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Abstract

A complete classification of the computational complexity of the fixed-point exis-
tence problem for boolean dynamical systems, i.e., finite discrete dynamical systems
over the domain {0, 1}, is presented. For function classes F and graph classes G, an
(F ,G)-system is a boolean dynamical system such that all local transition functions lie
in F and the underlying graph lies in G. Let F be a class of boolean functions which
is closed under composition and let G be a class of graphs which is closed under taking
minors. The following dichotomy theorems are shown: (1) If F contains the self-dual
functions and G contains the planar graphs, then the fixed-point existence problem
for (F ,G)-systems with local transition function given by truth-tables is NP-complete;
otherwise, it is decidable in polynomial time. (2) If F contains the self-dual functions
and G contains the graphs having vertex covers of size one, then the fixed-point exis-
tence problem for (F ,G)-systems with local transition function given by formulas or
circuits is NP-complete; otherwise, it is decidable in polynomial time.

1 Introduction

Background on complex systems. A complex system, in a mathematical sense, can be
viewed as a collection of highly interdependent variables. A discrete dynamical system
is a complex system where variables update their values in discrete time. Though the
interdependencies among the variables might have quite simple descriptions on a local
level, the overall global behavior of the systems can be as complicated as unpredictable or
undecidable (see, e.g., [12, 20]). This phenomenon has been widely studied in the theory
of cellular automata [31, 33] and its applications (see, e.g., [16, 21]).

Finite discrete dynamical systems are characterized by finite sets of variables which can
take values from a finite domain. In essence (see, e.g., [10, 9]), a finite discrete dynamical
system (over a finite domain) consists of (1) a finite undirected graph, where vertices corre-
spond to variables and edges correspond to an interdependence between the two connected
variables, (2) a set of local transition functions, one for each vertex, that map values of
variables depending on the values of all connected variables to new variable values, and
(3) an update schedule that governs which variables are allowed to update their values
in a certain time step. A formal definition is given in Sect. 2. Due to their structural
simplicity and modelling flexibility, finite discrete dynamical systems are suitable for ana-
lyzing the behavior of real-world complex systems. In fact, the conception is motivated by
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analysis and simulation issues in traffic flow (see, e.g, [2, 3]) and inter-domain routing [18].
It also has applications to two-species diffusion-reaction systems such as synchronous or
asynchronous versions of the nearest neighbor coalescence reaction A+A → A on a lattice
in the immobile reactant case [1].

A central problem in the study of discrete dynamical systems is the classification of
systems according to the predictability of their behavior. In the finite setting, a certain be-
havioral pattern is considered predictable if it can be decided in polynomial time whether a
given system will show the behavioral pattern [12]. In a rather strong sense, predictability
and tractability are identified. It is not surprising that the reachability of patterns is, in
general, an intractable problem, i.e., at least NP-hard (see, e.g., [17, 27, 7]). However,
some restricted subclasses of finite discrete dynamical systems, i.e., systems given by re-
stricted sets of local transition functions and network topologies, are known to possess
easy-to-predict patterns (see, e.g., [5, 6, 7] and the discussion of related work below). For
the purpose of analyzing and simulating real-world systems by finite discrete dynamical
systems, it is highly desirable to have sharp boundaries between tractable and intractable
cases.

A fundamental behavioral pattern for discrete dynamical systems are fixed points (ho-
mogeneous states, equilibria). A value assignment to the variables of a system is a fixed
point if the values assigned to the variables are left unchanged if the system updates the
values. A series of recent papers has been devoted to identification of finite systems with
tractable/intractable fixed-point analyses [8, 30, 28, 29]. But although it is an old question
how common intractability results are for discrete dynamical systems (see [32, Problem
19]), a precise characterization of the islands of tractability even for the fixed-point exis-
tence problem in the simplest case of the boolean domain {0, 1} has remained an open
problem (see [8]).

Contributions of the paper. We contribute to the problem of classifying boolean (discrete)
dynamical systems, i.e., finite discrete dynamical systems over the domain {0, 1}, with
regard to the computational complexity of the fixed-point existence problem, i.e., decide
whether a given system has a fixed point, in two ways.

A first contribution is the proposal of a general analysis framework for systems. We
say that a boolean dynamical system is an (F ,G)-system if its local transition functions
belong to the class F of boolean functions and the underlying graph belongs to the graph
class G. We propose to consider two well-studied frameworks for functions and graphs (a
formal introduction is given in Sect. 3):

• Post classes [23]: We assume that the function class F is closed under composition
(and some more reasonable operations). Equivalently, F is a class of boolean func-
tions that can be built by arbitrary circuits over gates from some finite logical basis
[23]. Examples are the monotone functions, the linear functions, and the self-dual
functions (i.e., functions f such that f(x1, . . . , xn) = 1− f(1− x1, . . . , 1− xn)).

• Graph minor classes (see, e.g., [14]): We assume that the graph class G is closed
under taking minors, i.e., G is closed under vertex deletions, edge deletions, and edge
contractions. Equivalently, G can be characterized by a finite set of forbidden minors
[26]. An example is the class of planar graphs (together with the forbidden minors
K3,3 and K5).
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Certainly, other schemes can be devised for system classifications. In fact, many results in
literature do not fit into this framework (see the discussion of related work below). However,
the proposed scheme has strong features: first, it exhausts the class of all boolean dynamical
systems; second, for fixed function classes F and fixed graph classes G, it is decidable in
polynomial time whether a given system is in fact, an (F ,G)-system (supposed the local
transition functions are represented by lookup-tables); and third, it allows elegant proofs
of dichotomy theorems (as exemplified by our second contribution). We mention that, as
fixed points are invariant under changes of the update regime, a scheme for classifying
update schedules is not needed for our study.

The main contribution of the paper is a complete complexity classification of the fixed-
point existence problem with respect to our analysis framework. We make a distinction of
the problem into three categories: systems for which the local transition functions are given
by lookup-tables, by formulas (over logical bases), or by circuits (over logical bases). For
each case we obtain a tractability/intractability dichotomy. Interestingly, the dichotomy
theorems for formulas and circuits coincide. Let F be a Post class of boolean functions
and let G be graph class closed under taking minors. The following is proved in Sect. 4:

• Dichotomy for boolean dynamical systems based on lookup-tables: If F contains the
self-dual functions and G contains the planar graphs, then the fixed-point existence
problem for (F ,G)-systems with local transition functions given by lookup-tables is
NP-complete; in all other cases, it is decidable in polynomial time (Theorem 4.1).

• Dichotomy for boolean dynamical systems based on formulas or circuits: If F contains
the self-dual functions and G contains the graphs having vertex covers of size one, then
the fixed-point existence problem for (F ,G)-systems with local transition functions
given by formulas/circuits (over the logical basis of F) is NP-complete; in all other
cases, it is decidable in polynomial time (Theorem 4.8).

The results provide easy criteria for deciding whether (F ,G)-systems have tractable or
intractable fixed-point existence problems. For instance, tractability follows for systems
with linear or monotone local transition function on arbitrary networks (see also [8]). The
tractability regions with respect to arbitrary local transition functions and restricted graphs
correspond to bounded treewidth (in the case of lookup-tables) and bounded degree (in the
case of formulas or circuits). Tractable network classes (for lookup-table-based systems)
are, e.g., trees, outer-planar graphs, or series-parallel graphs.

Related work. There is a series of work regarding the complexity of certain computational
problems for discrete dynamical systems (see, e.g., [17, 27, 8, 5, 6, 30, 28, 7] and the
references therein).

Detailed studies of computational problems related to fixed-point existence have been
reported in [8, 30, 28, 29]. As shown in [8], tractable cases for fixed-point existence are
constituted by systems with linear, generalized local transition functions, systems with
monotone local transition functions and systems where local transition function are com-
puted by gates (of unbounded fan-in) from {AND, OR, NAND, NOR}; intractable cases
are boolean dynamical systems having local transition functions computed by gates (of
unbounded fan-in) from the sets {NAND, XNOR}, {NAND, XOR}, {NOR, XNOR}, or
{NOR, XOR}. Moreover, in [30, 28, 29], the problem of enumerating fixed points of boolean
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dynamical systems has been studied: counting the number of fixed points is in general #P-
complete, even counting the number of fixed points for boolean dynamical systems with
monotone local transition functions over planar bipartite graphs or over uniformly sparse
graphs is #P-complete. We note that all system classes considered are based on formula
or circuit representations, i.e., the intractability results fall into the scope of Theorem 4.8.

Mainly, tractability and intractability results have been shown for various version of
pattern reachability problems such as garden of Eden existence (e.g., [8, 30, 28]), pre-
decessor existence (e.g., [27, 6]), parameterized and unparameterized reachability (e.g.,
[17, 27, 6, 4, 7]). To summarize, the system subclasses considered restrict the local transi-
tion functions to linear functions, monotone functions, various types of threshold functions,
or symmetric functions. Except the linear and monotone functions none of these classes is
closed under composition. Restrictions to the dependency networks involve planar graphs,
regular graphs, bounded-degree graphs, star networks, and bounded pathwidth.

In the theory of finite discrete dynamical systems, tight dichotomy results have been
shown for very restricted classes of systems (as, e.g., in [12]). Exhausting results similar
to those of this paper are standard for constraint satisfaction problems (see, e.g., [11] for a
survey). In fact, our results rely on close relationships between fixed-point and constraint
satisfaction problems (as in the proof of Theorem 4.3).

2 The Dynamical Systems Framework

In this section, we describe our model of dynamical systems. We follow the approach given
by [9] with a marginal generalization regarding update schedules.

Dynamical systems. The underlying network structure of a dynamical system is given by
an undirected graph G = (V,E) without multi-edges and loops. We suppose that the set
V of vertices is ordered. So, without loss of generality, we assume V = {1, 2, . . . , n}. For
any vertex set U ⊆ V , let NG(U) denote the neighbors of U in G, i.e.,

NG(U) =def { j | j /∈ U and there is an i ∈ U such that {i, j} ∈ E }.

If U = {i} for some vertex i, then we use NG(i) as a shorthand for NG({i}). Define
N0

G(i) =def {i} ∪ NG(i). The degree di of a vertex i is the number of its neighbors, i.e.,
di =def ‖NG(i)‖.

A dynamical system S over a domain D is a pair (G,F ) where G = (V,E) is an
undirected graph (the network) and F = {fi | i ∈ V } is a set of local transition functions
fi : D

di+1 → D. The intuition of the definition is that each vertex i corresponds to an active
element (entity, agent, actor etc.) which is always in some state xi and which is capable to
change its state, if necessary. The domain of S formalizes the set of possible states of all
vertices of the network, i.e., for all i ∈ V , it always holds that xi ∈ D. A vector ~x = (xi)i∈V
such that xi ∈ D for all i ∈ V is called a configuration of S. If it is more convenient, then
we also say that a mapping I : V → D is a configuration. A subconfiguration of I with
respect to A ⊆ V is a mapping I[A] : A → D such that I[A](i) = I(i) for all i ∈ A. The
local transition function fi for some vertex i describes how i changes its state depending
on the states of its neighbors NG(i) in the network and its own state.

Discrete dynamical systems. We are particularly interested in dynamical system operating
on a discrete time-scale. A discrete dynamical system S = (S, α) consists of a dynamical
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system S and a mapping α : {1, . . . , T} → P(V ), where V is a set of vertices of the network
of S and T ∈ IN. The mapping α is called the update schedule and specifies which state
updates are realized at certain time-steps: for t ∈ {1, . . . , T}, α(t) specifies those vertices
that simultaneously update their states in step t.

Global maps. A discrete dynamical system S = (S, α) over domain D induces a global map
FS : Dn → Dn where n is the number of vertices of S. For each vertex i ∈ V , define an
activity function ϕi for a set U ⊆ V and ~x = (x1, . . . , xn) ∈ Dn by

ϕi[U ](~x) =def

{

fi(xi1 , . . . , xidi+1
) if i ∈ U

xi if i /∈ U

where {i1, i2, . . . , idi+1} = N0
G(i). For a set U ⊆ V , define the global transition function

FS [U ] : Dn → Dn for all ~x ∈ Dn by

FS[U ](~x) =def (ϕ1[U ](~x), . . . , ϕn[U ](~x)).

Note that the global transition function does not refer to the update schedule, i.e., it only
depends on the dynamical system S and not on S. The function FS : Dn → Dn computed
by the discrete dynamical system S, the global map of S, is defined by

FS =def

T
∏

k=1

FS[α(k)].

Fixed points. The central notion for our study of dynamical systems is the concept of a
fixed point, i.e., a configuration which does not change under any global behavior of the
system. Let S = (G, {fi | i ∈ V }) be a dynamical system over domain D. A configuration
~x ∈ Dn is said to be a local fixed point of S for U ⊆ V if and only if FS[U ](~x) = ~x. A
configuration ~x ∈ Dn is said to be a fixed point of S if and only if ~x is a local fixed point
of S for V .

The following useful proposition is easily seen.

Proposition 2.1. Let S = (G, {fi | i ∈ V }) be a dynamical system over domain D.

1. If the configuration ~x ∈ Dn is a local fixed point of S for U ′ ⊆ V and ~x is a local
fixed point of S for U ′′ ⊆ V , then ~x is a local fixed point of S for U ′ ∪ U ′′.

2. A configuration ~x ∈ Dn is a local fixed point of S for U ⊆ V if and only if ~x is a local
fixed point for all U ′ ⊆ U .

Notice that the second item of Proposition 2.1 shows that the concept of fixed points is
independent of update schedules.

Corollary 2.2. Let S = (G, {fi | i ∈ V }) be a dynamical system over domain D. A
configuration ~x ∈ Dn is a fixed point of S if and only if for all update schedules α :
{1, . . . , T} → P(V ), it holds that F(S,α)(~x) = ~x.
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3 The Analysis Framework

In this section, we give a formal description of classification schemes for dynamical systems.
Local transition functions are classified by Post classes (i.e., closures under composition)
and networks are classified by forbidden minors (i.e., closures under taking minors).

Post classes. We adopt notation from [11]. An n-ary boolean function f is a mapping
f : {0, 1}n → {0, 1}. Let BF denote the class of all boolean functions. There are two 1-ary
boolean functions: id(x) =def x and not(x) =def 1−x (which are denoted in formulas by x
for id(x) and x for not(x)). For b ∈ {0, 1}, a boolean function f is said to be b-reproducing
if and only if f(b, . . . , b) = b. For binary n-tuples ~a = (a1, . . . , an) and ~b = (b1, . . . , bn), we
say that (a1, . . . , an) ≤ (b1, . . . , bn) if and only if for all i ∈ {1, . . . , n}, it holds that ai ≤ bi.
An n-ary boolean function f is said to be monotone if and only if for all ~x, ~y ∈ {0, 1}n,
~x ≤ ~y implies f(~x) ≤ f(~y). An n-ary boolean function f is said to be self-dual if and only
if for all (x1, . . . , xn) ∈ {0, 1}n, it holds that f(x1, . . . , xn) = not(f(not(x1), . . . ,not(xn))).
A boolean function f is linear if and only if there are constants a1, . . . , an ∈ {0, 1} such
that f(x1, . . . , xn) = a0 ⊕ a1x1 ⊕ · · · ⊕ anxn. Here, ⊕ is understood as addition modulo 2
and xy is understood as multiplication modulo 2.

We say that a function class F is Post if and only if F contains the function id and F
is closed under introduction of fictive variables, permutations of variables, identification of
variables, and superposition (see, e.g., [11] for a formal definition). It is a famous theorem
by Post [23] that the family of all Post classes of boolean functions is a countable lattice
with respect to set inclusion (see, e.g., [23, 34] for a proof). The maximal meet-irreducible
classes are the following (see, e.g., [11]):

R0 =def { f ∈ BF | f is 0-reproducing } with logical basis {AND,XOR}

R1 =def { f ∈ BF | f is 1-reproducing } with logical basis {OR,XNOR}

L =def { f ∈ BF | f is linear } with logical basis {XOR, 0, 1}

M =def { f ∈ BF | f is monotone } with logical basis {AND,OR, 0, 1}

D =def { f ∈ BF | f is self-dual } with logical basis
{(x ∧ y) ∨ (x ∧ z) ∨ (y ∧ z)}

From the structure of Post’s lattice follows that each other class which does not contain
all boolean functions is included in an intersection of two of the classes listed.

Graph minor classes. We adopt notation from [14]. Let X and Y be two undirected graphs.
We say thatX is minor of Y if and only if there is an isomorphic subgraph Y ′ of Y such that
X is obtained by contracting edges of Y ′. Let � be the relation on graphs defined byX � Y
if and only if X is a minor of Y . A class G of graphs is said to be closed under taking minors
if and only if for all graphsG and G′, if G ∈ G and G′ � G, then G′ ∈ G. Let X be any set of
graphs. Forb�(X ) denotes the class of all graphs without a minor in X (and which is closed
under isomorphisms). More specifically, Forb�(X ) =def {G | G 6� X for all X ∈ X }. The
set X is called the set of forbidden minors. Note that Forb�(∅) is the class of all graphs.
As usual, we write Forb�(X1, . . . ,Xn) instead of Forb�({X1, . . . ,Xn}). A useful property
of the forbidden-minor classes is the monotonicity with respect to �, i.e., X � Y implies
Forb�(X) ⊆ Forb�(Y ).

The celebrated Graph Minor Theorem, due to Robertson and Seymour [26], shows
that there are only countably many graph classes closed under taking minors: A class G
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of graphs is closed under taking minors if and only if there is a finite set X such that
G = Forb�(X ). An important consequence of this theorem is that for each graph class
G which is closed under taking minors there exists a polynomial-time algorithm to decide
whether a given graph belongs to G [25].

The most prominent example of a characterization of a class closed under taking minors
in terms of forbidden sets are the planar graphs. Let Kn denote the complete graphs on n
vertices and let Kn,m denote the complete bipartite graph having n vertices in one compo-
nent and m vertices in the other component. The well-known Kuratowski-Wagner theorem
(see, e.g., [14]) states that a graph G is planar if and only if G belongs to Forb�(K3,3,K

5).
Planar graphs have an algorithmically important property: a graph X is planar if and
only if Forb�(X) has bounded treewidth [24]. As we use treewidth of a graph only in a
black-box fashion, we refer to, e.g., [14] for a definiton of treewidth. A class G of graphs is
said to have bounded treewidth if and only if there is a k ∈ IN such that all graphs in the
class have treewidth at most k.

A similar but much less subtle behavior to planar graphs show graphs with a vertex
cover of size one. Let G = (V,E) be a graph. We say that a subset U ⊆ V is a vertex cover
of G if and only if for all edges {u, v} ∈ E, it holds that {u, v}∩U 6= ∅. It is known that the
class of graphs having a vertex cover of size at most k is closed under taking minors [13].
Moreover, G has a vertex cover of size one if and only if G belongs to Forb�(K

3,K2⊕K2)
[13], where for graphs G and G′, G⊕G′ denotes the graph obtained by the disjoint union
of G and G′. A class of graphs is said to have bounded degree if and only if there is a k ∈ IN
such that all graphs in the class have a maximum vertex-degree of at most k.

Proposition 3.1. Let X be a graph. Then, X has a vertex cover of size one if and only
if Forb�(X) has bounded degree.

Proof. For (⇒), suppose that X has a vertex cover of size one. Then, X consists of some
star graph K1,k and some isolated vertices u1, . . . , ur. Assume that Forb�(X) does not
have bounded degree. Thus, there exists a graph G ∈ Forb�(X) of maximum vertex-
degree at least k + r. So, G contains a subgraph K1,k+r. Hence, X � G, contradicting
G ∈ Forb�(X). Therefore, Forb�(X) has bounded degree.

For (⇐), suppose that X does not have any vertex cover of size one. It is easily
seen that in this case, X contains a triangle or two non-incident edges. First, suppose X
contains a triangle K3. As Forb�(K

3) contains the class of all trees, which certainly does
not have bounded degree, we easily obtain from K3 � X, that Forb�(X) does not have
bounded degree as well. Second, suppose X contains at least two non-incident edges, i.e.,
K2⊕K2 � X. It follows that Forb�(X) contains for all k ∈ IN, the star graph K1,k. Thus,
Forb�(X) does not have bounded degree. This completes the proof of the direction from
left to right.

4 Islands of Tractability for Fixed-Point Existence

In this section we are interested in the computational complexity of the following problem.
Let F be a class of boolean functions and let G be a class of graphs.
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Problem: FixedPoints(F ,G)
Input: A boolean dynamical system S = (G, {f1, . . . , fn}) such that G ∈ G and

for all i ∈ {1, . . . , n}, fi ∈ F
Question: Does S have a fixed point?

The complexity of the problem depends on how transition functions are represented. We
consider the cases of look-up table, formula, and circuit representations. The correspond-
ing problems are denoted by FixedPointsT, FixedPointsF, and FixedPointsC. It is
obvious that all problem versions belong to NP. We say that a problem is intractable if it
is NP-hard, and it is tractable if it is solvable in polynomial time.

4.1 The Case of Local Transition Functions Given by Look-up Tables

The main result of this subsection is the following dichotomy result.

Theorem 4.1. Let F be a Post class of boolean functions and let G be a class of graphs
closed under taking minors. If F ⊇ D and G ⊇ Forb�(K3,3,K

5) then FixedPointsT(F ,G)
is intractable. Otherwise, FixedPointsT(F ,G) is tractable.

We postpone the proof to the end of this paragraph when we have proved a number of
complexity results for several classes of systems.

Dynamical systems with a tractable fixed-point analysis. We first summarize the tractable
classes of local transition functions of systems on arbitrary underlying networks. The
results presented next are well-known or follow easily from the definitions.

Proposition 4.2. 1. FixedPointsT(R1,Forb(∅)) is solvable in polynomial time.

2. FixedPointsT(R0,Forb(∅)) is solvable in polynomial time.

3. [8] FixedPointsT(M,Forb(∅)) is solvable in polynomial time.

4. [8] FixedPointsT(L,Forb(∅)) is solvable in polynomial time.

Notice that D is the only remaining class which does not contain all boolean functions.
Next we restrict network classes. To identify tractable cases, we express the fixed-

point existence problem as a constraint satisfaction problem. A constraint satisfaction
problem (CSP) consists of triples (X,D, C), where X = {x1, . . . , xn} is the set of variables,
D is the domain of the variables, C is a set of constraints Rxi1 , . . . , xik having associated
corresponding relations Ri1,...,ik , such that there exists an assignment I : X → D satisfying
(I(xi1), . . . , I(xik)) ∈ Ri1,...,ik for all constraints Rxi1 , . . . , xik ∈ C. We suppose that C is
listed by pairs 〈Rxi1 , . . . , xik , Ri1,...,ik〉.

Theorem 4.3. Let X be a planar graph. Then, FixedPointsT(BF,Forb�(X)) is solvable
in polynomial time.

Proof. We describe a general reduction from FixedPointsT(F ,G) to constraint satisfac-
tion problems. Suppose we are given a dynamical system S = (G, {f1, . . . , fn}). Let
G = (V,E) be the underlying network. Without loss of generality, we may assume that G
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does not have isolated vertices, i.e., di ≥ 1 for all i ∈ V . Define CSP(S) = (X,D, C) to be
the constraint satisfaction problem specified as follows:

X =def {x1, . . . , xn}

D =def
⋃

i∈V Di where for all i ∈ V ,

Di =def {(I, i) | I : N0
G(i) → {0, 1} such that fi(I(i0), . . . , I(ik)) = I(i)

where {i0, . . . , ik} = N0
G(i)}

C =def {Exixj | {i, j} ∈ E(G) and i ≤ j} where for all i ≤ j,

Eij =def { {(Ii, i), (Ij , j)} | Ii(k) = Ij(k) for all k ∈ N0
G(i) ∩N0

G(j) }

Let n = ‖V ‖ and m = ‖E‖. By construction of CSP(S) we obtain that ‖X‖ = n and that
the number of constrains in C is just m. The size of the domain D is at most proportional
to

∑

i∈V (1 + di) · 2
1+di , and the size of the set of constraint relations can bounded by

c ·
∑

{i,j}∈E(2 + di + dj) · 2
1+di · 21+dj ≤ c ·

(
∑

i∈V (1 + di) · 2
1+di

)2

for some constant c > 0. The latter holds because di ≥ 1 for all i ∈ V . All in all, this
easily implies that |CSP(S)| = O(|S|2). Hence, CSP(S) is computable in polynomial time
in the size of S. We have to show that

S has a fixed point ⇐⇒ CSP(S) has a satisfying assignment.

We prove both directions of the equivalence separately.
For (⇒), suppose the configuration I : V → {0, 1} is a fixed point of S. Define an

assigment I ′ : {x1, . . . , xn} → D by I ′(xi) =def I[N0
G(i)]. We show that I ′ satisfies all

constraints. For all i ∈ V , let Ii denote I[N0
G(i)]. Let Exixj be any constraint of CSP(S)

and let Eij be the relation associated with Exixj. By definition, {i, j} ∈ E. Since I is
a fixed point, it holds that (Ii, i) and (Ij , j) belong to D. For all k ∈ N0

G(i) ∩ N0
G(j) we

obtain Ii(k) = I ′(xi)(k) = I ′(xj)(k) = Ij(k). Thus, {(Ii, i), (Ij , j)} lies in Eij . This proves
the direction from left to right.

For (⇐), suppose I is a satisfying assignment for CSP(S). Let (Ii, i) ∈ D be the
pair which I assigns to the variable xi ∈ V . Define a configuration I ′ : V → {0, 1} by
I ′(i) =def Ii(i). We are done if we are able to show that the following is true for all i ∈ V :

I ′[N0
G(i)] ≡ Ii (4.1)

Since for all i ∈ V , fi(Ii(i0), . . . , Ii(ik)) = Ii(i) where {i0, . . . , ik} = N0
G(i), Eq. (4.1)

implies that I ′ is a fixed point of S. To verify the equation, we consider i and all neighbors
of i individually. Let j ∈ N0

G(i). If j = i, there is nothing to show. So let j 6= i.
Since {i, j} ∈ E(G) and since I is a satisfying assignment, Ii(k) = Ij(k) holds for all
k ∈ N0

G(i) ∩N0
G(j). Thus, we obtain I ′(j) = Ij(j) = Ii(j). This shows the correctness of

Eq. (4.1) for all i ∈ V . Hence, the direction from right to left is proved.
We thus have established a polynomial-time many-one reduction between the fixed-

point existence problem and constraint satisfaction problems. Moreover, it is easy to see
that the graph G of a given dynamical system S is isomorphic to CSP(S)’s constraint
graph which consists of the vertex set {x1, . . . , xn} and the edge set {{xi, xj} | Exixj ∈ C}.
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Thus, if X is planar, then Forb�(X) has bounded treewidth, and so the constraint graph of
CSP(S) has bounded treewidth for each dynamical system S = (G, {f1, . . . , fn}) such that
G ∈ Forb�(X). The theorem follows from the well-known polynomial-time algorithms for
constraint satisfaction problems having constraint graphs of bounded treewidth [15].

Dynamical systems with an intractable fixed-point analysis. We turn to the intractable
cases of the fixed-point existence problem. As a first step, FixedPointsT(F ,G) is shown
to be NP-complete for arbitrary boolean, local transition functions and planar networks.
Recall that similar results have only been shown for formula respresentation.

We use Planar 3SAT to prove NP-hardness. Let H = C1∧· · ·∧Cm be a propositional
formula in conjuctive normal form where each clause Cj consists of three literals (for short,
3CNF) where positive literals xi and negative literals ¬xi are taken from the set of variables
{x1, . . . , xn}. The graph representation Γ(H) of H is a bipartite graph consisting of the
vertex set {x1, . . . , xn, C1, . . . , Cm} and all edges {xi, Cj} such that variable xi appears as
a literal in the clause Cj . A planar 3CNF is a 3CNF such that its graph representation is
planar. Planar 3SAT is the problem to decide whether a given planar 3CNF is satisfiable.
It is well known that Planar 3SAT is an NP-complete problem [19].

Theorem 4.4. FixedPointsT(BF,Forb(K3,3,K
5)) is NP-complete, even restricted to un-

derlying networks having maximum vertex degree three.

Note that for graphs having maximum degree at most two the problem is tractable.

Proof. Let H = C1∧C2∧· · ·∧Cm be a 3CNF having variables x1, . . . , xn and a planar graph
representation Γ(H) where V (Γ(H)) = U ∪W , U = {x1, . . . , xn}, and W = {C1, . . . , Cm}.
Suppose that V (Γ(H)) is totally ordered such that the clause vertices of W come before
the variable vertices of U .

We construct the following system. For the underlying network G = (V,E), compute
an embedding of Γ(H) in the plane (in linear time). Now replace the vertices of U in
the following way. Let xi ∈ U and suppose that xi’s neighbors Cj1 , . . . , Cjr in Γ(H)
are clockwise ordered with respect to the planar embedding, such that j1 is minimal in
{j | xi appears as a literal in Cj }. Replace the vertex xi ∈ U by a cycle {xi,j1 , . . . , xi,jr}
which is connected to the neighbors of xi in Γ(H) by having an edge {xi,j, Cj} whenever xi
appears as a literal in Cj. Let G = (V,E) be the graph obtained after all replacements are
made in this way. Clearly, G is planar, i.e., G ∈ Forb�(K3,3,K

5), and can be computed
in time polynomial in the size of H. Note that the maximum degree of a vertex in G is
three. To complete the construction, we specify the local transition functions. Let Ci ∈ W
be clause vertex. Let xi1,j1 , xi2,j2 , and xi3,j3 be the neighbors of Ci in G. Define the local
transition function fCi

by

fCi
(I(Ci), I(xi1,j1), I(xi2,j2), I(xi3,j3))

=def

{

1 if
(

I(xi1,j1), I(xi2,j2), I(xi3,j3)
)

is a satisfying assignment of Ci

not(I(Ci)) otherwise

Let xi,j ∈ V be a variable vertex. Suppose that {Cj , xi,k0 , . . . , xi,kr} = N0
G(xi,j) where r is

the degree of xi,j in G. Define the local transition function fxi,j
by

fxi,j
(I(Cj), I(xi,k0), . . . , I(xi,kr)) =def

{

I(xi,j) if I(xi,k0) = · · · = I(xi,kr)
not(I(xi,j)) otherwise
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Let SH denote the dynamical system (G, {fv |v ∈ V } constructed from any planar 3CNF
H in the way just specified. Note that, since the maximum degree of any vertex in G is
three, we can compute SH in time polynomial in the size of H.

By construction of SH , a configuration I is a fixed point of SH if and only if I satisfies
I(xi,j1) = · · · = I(xi,jr) for all i ∈ {1, . . . , n} and, furthermore, I(Cj) = 1 for all j ∈
{1, . . . ,m}. Hence, it is easily seen that H has a satisfying assignment if and only if SH

has a fixed point.

We extend the NP-completeness of the fixed-point existence problem to systems with
self-dual transition functions and planar graphs. First, observe that the transition func-
tions for clause variables are not self-dual. This implies that the construction used in the
last theorem is not fully appropriate. However, arbitrary boolean functions can easily be
embedded into a self-dual function of larger arity.

Proposition 4.5. Let n ∈ IN+. For each k-ary boolean function f : {0, 1}k → {0, 1}, the
function sdn(f) : {0, 1}

k+n+1 → {0, 1} defined for all x1, . . . , xk, y1, . . . , yn, z ∈ {0, 1} by

sdn(f)(x1 . . . , xk, y1, . . . yn, z) =def







f(x1, . . . , xk) if y1 = · · · = yn = 0
not(f(not(x1), . . . ,not(xk))) if y1 = · · · = yn = 1
not(z) otherwise

is self-dual.

Proof. Follows from the definitions by case analysis.

The usage of Proposition 4.5 introduces ambiguity to the set of fixed points.

Proposition 4.6. Let S = (G, {fi | i ∈ V }) be a dynamical system over {0, 1} so that all
local transition functions fi are self-dual. Let U ⊆ V . Then, a configuration I : V → {0, 1}
is a local fixed point of S for U if and only if the configuration I : V → {0, 1} defined by
I(i) = not(I(i)), is a local fixed point of S for U .

Proof. Immediate from the definitions.

Theorem 4.7. FixedPointsT(D,Forb(K3,3,K
5)) is NP-complete.

Proof. We reduce from FixedPointsT(BF,Forb(K3,3,K
5)). Let S = (G, {fi | i ∈ V }) be

a dynamical system such that the underlying network G is planar. We construct another
system S′ = (G′, {f ′

i | i ∈ V ′}) as follows. The network G′ = (V ′, E′) is defined by
V ′ =def V ∪ E and E′ =def E ∪ { {i, e} | i ∈ V, e ∈ E, i ∈ e }. It is easily seen that G′ is
planar as well. Suppose V ′ is ordered such that V is in the same ordering as for S, E is
arbitrarily ordered, and E comes completely after V . The local transition functions of the
vertices of V ′ are specified as follows. Suppose i ∈ V . Let {i0, . . . , ik} = N0

G′(i) ∩ V and
let {e1, . . . , ek} = N0

G′(i) ∩ E. We define the local transition function f ′
i by

f ′
i(xi0 , . . . , xik , xe1 , . . . , xek) =def sdk(fi)(xi0 , . . . , xik , xe1 , . . . , xek , xi).

By Proposition 4.5 and since D is closed under identification of variables, f ′
i is self-dual.

Moreover, as the degree of i in V ′ is 2k where k is the degree of i in G, the function table
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can be computed in polynomial time. Now consider a vertex e = {i, j} ∈ E. Define the
local transition function f ′

e by

f ′
{i,j}(xi, xj , x{i,j}) =def x{i,j}.

Clearly, f ′
e is self-dual. As the degree of e ∈ E is two, the function table is trivially

computable in polynomial time. It remains to show that

S has a fixed point ⇐⇒ S′ has a fixed point.

We prove both direction individually.
For (⇒), suppose the configuration I : V → {0, 1} is a fixed point of S, i.e., for all i ∈ V ,

it holds that fi(I(i0), . . . , I(ik)) = I(i) where {i0, . . . , ik} = N0
G(i). Define a configuration

I ′ : V ′ → {0, 1} for i ∈ V by I ′(i) =def I(i) and for e ∈ E by I ′(e) =def 0. Consider i ∈ V .
Assume {i0, . . . , ik} = N0

G′(i) ∩ V and {e1, . . . , ek} = N0
G′(i) ∩E. We obtain

f ′
i(I

′(i0), . . . , I
′(ik), I

′(e1), . . . , I
′(ek))

= sdk(fi)(I(i0), . . . , I(ik), 0, . . . , 0, I(i)) = fi(I(i1), . . . , I(ik)) = I(i) = I ′(i).

Thus, I ′ is a local fixed point for i ∈ V . Suppose e = {i, j} ∈ E. By definition,
f ′
{i,j}(I

′(i), I ′(j), I ′({i, j})) = I ′({i, j}). Thus, I ′ is a local fixed point for e ∈ E. Proposi-

tion 2.1 implies that I ′ is a fixed point of S′.
For (⇐), suppose the configuration I ′ : V ′ → {0, 1} is a fixed point of S′. Observe that

for all e, e′ ∈ E ⊆ V ′, there is a walk in G′ from e to e′ alternating between vertices in V
and E, i.e., there are vertices p0, . . . , p2ℓ ∈ V ′ such that {pi, pi+1} ∈ E′ for all 0 ≤ i < 2ℓ,
p0 = e, p2ℓ = e′, and for all 0 ≤ j < ℓ, it holds that p2j ∈ E and p2j+1 ∈ V . Consider a
vertex p2j+1 ∈ V . Let {i0, . . . , ik} = N0

G′(p2j+1) ∩ V and {e1, . . . , ek} = N0
G′(p2j+1) ∩ E.

Since I ′ is a fixed point of S, we have

I ′(p2j+1) = f ′
p2j+1

(I ′(i0), . . . , I
′(ik), I

′(e1), . . . , I
′(ek))

= sdk(fp2j+1
(I ′(i0), . . . , I

′(ik), I
′(e1), . . . , I

′(ek), I
′(i))

By definition of sdk(fp2j+1
), it follows that I ′(e1) = · · · = I ′(ek). In particular, I ′(p2j) =

I ′(p2j+2). This implies that for all e, e′ ∈ E, it holds that I ′(e) = I ′(e′). By Proposition
4.6, we may assume that I ′(e) = 0 for all e ∈ E. Define a configuration I : V → {0, 1} of
S by I(i) = I(i) for all i ∈ V . It is easily seen that I is a fixed point of S.

Composing the big picture. We come back to the proof of the main result of the subsection.
For convenience, we state it once more.

Theorem 4.1. Let F be a Post class of boolean functions and let G be a class of graphs
closed under taking minors. If F ⊇ D and G ⊇ Forb�(K3,3,K

5) then FixedPointsT(F ,G)
is intractable. Otherwise, FixedPointsT(F ,G) is tractable.

Proof. If F ⊇ D and G ⊇ Forb(K3,3,K
5), then FixedPoints(F ,G) is NP-complete by

Theorem 4.7. Suppose F 6⊇ D or G 6⊇ Forb(K3,3,K
5). The maximal classes F that do

not contain D are R1, R0, M , and L. For all these classes, by Proposition 4.2, the fixed-
point existence problem is solvable in polynomial time. It remains to consider the case
that G 6⊇ Forb(K3,3,K

5). Suppose G = Forb(X1, . . . ,Xn). Since G 6⊇ Forb�(K3,3,K
5),

there is an i such that Xi is planar. Since G ⊆ Forb�(Xi), Theorem 4.3 shows that
FixedPointsT(BF,G) is solvable in polynomial time.
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4.2 Succinctly Represented Local Transition Functions

In this section we prove a dichotomy theorem for the fixed-point existence problem when
transitions are given by formulas or circuits. As usual, the size of formula is the number of
symbols from the basis used to encode the formula, the size of a circuit is the number of
gates it consists of (including the input gates). Both succinct representations of functions
lead to the same result.

Theorem 4.8. Let F be a Post class of boolean functions and let G be a class of graphs
closed under taking minors. If F ⊇ D and G ⊇ Forb�(K

3,K2⊕K2), then FixedPointsF

(F ,G) is intractable. Otherwise, FixedPointsF(F ,G) is tractable. Moreover, the same
statement holds for FixedPointsC.

Again we postpone the proof until we have proved a number of special results.
On the side of tractable cases, first note that Proposition 4.2 still holds for formulas

and circuits. Actually, the results in [8] were stated for formulas. Furthermore, notice
that circuits over the basis {XOR, 0, 1} can easily be transformed in polynomial time into
equivalent formulas over the same basis. The following result provides the tractability limit
for restricted network classes.

Theorem 4.9. Let X be a graph having a vertex cover of size one. Then, FixedPointsF
(BF,Forb�(X)) and FixedPointsC(BF,Forb�(X)) are solvable in polynomial time.

Proof. Suppose X has a vertex cover of size one. Then, there is an r ∈ IN such that all
graphs in Forb�(X) have maximum vertex degree r. Thus, if we compute lookup tables
from formulas or circuits, then each lookup table has at most 2r+1 entries. Hence, in
polynomial time, we can transform each dynamical system S with a network in Forb�(X)
and local transitions functions given by formulas or circuits into a dynamical system S′

with the same networks and local transition functions given by lookup tables such that
S and S′ have the same fixed-point configurations. Moreover, since X is planar (note
that K3 � K3,3 and K2 ⊕ K2 � K3,3 as well as K3 � K3,3 and K2 ⊕ K2 � K5),
Theorem 4.3 implies polynomial-time solvability of FixedPointsF(BF,Forb�(X)) and
FixedPointsC(BF,Forb�(X)).

Theorem 4.10. FixedPointsF(D,Forb�(K
3,K2 ⊕K2)) is NP-complete.

Proof. The reduction is from 3SAT. We start with a description of a reduction to dynami-
cal systems where each transition function is computed by a 3CNF. Suppose we are given a
3CNF H = C1∧· · ·∧Cm having variables x1, . . . , xn. Note that the formulaH ′ =def H∨x0,
where x0 is a new variable, satisfies for any assignment I : {x0, x1, . . . , xn} → {0, 1}
that fH′(I(x0), I(x1), . . . , I(xn)) = I(x0) if and only if I(H) = 1 and I(x0) = 1. More-
over, H ′ is equivalent to a 4CNF which can be transformed in a 3CNF Ĥ with vari-
ables x0, x1, . . . , xn, xn+1, . . . , xn+m such that Ĥ is satisfiable with 1 assigned to x0 if and
only if H is satisfiable with 1 assigned to x0. Define SH to be the dynamical system
(G, {f0, . . . , fn+m}) consisting of the network G = (V,E) where V =def {0, 1, . . . , n +m}
and E =def { {0, i} | i ∈ {1, . . . , n + m} }. Thus, G is a star K1,n+m, i.e., G ∈
Forb�(K

3,K2 ⊕ K2). The local transition functions are given as follows. For a vertex
i ∈ {1, . . . , n +m}, the local transition function fi is defined to be computed by the for-
mula H(x0, xi) =def xi. For the central vertex, the local transition function f0 is given by
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the formula Ĥ(x0, x1, . . . , xn+m) where the variable xi stands for a vertex i ∈ V . Clearly,
SH can be computed in time polynomial in the size of H and we have that H is satisfiable
if and only if SH has a fixed point.

We now transform the dynamical system SH into another system S′
H with self-dual

local transition functions given by formulas over the corresponding basis. Note that D has
a single basis function of arity three. Let D denote the corresponding ternary function
symbol, i.e., the semantics of D is defined by D(x, y, z) ≡def (x∧y)∨ (x∧z)∨ (y∧z). Note
that D(x, x, y) ≡ y. We embed a 3CNF into a self-dual function, similarly to Proposition
4.5. That is, for an arbitrary 3CNF H = C1 ∧ · · · ∧ Cm having variables x1, . . . , xn,
define the formula dual(H)(x1, . . . , xn) = H(x1, . . . , xn). Define sd(H)(x1, . . . , xn, z) =def

(H ∧ z) ∨ (dual(H) ∧ z). By induction over the number of clauses, we show that sd(H) is
equivalent to a formula built using D which is of polynomial size:

1. For the base of induction, suppose m = 1. Since we know how to express negation
using D, without loss of generality, we assume that H = (x1 ∨ x2 ∨ x3). So, sd(H) ≡
(

(x1 ∨ x2 ∨ x3) ∧ z
)

∨
(

(x1 ∧ x2 ∧ x3) ∧ z
)

. By truth-table inspection we obtain that

sd(H) ≡ D(z,D(z, x1, x2),D(z, x1, x3)).

2. For the induction step, suppose m > 1. Let H ′ = C1 ∧ · · · ∧ Cm be a 3CNF over
the variables x1, . . . , xn. Define H ′ =def C1 ∧ · · · ∧ C⌊m/2⌋ and H ′′ =def C⌊m/2⌋+1 ∧

· · · ∧Cm. Some equivalent transformations show that sd(H) ≡ D(z, sd(H ′), sd(H ′′)).
By induction hypothesis, sd(H ′) and sd(H ′′) can be expressed using D. Replacing
sd(H ′) and sd(H ′′) (and the negation) gives the appropriate formula for sd(H). Note
that the recursion depth for formula replacement is logarithmic. It follows that the
size of the formula for sd(H) is O(|H|2).

Finally, we define the dynamical system S′
H to be specified as follows. The network G′ =

(V ′, E′) consists of the vertex set V ′ =def {0, 0, . . . , n + m} and the edge set E′ =def

{{0, i} | i ∈ {0, . . . , n+m} }. Thus, G′ is a star K1,n+m+1, i.e., G
′ ∈ Forb�(K

3,K2⊕K2).
The local transition function fi for a vertex i ∈ {0, . . . , n + m} is given by H(x0, xi) =
D(x0, x0,D(x0, x0, xi)). Notice that H(x0, xi) ≡ xi. The local transition function f0 for

the vertex 0 is given as follows. Recall that Ĥ is the 3CNF associated with the local
transition function of vertex 0 in the system SH . Then f0 is represented by the D-formula

equivalent to sd(Ĥ)(x0, . . . , xn+m, x0). Clearly, S′
H can be computed in time polynomial

in the size of H. Moreover, it is easy to verify that H is satisfiable if and only if S′
H has a

fixed point.

We combine Theorem 4.9 and Theorem 4.10 to prove Theorem 4.8.

Proof. (Theorem 4.8) If F ⊇ D and G ⊇ Forb(K3,K2 ⊕ K2), then FixedPoints(F ,G)
is NP-complete by Theorem 4.10. Suppose F 6⊇ D or G 6⊇ Forb(K3,K2 ⊕ K2). The
maximal classes F that do not contain D are R1, R0, M , and L. For all these classes, by
Proposition 4.2, the fixed-point existence problem is solvable in polynomial time. It remains
to consider the case that G 6⊇ Forb(K3,K2 ⊕K2). Suppose G = Forb(X1, . . . ,Xn). Since
G 6⊇ Forb�(K

3,K2 ⊕K2), there is an i such that Xi has a vertex cover of size one. Since
G ⊆ Forb�(Xi), Theorem 4.9 shows that FixedPointsT(BF,G) is solvable in polynomial
time.
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5 Conclusion

We characterized the islands of tractability for the fixed-point existence problem for boolean
dynamical systems with respect to transition classes F closed under composition and net-
work classes G closed under taking minors: If F contains the self-dual functions and G con-
tains the planar graphs, then FixedPointsT(F ,G) is intractable, otherwise it is tractable.
Replacing “planar graphs” by “graphs having a vertex cover of size one” yields the same
dichotomy theorem for the succinct representations of local transition functions by formu-
las or circuits. The linear and monotone functions have been shown to be tractable cases
in [8]. There, the authors suggested to find more tractable classes of local transition func-
tions. Over the boolean domain our results show that, aside from two obvious exceptions
(the 0- and 1-reproducing functions), there are no more such function classes.

Although the proposed analysis framework allows elegant dichotomy theorems for fixed-
point existence, it is certainly necessary to examine its usefulness for other computational
problems for discrete dynamical systems and to refine it appropriately. Another important
open problem is the extension of the dichotomy theorems to larger domains. This seems
a challenging issue as even in the case of a ternary domain the number of Post classes is
continuum (see, e.g., [22]).

Acknowledgements. I am grateful to Ernst W. Mayr (TU München) for careful proof-
reading and pointing out an error in earlier versions of this paper.
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