re
ig
n
A
P
I

EV3: Constant proportion of |U | to

|U |

Fig. 2 Comparison of TRENCH against rank-shrink

7.2.1 NAMESx with varying |U|

First, we run TRENCH as well as rank-shrink against
NAMESx with x ∈ {100, 110, 120, . . . , 1790, 1800} over
the namespace name. This leads to 171 versions of Uhd

with sizes ranging from |Uhd | = 282 for NAMES100 to
|Uhd | = 8049 for NAMES1800. We set g = 50 as restric-
tion regarding maximum results from Uhd .

The results are shown in Fig. 2 (EV1). Both algorithms
exhibit fluctuating query performance revolving around a
linearly growing median. Hereby, the median performance
of TRENCH is about 10% better than for rank-shrink. For
small database sizes rank-shrink can outperformTRENCH if
the pseudo-random query results are causing the algorithms
to run into opposite best-case/worst-case scenarios. How-
ever, with growing database size, the performance advantage
of TRENCH over rank-shrink leads to consistently better
results.

In general, TRENCH runtimes grow proportional with
|U |. Now, we study the influence of restriction g.

7.2.2 Landslides with varying g

We have conducted a second evaluation to show that the
median performance of TRENCH does not only exceed that
of rank-shrink independent of |U |, but also for different result
size restrictions g. To this end, we have run a set of exper-
iments, where both algorithms crawl the LANDSLIDES
dataset over the namespace event_ti tle for 8 restrictions
ranging from g = 15 to g = 50 with increments of 5. The
outcomes are shown in Fig. 2 (EV2).

As in 7.2.1, TRENCH needs about 10% less queries than
rank-shrink to crawlUhd . Notably, the fluctuation is low here
and TRENCH consistently outperforms rank-shrink for all
evaluated values of g.

During the evaluation, we observed that the count of
TRENCH queries correlates with the ratio of |U |/g. For

example, TRENCH required 337 queries to crawl LAND-
SLIDES with |U | = 11033, g = 85 and |U |/g ≈ 130.
Crawling NAMES1500 with |U | = 6494, g = 50 and
|U |/g ≈ 130 required 347 queries. We found several such
pairs, where similar |U |/g led to similar query counts. Thus,
we did a third evaluation to analyze the effect of the |U |/g
ratio on the necessary number of queries. The outcomes are
shown in Fig. 2 (EV3).

All runs with the same |U |/g ratio led to similar amounts
of queries with fluctuations due to pseudo-random behavior
of the foreign API. These results indicate a general runtime
of O(|U |/g) and confirm existing complexity studies for this
problem class [18].

7.3 EvaluatingMINCORE

Since the execution ofMINCORE is bound to the processing
of user requests, we cannot evaluate it with a single execution
like TRENCH. Instead, we simulate continuous user requests
and changes to Uhd to evaluate the performance of resulting
data maintenance tasks. Here, we compare the amount of
update queries required by MINCORE to those required by
full rebuilds of Uloc via TRENCH f ull .

7.3.1 Evaluation method

An evaluation method for the case of a changing, hidden
database has been proposed by [11]. Accordingly, we aggre-
gate requests and changes into an artificial time unitArtificial
Day (AD).

To initialize the dataset, we randomly transfer half of its
entries toUhd and the other half to a separate entry pool P . P
serves to subsequently extendUhd for simulating the creation
of new entries in the hidden database. Correspondingly, we
simulate the deletion of entries by moving them from Uhd

into the pool.

123

334 Service Oriented Computing and Applications (2021) 15:323–338

To consider differences in data popularity we randomly
classify someentries as interesting. These entries are searched
disproportionately often to simulate increased demand for
specific data. We classify 1% of all entries permanently
as always-interesting and another 1% as daily-interesting
changing each artificial day.

As regards user requests, we deduce their search terms
from random entries of Uhd and specify different deduction
methods concerning completeness (C).

Generally, a search term is deduced from some value x
by removing all characters after an index i . For normal com-
pleteness (CN), i is a random, natural number generated using
a normal distribution and 0 ≤ i ≤ length(x)− 1. We gener-
ate a normal distribution from uniformly distributed, random
numbers by using the Box-Muller transform [6].

In contrast, for extensive completeness (CE), we set i =
�log2(n)�. The random natural number n is generated by a
uniformdistributionwith 1 ≤ n ≤ 2length(x). For illustration,
consider the exemplary value test . It has a 50%, 25%, 12.5%
and 12.5% probability of being transformed into test , tes,
te and t respectively.

We generally transform the (partial) search terms into
wildcard queries. That is, a filter a generated for search term
m matches any entry, whose value on the searched volume
dimension starts with m.

For each experiment, Uloc initially holds all entries of
Uhd and a perfect, up-to-date MINCORE exists for each
queryable volume dimension. We perform the following
actions sequentially to simulate one AD5:

1. Randomly chose 1% of entries as daily-interesting.
2. Randomly insert 3% of entries into Uhd .
3. Randomly delete 2% of entries from Uhd (excluding

interesting entries).
4. Send a specific amount of requests, where 20% of search

terms stem from interesting entries.

As said before, we evaluate MINCORE against periodic
runs of TRENCH f ull . For comparison, we run both algo-
rithms on the same database but do not write the results of
TRENCH f ull toUloc. This way, both operate under the same
conditions without interfering. Generally, we configure our
system to run (for MINCORE or TRENCH f ull) with g = 50
and p = 10.

All experiments last eleven AD with a threshold of three
AD for data to become outdated. TRENCH f ull was sched-
uled every three AD similar to the timespan t for splinters
to become outdated. Note, that for all cases data remains up-
to-date during the first three AD and no update queries are
send. Therefore, we generally skip the first three AD in all
presentations of results.

5 All percentual values relate to the initial size of Uhd .

7.3.2 Varying request patterns

The first evaluation covers varying request patterns, call
amounts and search term completeness based on the LAND-
SLIDESdataset.Wecombine 100 and10000 requests per AD
withCN andCE resulting in 4 experiments:CN100,CN10000,
CE100, CE10000. Requests are made on the volume dimen-
sion source_name as prefix search. The results are shown
in Fig. 3 (EV4).

As expected,MINCORErequires significantly less queries
than TRENCH f ull to serve the latest entries for all user
requests. Hereby, search term completeness turned out to be
just a marginal factor of performance. Primarily, the number
of update queries can be observed to grow about logarithmi-
cally with the amount of user requests.

For explanation first note that a finite number of splin-
ter updates suffices to achieve volume consistency over the
whole namespace. Thereafter, user requests can be served
without a need for further update queries. When splinters
become outdated again, user requests are causing an increase
of update queries until all splinters are up-to-date again.
For high amounts of user requests (10000/AD) almost all
updates are triggered immediately and thus occur on the fol-
lowing day (AD 4, 7, 10). For low amounts of user requests
(100/AD), updates grow much slower and occur continu-
ously as not all outdated splinters are ever required.

We note that using the namespace source_name is
unfavorable for showing MINCORE’s performance, since
the average length of such (string) values is rather low.
As a result, the search filters deduced from values of
source_name cover a wide range and therefore intersect a
large amount of splinters. We have also performed the evalu-
ation EV4 using the namespace event_t i tle, whose (string)
values are much longer. This leads to user requested search
queries with rather narrow ranges and therefore less updates
are triggered. For example, CN100 and CE100 lead to 402
and 350 update queries when using source_name, but only
330 and 317 queries when using event_t i tle. However, our
focus in this evaluation is on interactive application scenarios
where human users are involved. For such cases, we consider
the use of very long search terms, like those generated from
event_t i tle, as unrealistic. Therefore, all evaluations regard-
ing MINCORE use the source_name namespace in order to
simulate an AD as realistic as possible. More diverse appli-
cation scenarios are likely to show even better performance.

For a second evaluation, we analyze whether the perfor-
mance of MINCORE depends on |U |/g as observed for
TRENCH. We therefore vary the size of Uhd by chang-
ing datasets to NAMES9100 and NAMES5280 with 59920
and 30016 entries while keeping g = 50. Additionally, we
increase the growth rate of Uhd with 10% insertions and 1%
deletions per AD. We restrict search term completeness to

123

Service Oriented Computing and Applications (2021) 15:323–338 335

4 5 6 7 8 9 10 11
0

100

200

300

400

500

600

700

800

900

1000

Artificial Days

Q
ue

ri
es

to
th

e
fo
re
ig
n
A
P
I
(a
ft
er

A
D
)

EV4: LANDSLIDES with varying Call Patterns

4 5 6 7 8 9 10 11
0

1000

2000

3000

4000

5000

6000

7000

8000

Artificial Days

Q
ue

ri
es

to
th

e
fo
re
ig
n
A
P
I
(a
ft
er

A
D
)

EV5: NAMES with fast-growing Uhd

NAMES9100

NAMES5280

4 5 6 7 8 9 10 11
0

200

400

600

800

1000

1200

1400

Artificial Days

Q
ue

ri
es

to
th

e
fo
re
ig
n
A
P
I
(a
ft
er

A
D
)

EV6: LANDSLIDES over two volume dimensions

TRENCH CN100 CE100 CN10000 CE10000 Instant updates Failed updates Update queries through TRENCH

4 5 6 7 8 9 10 11
0

100

200

300

400

500

600

700

800

Artificial Days

Q
ue

ri
es

to
th

e
fo
re
ig
n
A
P
I
(a
ft
er

A
D
)

EV7: LANDSLIDES with varying p

Fig. 3 Evaluation results for MINCORE

CN , as it turned out to be less significant. The results are
shown in Fig. 3 (EV5).

The outcomes show that changing |U | directly impacts
the performance of MINCORE, even if all other factors,
including g, are equal. This indicates that the performance
dependents on the value of |U |/g. Furthermore, MINCORE
still outperforms TRENCH f ull even for theworst case. Thus,
MINCORE is not only superior to TRENCH f ull for small
and rather static hidden databases, but also for large ones
with high change rate.

A third experiment evaluates the performance of MIN-
CORE as regards the dimensionality of data. Remember that
a replication service might support user requests over mul-
tiple volume dimensions with separate MINCOREs. Each
MINCORE increases the number of namespaces that have
to be maintained through regular update queries. Moreover,
querying an entry d over some volume dimension v influ-
ences all MINCORE over any volume dimension containing
a value of d.

Therefore, wemeasure the performance impact of running
multiple MINCORE and distributing user requests over their
volume dimensions. More precisely, we repeat EV4 but split
user requests regarding two volume dimensions event_id
and source_name with separate MINCORE over each. The
results are shown in Fig. 3 (EV6).

Obviously, the amount of update queries increases signif-
icantly. In fact, while MINCORE is still better for CN/E100,
TRENCH f ull is more efficient for CN/E10000. This is due to
the fact that TRENCH f ull gathers all entries of the database
by completely crawling the universal namespace.MINCORE
only queries small ranges of namespaces and cannot reason
on the volume consistency of any other volume dimension
than its own.

In conclusion, our evaluations ofMINCORE show that the
approach is not universally superior to regathering a hidden
database.Yet, it is favorablewhendealingwith low-requested
hidden databases, where requests spread over few volume
dimensions.

7.3.3 Adjusting the buffer size

Another interesting aspect is the impact of buffer size p on
MINCORE performance. In general, p adjusts navigators
to query less than g-many entries. While this increases the
rate of volume consistent query results, it also increases the
number of initial update queries. We analyze this effect by
comparing the overall number of update queries for p1=10,
p2=5 and p3=0. Experiments are based on LANDSLIDES
with 10% insertions and 1% deletions per AD, a limit of
g = 50 and the CN100 request pattern.

The results are shown in Fig. 3 (EV7). It shows three
bars each AD for p1, p2, p3. Each one is further divided as
regards queries that have instantly succeeded or failed and
thus led to further TRENCH queries.

Clearly, even a small buffer leads to much less volume
inconsistent results and causes a significant decrease of
queries. About 28% off all navigator queries lead to a volume
inconsistent result with p = 0, shrinking to approximately
4% for p = 5 and zero for p = 10.

7.3.4 Measuring impacts on data consistency

Some use-cases might prefer a small error in their responses,
if that lowers the amount of queries sent to the foreign API
in exchange. Generally, one can lower the overall number
of update queries by extending the validity time range of
splinters and thus increasing acceptable staleness. Thus we
study the impact of splinter validity on a response’s data
consistency and the amount of update queries sent to the
foreign API.

To this end, we use the same setup as EV5 with the
dataset NAMES5280 and the request-pattern CN100. We
measure the data consistency of a query A by its error
|Qloc(A) \ Q(A) ∪ Q(A) \ Qloc(A)|, which counts the
missed or wrongly returned entries, as well as its correct-
ness |Qloc(A) ∩ Q(A)|, which counts the correctly returned
entries. Hereby, we will identify entries by their value on the
volume dimension vunique.

123

336 Service Oriented Computing and Applications (2021) 15:323–338

1 2 3 4 5 6 7 8 9 10
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

ADs after the first splinter became invalid

C
or
re
ct
ne

ss
EV8: Data quality with varying splinter validity

1 2 3 4 5 6 7 8 9 10
0

250

500

750

1000

1250

1500

1750

2000

2250

E
rr
or

1 2 3 4 5 6 7 8 9 10
200

400

600

800

1000

1200

1400

1600

1800

ADs after the first splinter became invalid

Q
ue

ri
es

to
th
e
fo
re
ig
n
A
P
I
(a
ft
er

A
D
)

EV9: Query amount with varying splinter validity

Validity of 2ADs Validity of 3ADs Validity of 4ADs Correctness Error Queries

Fig. 4 Impact of varying splinter validity regarding data quality and
performance

We have executed the evaluation for splinter validities of
two, three and four days. Measurements started at the AD
after the first splinter became invalid, which otherwise dif-
fers for increasing splinter validities. Themeasured error and
correctness, as well as the number of queries sent to the for-
eign API, are shown in Fig. 4 (EV8 and EV9).

Increasing the staleness decreases the overall consistency
of the returned data. The average error increases from 103 at
a validity of two days to 276 at 4 days, as seen in evaluation
EV8. On the other hand, the decrease in queries displayed
in EV9 shows to be significant. The number of queries sent
to the foreign API drops by roughly a third when increasing
the validity from two to four days. In the end, it has to be
decided on a case-by-case basis, if higher data consistency
or less update queries are more preferable for a use case.

7.4 Showing real-world feasibility

So far, experiments have been conducted under lab condi-
tions with locally controlled databases simulating foreign
API behavior. This was necessary to analyze effectiveness
and efficiency of our algorithms. However, it does not show
the feasibility of our approach under real-world conditions.
We now present a field study building on an unassociated,
real-world hidden database. Thereby, we shift the focus to
different measures, namely running times, to show practical
utility.

For the field study, we have used a public LDAP API
provided by NCSU (see 7.1). In particular, we have selected
the LDAP domain for student data6 that promised to offer a
sufficient number of entries. An important goalwas to control
the resulting load of the public directory service and keep
it on a reasonable level. Therefore, we have restricted the
extend of replication to a range [a, h) of entry name prefixes.
Furthermore, we have not persisted any of the public data in
the course of this study.

For implementation, we set up the HDRS-prototype (see
6.2) to query the NCSU LDAP service for entries on the

6 Accessible at ldap://ldap.ncsu.edu:389/ou=students,ou=people,
dc=ncsu,dc=edu.

Table 1 Results of NCSU field study

d q ts te tt e s rl

0 72 7s 306s 313s 14093 30 -

1 30 20s 139s 159s 14095 31 72

2 29 18s 136s 154s 14112 38 74

3 32 21s 129s 150s 14103 38 69

4 32 19s 130s 149s 13039 36 70

5 29 33s 119s 152s 12985 31 74

6 28 17s 113s 130s 12983 32 74

7 28 19s 108s 127s 12983 31 74

d:day, q:update queries, ts :time system, te:time extern,
tt :time total, e:entries (|Uloc|), s:splinters,
rl : requests against Uloc w/o updates

volume dimension sn (surnames). Since we expected only
marginal changes of U per day, we set the buffer size to a
rather small value of p = 10. Furthermore, we simulated
a CN100 user request pattern on sn for one real week. The
results are shown in Table 1.

The initial execution of TRENCH on [a, h) required 72
queries and returned a total of 14093 entries. For that purpose,
the algorithm required 313 seconds including 90 seconds of
waiting for responses from NCSU and 7 seconds of local
computing. To reduce the query load for NCSU, we have
included 3 seconds of artificial pause after each query sum-
ming up to 216 seconds.

Subsequently, MINCORE required an average of 30
update queries to serve the 100 user requests per day. This
amounts to approximately 59% less queries than re-crawling
[a, h) with TRENCH would have caused. On average, 100
user requests got answered in about 140 seconds, which cor-
responds to an average time of 1.4 seconds to answer per
request. However, a major amount of this time consisted
of waiting for responses from NCSU and artificial pauses.
Computing time of our system contributed an average of 21
seconds overall or 210 milliseconds per request.

An interesting observation can be made regarding the
update of day four, which was conducted on the 30th of Jan-
uary 2020. Here, over 1000 entries got removed from Uloc

by MINCORE. It can be speculated that a monthly cleanup
procedure removed old entries from NCSU and this caused
the significantly lower entry amount after the update. This
hypothesis is supported by the fact that day four was the
only outlier regarding the daily change of |Uloc|. All other
updates, before and after day four, consistently changed the
size of Uloc by only a few entries. That is, the entry count
did not bounce back to its former average value but stayed at
about 13000 entries during days five to seven.

Update queries were caused by 28% of user requests on
average. Under the assumption that no ranges were requested
while being updated, 72% of requests on average were

123

Service Oriented Computing and Applications (2021) 15:323–338 337

answered without waiting for responses from NCSU. Alter-
natively one could choose not to wait for responses from
NCSU at all by answering requests directly fromUloc before
finishing theupdates.Obviously thiswoulddecrease the aver-
age response time from a few seconds to mere milliseconds
at the cost of consistency. In the end, the choice depends on
individual application requirements.

8 Conclusion and outlook

Hidden databases can be found throughout the web and
beyond. They offer data sources that are often without alter-
native, e.g., domain-specific or real-time data in the context
of the social web, electronic business, public administration,
cyber-physical systems and many others. In doing so, hid-
den databases focus on interactive access patterns and are
otherwise heavily restricted.

In this paper we have pursued the goal of making
hidden database contents permanently accessible without
limitations. To this end, we have proposed an independent
replication service. The idea is to replicate a hidden database
and retain its interface, but to overrule the ranked retrieval
model and query rate restrictions. Thus, issuing unlimited
amounts of queries including full scans becomes possible
and inexpensive.

Summary We have presented two fundamental algorithms
1) TRENCH to crawl and 2) MINCORE to update a hidden
database over its public remoteAPI. TheTRENCHalgorithm
enables to crawl any parts of a hidden database for initiat-
ing or updating a local copy despite remote API restrictions.
It adopts a flexible crawling strategy to find the most effi-
cient ranges covering an unknown dataset and overcomes
very dense areas by lower dimension search (LODIS).

The MINCORE algorithm enables to keep the local copy
consistent with the dynamic hidden database in the light
of autonomy and access restrictions. Therefore, it adopts
a client-centric consistency model that reduces updates to
those parts of the local copy that are actually being requested
based on staleness. This approach aims to optimize mixed
generic access patterns. For the worst case of sole full scans,
it falls back to the baseline. Yet, its efficiency increases with
more specific user queries and diversity of data popularity.

Beyond the conceptual results, we have presented HDRS,
a cloud-based service that coordinates and executes the
introduced algorithms in order to provide hidden database
replication as a service. We have implemented the proposed
architecture as regards prototypes of the algorithms aswell as
a full-fledged service system on the AWS platform. Based on
these systemswe conducted a variety of experiments for eval-
uation. These showed clear improvements of our crawling
and update algorithms over current state-of-the-art solutions

in many cases of laboratory-based experiments and a real-
world field study.

Discussion TRENCH builds on existing work from the field
of hidden database crawling. However, its novel approach
of including entries from Uloc into the calculation of further
crawling steps leads to a better performance than rank-shrink,
the former state of the art that calculates crawling steps based
solely on the last query’s result. We believe that dynamically
calculating further values, such as step, based on Uloc dur-
ing runtime might boost performance even more. In terms
of updating hidden database snapshots, MINCORE is the
first of its kind. Its performance has been shown to clearly
surpass the naive baseline algorithm. Both, TRENCH and
MINCOREprovide generic contributions that can be adopted
in many areas like aggregate functions, data sampling, query
re-ranking and others.

To the best of our knowledge a generic replication ser-
vice for hidden databases has not been proposed before in
this form. In particular, HDRS opens up a novel practical
application area for interactive use cases. Beyond the proto-
typical evaluation with a real-world hidden database, we just
brieflymention its successful internal application for intranet
use cases. The generic HDRS prototype is available as open
source, becausewe believe that it can provide similar benefits
in many more cases.

Future Work So far, we evaluated our replication approach
for interactive application scenarios,where a hidden database
copy is used to answer search queries of human users. In the
future, we would like to include mixed application scenarios
that include different request patterns, e.g., for data analyt-
ics. In terms of fundamental features, a possible direction
would be to extend MINCORE as well as LODIS over mul-
tiple volume dimensions. Also the generic approach might
be augmented with respect to various specific situations like
handling massive data changes similar to [20].

Funding Open Access funding enabled and organized by Projekt
DEAL.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

338 Service Oriented Computing and Applications (2021) 15:323–338

References

1. Álvarez M, Raposo J, Pan A, Cacheda F, Bellas F, Carneiro V
(2007) DeepBot: A focused crawler for accessing hidden web con-
tent. In: ACM International Conference Proceeding Series, vol.
236, pp. 18–25. ACM

2. Alwan AA, Ibrahim H, Udzir NI, Sidi F (2013) Estimating missing
values of skylines in incomplete database. In: Proceedings of the
2th International Conference onDigital Enterprise and Information
Systems, pp. 220–229. SDIWC

3. Asudeh A, Zhang N, Das G (2016) Query reranking as a service.
Proceedings of the VLDB Endowment 9(11):888–899

4. Barbosa L, Freire J (2007) An adaptive crawler for locating
hiddenwebentry points. In: C.L. Williamson, M.E. Zurko, P.F.
Patel-Schneider, P.J. Shenoy (eds.) Proceedings of the 16th interna-
tional conference on World Wide Web – WWW ’07, p. 441. ACM
Press

5. Barbosa L, Freire J (2010) Siphoning hidden-web data through
keyword-based interfaces. Journal of Information and Data Man-
agement 1(1):133–144

6. Box GEP, Muller ME (1958) A Note on the generation of random
normal deviates. TheAnnals ofMathematical Statistics 29(2):610–
611

7. Durairaj Gunasekaran Y, Asudeh A, Hasani S, Zhang N, Jaoua A,
Das G (2018) QR2: A Third-Party Query Reranking Service over
Web Databases. In: 2018 IEEE 34th International Conference on
Data Engineering (ICDE), pp. 1653–1656. IEEE

8. Jin X, Zhang N, Das G (2011) Attribute domain discovery for
hidden web databases. In: Proceedings of the 2011 international
conference on Management of data – SIGMOD ’11, p. 553. ACM
Press, New York, New York, USA

9. Kambhampati S, Wolf G, Chen Y, Khatri H, Chokshi B, Fan J,
Nambiar U (2007) QUIC: Handling query imprecision & data
incompleteness in autonomous databases. In: CIDR 2007 – 3rd
Biennial Conference on Innovative Data Systems Research, pp.
263–268

10. Kumar M, Bindal A, Gautam R, Bhatia R (2018) Keyword query
based focused web crawler. Procedia Computer Science 125:584–
590

11. Liu W, Thirumuruganathan S, Zhang N, Das G (2014) Aggregate
estimation over dynamic hidden web databases. Proceedings of the
VLDB Endowment 7(12):1107–1118

12. Lu Y, Thirumuruganathan S, Zhang N, Das G (2015) Hidden
database research and analytics (hydra) system. IEEE Data Eng.
Bull. 38(3):84–102

13. Madhavan J, Ko D, Kot Ł, Ganapathy V, Rasmussen A, Halevy
A (2008) Google’s Deep web crawl. Proceedings of the VLDB
Endowment 1(2):1241–1252

14. Meng X, Ma ZM, Yan L (2009) Answering approximate queries
over autonomous web databases. In: Proceedings of the 18th inter-
national conference on World wide web – WWW ’09, p. 1021.
ACM Press, New York, New York, USA

15. Nguyen H, Nguyen T, Freire J (2008) Learning to extract form
labels. Proceedings of the VLDB Endowment 1(1):684–694

16. Rezk E, Aqle A, Jaoua A, Das G, Zhang N (2017) Optimized Pro-
cessing of a Batch of Aggregate Queries over Hidden Databases.
In: 2017 International Conference on Computer and Applications
(ICCA), pp. 317–324. IEEE, IEEE

17. Savković O, Mirza P, Tomasi A, Nutt W (2013) Complete approx-
imations of incomplete queries. Proceedings of the VLDB Endow-
ment 6(12):1378–1381

18. Sheng C, Zhang N, Tao Y, Jin X (2012) Optimal algorithms for
crawling a hidden database in the web. Proceedings of the VLDB
Endowment 5(11):1112–1123

19. Song S, Zhang A, Chen L, Wang J (2015) Enriching data imputa-
tion with extensive similarity neighbors. Proceedings of the VLDB
Endowment 8(11):1286–1297

20. Suhaim SB, Liu W, Zhang N (2016) Discover Aggre-
gates Exceptions over Hidden Web Databases. arXiv preprint
arXiv:1611.06417

21. Wolf G, Kalavagattu A, Khatri H, Balakrishnan R, Chokshi B, Fan
J, Chen Y, Kambhampati S (2009) Query processing over incom-
plete autonomous databases: Query rewriting using learned data
dependencies. The VLDB Journal 18(5):1167–1190

22. Yu H, Vahdat A (2002) Design and evaluation of a conit-based
continuous consistency model for replicated services. ACM Trans.
Comput. Syst. 20(3):239–282

23. Zhao F, Zhou J, Nie C, Huang H, Jin H (2016) SmartCrawler: A
two-stage crawler for efficiently harvesting deep-web interfaces.
IEEE Transactions on Services Computing 9(4):608–620

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

http://arxiv.org/abs/1611.06417

	A third-party replication service for dynamic hidden databases
	Abstract
	1 Introduction
	2 Related work
	3 Definitions and terminology
	4 Data acquisition
	4.1 Extracting hidden data
	4.2 Handling indivisible ranges
	4.3 Planning for updates

	5 Data maintenance
	5.1 Update preparations
	5.2 Integrated update method

	6 Hidden database replication service
	6.1 Service model and architectural overview
	6.2 Prototype implementation

	7 Evaluation
	7.1 Experimental setup
	7.2 Evaluating TRENCH
	7.2.1 NAMESx with varying |U|
	7.2.2 Landslides with varying g

	7.3 Evaluating MINCORE
	7.3.1 Evaluation method
	7.3.2 Varying request patterns
	7.3.3 Adjusting the buffer size
	7.3.4 Measuring impacts on data consistency

	7.4 Showing real-world feasibility

	8 Conclusion and outlook
	References

