Math.comput.sci. 2 (2008), 355-378

(© 2008 Birkhduser Verlag Basel/Switzerland . .
1661-8270/020355-24, published online December 5, 2008 Mathematics in
DOI 10.1007/s11786-008-0058-2 Computer Science

Spurious Disambiguation Errors and How to
Get Rid of Them

Claudio Sacerdoti Coen and Stefano Zacchiroli

Abstract. The disambiguation approach to the input of formulae enables users
of mathematical assistants to type correct formulae in a terse syntax close
to the usual ambiguous mathematical notation. When it comes to incorrect
formulae however, far too many typing errors are generated; among them we
want to present only errors related to the formula interpretation meant by
the user, hiding errors related to other interpretations.

We study disambiguation errors and how to classify them into the spuri-
ous and genuine error classes. To this end we give a general presentation of the
classes of disambiguation algorithms and efficient disambiguation algorithms.
We also quantitatively assess the quality of the presented error classification
criteria benchmarking them in the setting of a formal development of con-
structive algebra.

Mathematics Subject Classification (2000). Primary 68T99; Secondary 03B70.

Keywords. Ambiguity, semantic analysis, user interaction, metavariables.

1. Introduction

In [11] we proposed an efficient algorithm for parsing and semantic analysis of am-
biguous mathematical formulae. The topic is particularly relevant for the Math-
ematical Knowledge Management community since every mathematical assistant
sooner or later faces the need of letting its user type formulae. When the user is
not acquainted with a system or its library — as it happens when using mathemat-
ical search engines [1,3,13] — we cannot assume the knowledge of a language other
than the usual corpus of ambiguous mathematical notation.

Our algorithm mimics a mathematician’s behavior of disambiguating a for-
mula by choosing the only possible interpretation that has a meaning in the current

Partially supported by the Strategic Project “DAMA: Dimostrazione Assistita per la Matematica
e ’Apprendimento” of the University of Bologna.

356 C. Sacerdoti Coen and S. Zacchiroli Math.comput.sci.

context. However when a formula is not correct, every interpretation may be con-
sidered as “equally” meaningless. Nevertheless, a mathematician seems to be able
to understand which interpretation is more likely, spotting the genuine errors in
the formula.

Example 1.1. If f is known to be a real-valued function on vectors, the formula
fla-z+06-y+2) =a- f(x)+6- f(y)+2is not correct and a mathematician would
probably assert that z is not used properly on the right hand side of the equation.
Instead, the algorithm of [11] returns several alternative error messages such as:
in "f(a~x7r)...jr)z) = ...": x is a vector, but is used as a scalar. The
error spotted by the mathematician is just one of them.

A possible way out is designing a disambiguation algorithm able to rate
the possible interpretations so that the one expected by a mathematician ranks
first. Also in those cases were several possible interpretations are meaningful, this
approach is necessary to choose automatically among them or to ask the user
providing a sensible default. In [2] we proposed such an algorithm that was designed
to tackle the case of correct formulae with multiple interpretations. In this paper
we address the case of formulae for which no correct interpretation can be found.!

Consider again Example 1.1. We need to find a criterion to identify the given
error message as spurious, i.e. as an error relative to an interpretation that is not
the one expected by the user. Note that a formula can contain several genuine
errors: they are all the errors in the expected interpretation of the formula. The
heuristic criterion we propose is the following.

Criterion 1 (Spurious error detection). An error is spurious when it is localized
in a sub-formula F such that there is an alternative interpretation of the formula
such that no error is localized in F'.

Intuitively an error is spurious when no genuine error is spatially co-located
with it, i.e. genuine errors are to be found elsewhere. In Example 1.1 if we interpret
all the operators in the left hand side as operations on vectors we do not obtain
any error message in the left hand side. Hence the genuine error must be on the
right hand side.

Note that a genuine error localized in a formula F' does not always say that F’
is the sole responsible for the overall incorrectness. For instance in v=x where v
is a vector and x a scalar, we have either a genuine error localized in v (a vector
used as a scalar) or another genuine one localized in x (a scalar used as a vector).
Moreover, a formula may even contain two genuine independent errors at the same
time; in this case the errors are localized in disjoint sub-formulae. An example is
the conjunction of two statements each containing an error.

LA short version of this paper has already appeared in the proceedings of the Mathematical
Knowledge Management 2007 conference [6]. In the present version we study 2 alternative criteria
and algorithms for the recognition of spurious disambiguation errors, assess their usefulness, and
compare them quantitatively.

Vol. 2 (2008) Spurious Disambiguation Errors and How to Get Rid of Them 357

The main goal of this paper is the integration of spurious error detection in
the efficient algorithm proposed in [11]. We proceed as follows. In Section 2 we
formalize the specification of the class of disambiguation algorithms. In Section 3
we provide an improved description of the algorithm proposed in [11], proving that
it is a member of the disambiguation algorithm class, while in Section 4 we extend
the algorithm with spurious error detection. Finally, in Section 5 we benchmark
the extended algorithms.

2. Disambiguation algorithms

Traditionally semantic analysis maps an abstract syntax tree (AST for short) of
a formula to a term — its semantics — in some calculus. In an ambiguous setting,
semantic analysis rather maps an AST to a set of terms; the set can then be
rated according to some criterion to identify the best semantics. To represent in
a concise way a set of terms sharing a common structure, we use a single term
containing non linear placeholders in the spirit of [5,8]. We say that a term w’
is an instantiation (or instance) of w if it is obtained filling zero or more of its
placeholders.

For example 7y =75+75 stands for the set of terms {u; =us+us | ug, ug terms};
7, =040 and 0 = 0+ 0 are two instances belonging to that set. In Figure 1 is
given a graphical intuition of the mapping from terms with placeholders to the
corresponding sets of placeholder free instances; the latter sets can overlap. In the
previous example 0 = 0 4 0 is also an instance of 71 =75+474.

Lemma 2.1. If uy is an instance of ug then the set of instances of uy is a subset
of the set of instances of us.

Proof. By definition of instantiation. O

Among all the terms that are semantics of a given AST, we are interested only
in those that are well-typed. Thus, we are interested in terms with placeholders
only when they denote non-empty sets of well-typed instantiations. We assume
the existence of a refiner R(-), which is a function from terms to outcomes. An
outcome is either the distinguished symbol v or an informative error message.
The latter is returned if and only if the set of well-typed instantiations of the
input term is (known to be?) empty. For instance R(f(?1) = 1) = v whereas
R(f(?1) = f+1) = "f is a function, but is used as a scalar". In the
latter case the error message is relevant to every possible instantiation; in the
former there is no guarantee that every possible instantiation is well-typed. Still,
the following lemma holds.

Lemma 2.2. A term u without placeholders is well-typed iff R(u) = v.

2For placeholder-free terms (i.e. closed terms) the problem reduces to type checking and is
decidable; for open terms we do not require decidability, which cannot be achieved in type
systems with dependent types.

358 C. Sacerdoti Coen and S. Zacchiroli Math.comput.sci.

{ulu=[t],,<S}

{ulu=[tl,, ¢'co, 'S, pe®}

FIGURE 1. Interpretations are in 1-1 correspondence with terms
(with placeholders). Terms, hence interpretations, represent sets
of ground instances, i.e. fully determined semantics. Since such
sets can overlap, a set of interpretations does not partition the
set of its semantics.

Proof. w is the only instance of itself thus, by definition of R(-), R(u) # v iff u is
not well-typed. O

According to our definition, a refiner can report only one error message: when
a formula contains more than one typing error, the refiner only signals the first
one. The disambiguation algorithms we present in the paper will have the same
behavior, since generation of error messages is done by the refiner.

We are now ready to describe the specification of a disambiguation algorithm
for an AST t. Let Dom(t) be the set of occurrences of overloaded symbols in ¢.
For each s € Dom(t), let Dy be the set of possible choices for s. A non-overloaded
symbol occurring in ¢ is intuitively equivalent to an overloaded symbol s’ such that
D, is a singleton.?

An interpretation ¢ for ¢ is a partial function Dom(t) > s — ugs € Ds.
Intuitively a (partial) interpretation restricts the set of semantics of ¢ resolving
the overloading for the occurrences in its domain. When an interpretation is a
total function a unique semantics is determined. To formalize this intuition we
associate to a partial interpretation ¢ a term with placeholders [[t]4, where:

e any occurrence of a non-overloaded symbol s has been assigned its sole se-
mantics;

e all (applications of) occurrences of overloaded symbols not in the domain of
¢ have been interpreted as fresh placeholders;

3We do not include non-overloaded symbols in Dom (t) since the computational complexity of
the presented algorithms will be a function of the cardinality of Dom (t).

Vol. 2 (2008) Spurious Disambiguation Errors and How to Get Rid of Them 359

e any occurrence of an overloaded symbol s in the domain of ¢ has been inter-
preted as ¢(s).
For instance, when ¢ = [+1 — point-wise sum]|, [(f+g) (x)=f (x)+g(x)], denotes
(f + g)(x) =?1. Note that the arguments of the second occurrence of plus have
been omitted.

We denote with ®, the set of all (partial) interpretations for ¢ and with &,
the set of all total interpretations. In Figure 1 it is shown how interpretations are
associated, via open terms, to (possibly overlapping) sets of semantics. We call L
the function everywhere undefined and we denote as ¢[s — u] the function that
maps s to u and behaves as ¢ elsewhere. The set of interpretations is ordered by
the usual order on partial functions: ¢; C ¢o iff VsVu ¢1(s) = u = ¢2(s) = u. The
minimum of ® according to C is L.

Since we are only interested in terms that are possible semantics for a given
AST ¢, in the remainder of the paper when we write “u is an instance of v” we also
implicitly assume that u = [t]4 for some (partial) interpretation ¢ € ®;. Moreover
we will write “u is a ground instance of v” when u does not contain placeholders
and u is an instance of v.

Lemma 2.3. ¢1 C ¢ iff [t]4, is an instance of [t], .
Proof. By structural induction on ¢ and by cases on the definition* of [-]. O

Together with Lemma 2.1, Lemma 2.3 confirms the intuition that the more
overloading is resolved, the smaller the set of semantics.

A disambiguation algorithm partitions the set of semantics of an AST into
classes of well-typed terms and classes of terms characterized by the same typing
error. Since Lemma 2.2 holds only for placeholder-free terms, all terms in the
well-typed class must have no placeholders. We will use the notion of cover to
grasp partitions at the interpretation level, and the notion of typing cover to grasp
well-typedness.

We say that a set of interpretations S covers a set of interpretations T, written
ST, when Vo € T,31¢/ € S, ¢/ T ¢. We will say that S is a cover when St>®,. As
shown in Figure 2(b), uniqueness is required to think of covers as partitions (see
Theorem 2.6 below). However, as shown in Figure 2(a), uniqueness is not sufficient
in the general case of S covering 7. This will be solved with the introduction of
refinements — see Figure 2(c) — whose formal definition follows Theorem 2.6.

Lemma 2.4. If S > T then for each ¢y € T there exists a unique g2 € S such that
[t]4, is an instance of [t],.

Proof. By Lemma 2.3 and the definition of cover. O

Corollary 2.5. If S> &, and ¢1,ps € S, 1 # ¢ then the set of instances of [l
is disjoint from the set of instances of [t] e,

4Since, for the sake of brevity, we omitted the definition of [-] ., the present lemma can also be
seen as a required property of [-]-.

360 C. Sacerdoti Coen and S. Zacchiroli Math.comput.sci.

FIGURE 2. (a) When S > T, S partitions the set of interpre-
tations T', but not the set of ground instances of T. (b) When
S > ®,, S partitions the set of all semantics. (c) When S>T, S
partitions both the set of interpretations 7" and the set of ground
instances of T' (a subset of the set of all semantics).

Proof. Suppose per absurdum that u is an instance of both [¢t]y, and [¢]4,. Let
¢ € &, such that [t]4 is an instance of u. By Lemma 2.4, ¢; = ¢, but by hypothesis
we know ¢1 # ¢s. O

Theorem 2.6. S, iff {{u | u is a ground instance of [t]y} | ¢ € S} is a partition
of {u| 3¢ € &1, u = [t]y} (i.e. the set of all semantics of t).

Proof. The forward implication is by Lemma 2.4 and Corollary 2.5. For the con-
verse implication consider an arbitrary but fixed ¢ € ®;. By hypothesis there is a
unique ¢’ € S such that u = [t]4 is a ground instance of [¢]4. Thus S>> @,. O

We say that a set of interpretations A’ is a refinement of a set of interpreta-
tions A, written A<>A’ when:

1. A A
2. for all ¢ € A and 1) € ®; such that [t], is an instance of [t]4, there exists a

unique ¢’ € A’ such that [t], is an instance of], .

As shown in Figure 2(c), when ST we can think of S as a partition coarser
than T'. Refinements will play a major role in our disambiguation algorithm that
proceeds by iteratively building more and more fine grained refinements. Theo-
rem 2.7, whose intuition is shown in Figure 3(a), is a preliminary step in this

Vol. 2 (2008) Spurious Disambiguation Errors and How to Get Rid of Them 361

error 2
errorl |
. |

FIGURE 3. (a) Theorem 2.7: when A and B are disjoint and par-
tition the set of theirs ground instances, refining A with A’ refines
the partition. (b) A typing cover partitions the set of all seman-
tics. A well-typed interpretation represents a well-typed singleton;
a non well-typed interpretation represents an equivalence class of
semantics which cannot be typed for the same reason. (c¢) Refine-
ment process: faulty interpretations are propagated, well-typed
ones are refined as in (a) until a typing cover is reached (b).

direction, since it shows how to build a more precise refinement by substituting
some interpretations (intuitively those so-far correct) with more instantiated ones.

Theorem 2.7. If ANB =0, AUB> &, and ADA’, then A’ UB > &,.

Proof. By Theorem 2.6 {{u | u is a ground instance of [t]4} | ¢ € AU B} parti-
tions the set of all semantics of ¢. {{u | u is a ground instance of [t],} | $ € A’UB}
partitions the same set by definition of ACPA’, where the requirement A > A’ is
fundamental to avoid interference with B. Hence the thesis by Theorem 2.6. O

A set S of interpretations is said to be typing when for all € S, if R([t]4) = v
then ¢ € $,. In particular a typing cover is a cover St &, that is also typing. We use
typing covers as concise representations of typing information for all the semantics
of a term (see Figure 3(b) and Theorem 2.8). The output of our disambiguation
algorithm is a typing cover equipped with rating information for its interpretations
(that will be called classification).

362 C. Sacerdoti Coen and S. Zacchiroli Math.comput.sci.

Theorem 2.8. For each typing cover S and for each term u in the set of all seman-
tics of t, u is well-typed iff R([t]y) = v where ¢ is the only interpretation in S
such that v = [t] 4.

Proof. If R([t]s) # v by definition of R(-). Otherwise by Lemma 2.2 and defini-
tion of typing cover. O

We also expect something more that cannot be grasped formally: if S is a
typing cover, u is in the set of all semantics of ¢, ¢ is the only interpretation in S
such that u is a ground instance of [t]y, and u is not well-typed, then the error
message for R([t]4) should also be relevant for u. This property is inherited from
the refiner.

Intuitively, the set of interpretations that corresponds to the coarsest parti-
tion of the semantics of ¢ is the singleton set { L}. The following lemma confirms
this intuition and provides necessary and sufficient conditions for this set to be a
typing cover.

Lemma 2.9. {1} > ®,. Moreover {1} is typing iff R([t]1) # v or Dom(t) = 0.

Proof. Trivial by definition of ®; and R(-). O

To rate covers, we assume that to each interpretation ¢ a rate p(¢) is associ-
ated. A rate is an element of a partially ordered set (A, <), such that p(¢1) < p(¢2)
iff [¢]4, is less likely to be the intended meaning of ¢ than [t]4,.

Formally, a disambiguation algorithm takes as input an AST ¢ and returns a
typing and covering classification X. A classification ¥ is a set of tuples (¢, 0,)
such that:

1. for all (¢,0,r) € 3,0 = R([t]4), and r belongs to some partially ordered set

(B,2);

2. for all {¢1,01,71), (P2,02,72) € , if $1 = @2 then 01 = 02 and ry = ro.
A classification ¥ is a covering classification if Ss; = {¢ | (¢,0,7) € L} is a cover;
it is a typing classification when Sy, is typing.

We choose for B the set {s,4,4} x A ordered lexicographically by the orders:
o < & < | and <. We reserve ¢ for well-type interpretations, i for genuine errors,
and for spurious errors. The latter symbol will be used only in Section 4.

Every classification can be partitioned into the set of (so far) successful and
the set of failing interpretations as follows:

(X) ={{por) €T |o="}
(X =2\ (D)
Algorithm 1 (Naive disambiguation algorithm). The naive disambiguation algo-

rithm (NDA for short) is the disambiguation algorithm that, when applied to an
AST t, computes the typing and covering classification ¥ = {(¢,0,7) | ¢ € Oy, 0 =

Vol. 2 (2008) Spurious Disambiguation Errors and How to Get Rid of Them 363

R([t]e), = p'(o,)} where:

v) dople)) ito=v
plod) = { (4, p(¢)) otherwise

The rating function p’(-, -) gives priority to successes over failures; outcomes being
equal, it falls back to the interpretation rating.

We call Algorithm 1 “naive” since it computes the typing cover Sy, = b, 1> D,
of maximum cardinality. Its execution is computationally expensive since it invokes

the refiner |Sy| = |<i)t| = HseDom(t) |Ds| times.

Ezample 2.1 (NDA execution). Consider the (non-typable) AST corresponding to
flarx+0-y+2z)=a £f(x)+ 0 -£(y) + z, where “+” is left-associative, x,y, z are
globally declared as real vectors, «, 3 are reals, and f is a real-valued function on
vectors. The symbol “+” is overloaded on scalar and vector sums; “-” is overloaded
on scalar and external products.

NDA returns a classification consisting of 2% (not necessarily unique) error
messages, where 2 are the possible choices for each occurrence of overload symbols
and 8 is the number of occurrences of “-” and “+”. The “expected” error message
"z is a vector, but is used as a scalar" is drowned in a sea of errors like
(re-ordered here for reader’s sake):

"x is a vector, but is used as a scalar"
"y is a vector, but is used as a scalar"
"z is a vector, but is used as a scalar"

"a-x is a vector, but is used as a scalar"
",6~y is a vector, but is used as a scalar"

"a~x+ﬁ-y is a vector, but is used as a scalar"

"f(x) is a scalar, but is here used as a vector"
"f(y) is a scalar, but is here used as a vector"

We can only hope that p(-) does a great job ranking first the expected
interpretation. In practice we are not aware of any rating function that performs
well looking only at the interpretations.

3. Efficient disambiguation algorithms

In terms of efficiency we can do better than NDA. The key observation for im-
provement is that a single invocation of the refiner on a term with placeholders
can rule out the whole set of its instances. More precisely, if the refinement of such
a term fails, all of its instances are not well-typed (and will fail in the same way).
Thus, it is not necessary to compute the largest typing and covering classifica-
tion as NDA does: intuitively, the smaller the classification, the more efficient the
algorithm.

364 C. Sacerdoti Coen and S. Zacchiroli Math.comput.sci.

A typing and covering classification can be built incrementally starting from
a covering classification. Indeed if a covering classification ¥ is not typing it must
contain a partial interpretation ¢ € S(Z)/. A more precise classification can be
obtained replacing the interpretation ¢ with a set of more instantiated interpre-
tations S such that S > {¢}. Since ¢; C ¢ for each ¢; € S, the domain of ¢; (a
subset of Dom(t)) is bigger than the domain of ¢. Thus the refinement process
ends in a finite number of steps since Dom (t) is finite; moreover it yields a typing
classification. Figure 3(c) explains graphically the refinement process.

To increase efficiency, we can enforce the invariant that all interpretations
o€ S(Z)/ share a common domain. Thus at each step we have to extend at once
the domain shared by all ¢. Let X be a classification such that the interpretations in
Sy, are defined on the same domain and let s € Dom (t). We define a classification
3 extended to s as:

o= {(6,0.1) 130/ € S5, 3u € D6 = ¢ls = ul 0 = R([ts).7 = #(0,6) }

Lemma 3.1. Let ¥ be a classification, let S = {¢ € &, | 3¢’ € Sg,¢' T ¢}. If
Sx. > S and the interpretations in Sy, are defined on the same domain then for all

s € Dom/(t) we have that XD and Sy, > S.

Proof. By construction of ¥, and definition of <». The condition Sx[>S is required
for uniqueness in the proof of Z<%,. O

The previous lemma is better understood in the particular case where ¥ is
a covering classification. In such a case S = &, and the lemma just says that the
extension of a covering classification is still a covering classification. Presented in
this form, the lemma generalizes to classifications covering only a subset of d,.

The refinement process outlined above and in Figure 3(c) can now be for-
mally described. At the n-th step we have the covering (not typing) classification
¥, Choosing s outside the domain of the ¢ in S L)Y e obtain the next cov-
ering classification X, 11 = ((X,)")s U (Zn)*. Smce the functions in Sy, | yv are
more defined than those in S5,)/ the most natural choice for the initial covering
classification is X = {(L,0,7) | 0 = R([t] L), = p'(0, L)) }.

Ezample 3.1 (Refinement process). Consider the AST of Example 1.1. Picking
occurrences s € Dom(t) according to the pre-visit order of the AST, the first steps
of the refinement process yield the following covering classifications (where for the
sake of brevity errors have been substituted by x):

So = {(61,v, (&, p(61)))} where [t[y, =f(?1) =72 and ¢ = L
1 = {{o1,v, &, p(611))), [tlor, = F (717 2) =2
(P12, X, (b p(P12))) } [tlg, =f(71+2) =72
= {{¢111,v, & p(¢111))), (1611 =f(717r)7zfz) =73
(h112, X, (b, p(D112))), [tg1r = f(T1+72+2) =73
(P12, %, (& p(P12)))} [tlg,, =f(71+2) =72

Vol. 2 (2008) Spurious Disambiguation Errors and How to Get Rid of Them 365

= {{(¢1111, 7<, p(o1111))), where [t]s,,,, =f<aﬁﬁ?lfz) =72
(d1112.%, (b p(S1112))). [Douiss = fla - 2+ 21¥2) =7
<¢1127 ,<‘ p(¢112)>> [[t]]¢112 :f<?1+?2+z) =73
(G12, %, (8, p(d12)))} [tlo. =f(?1+2)="2

Theorem 3.2 (Correctness of the refinement process). The above refinement pro-
cess implements a disambiguation algorithm, i.e. for each AST t, ¥ipom)| 5 @
covering and typing classification.

Proof. By induction on [Dom(t)| we prove that X|p,., (¢ is covering.

Base case. by Lemma 2.9 ¥ is a covering classification.

Inductive case. let 3,, be a covering classification per inductive hypothesis. By
definition ¥,41 = ((X,)")s U (X,)*. By Theorem 2.7 and Lemma 3.1, %,
is covering.

To prove that X popm (1)) is typing the reader can prove by induction that all
the ¢ in S5,)/ are defined on a subset of Dom(t) of cardinality n. The thesis
follows trivially. O

The above refinement process is parametric in how the next symbol s €
Dom(t) is chosen at each step. In [11] we discussed the implication of such a
choice on the computational complexity in terms of numbers of refiner invocations.
Our conclusion can be summarized (and slightly generalized) in the following way:
the best choices correspond to those strategies (called efficient) that always pick
the next symbol s so that [(((X,)”)s)*] is maximized. The rationale of all such
strategies is that the more partial terms you rule out, the less you will have to
refine later on. The best choice corresponds to the case where the symbol s is
either the argument of an already interpreted symbol s’, or when s is applied
to an already interpreted symbol s'. Intuitively, in both cases, the types of the
interpretations of s and s’ are mutually constrained, and all interpretations that
do not respect this constraint will be pruned.

The actual strategy used in [11] corresponds to a pre-visit of the AST ¢,
which trivially implements the father-children requirement for an efficient strat-
egy. When a node s of the AST is visited, all its choices Ds must be considered
to obtain ((%,)”)s. Here we have an additional degree of freedom in the combina-
tion of the recursive descent on the AST and the consideration of all choices. One
possibility is to make a choice and immediately continue recursion on the subtree
before considering the next choices; the dual possibility is to immediately classify
all choices before recurring on the subtree. The two possibilities correspond respec-
tively to depth-first and breadth-first visits of the choice tree, which is obtained
from the AST by replacing every node s with the nodes in Dy, duplicating edges
as needed.

366 C. Sacerdoti Coen and S. Zacchiroli Math.comput.sci.

Algorithm 2 (Efficient disambiguation algorithm). We now present the efficient
disambiguation algorithm (EDA for short) of [11]. It proceeds by recursion on
Dom™*®*(t), which is the list of overloaded symbol occurrences in ¢ obtained in a
pre-visit traversal.

(3 if [=]
f(E,0) = { F(Z)L) U(BHF ifl=s:t

EDA(t) = f((S0)7, Dom™**(£)) U (3)*

EDA implements the above breadth-first efficient strategy in a non trivial
way (Theorem 3.3). The invariant of the algorithm is that, at the n-th recursive
invocation, ¥ is equal to (3,)” (where ¥, is the n-th covering classification of the
refinement process, see again Figure 3(c)). That means that ¥ only contains the
interpretations that are so far well-typed. The function immediately extends all
interpretations in ¥ (or, equivalently, (X,)”) with the head symbol of Dom*(t).
Then it splits the well-typed part (X4)”, which is passed in the recursive call for
further extension, and the non well-typed part (3,)*. Since the latter is propagated
as it is in the refinement process, the algorithm avoids passing it to the next
recursive call. Instead, it will simply merge (3;)* with the result of the recursive
invocation. The initial work done by EDA before calling f is required to grant
the invariant by immediately pruning non well-typed interpretations from g (the
coarsest covering classification).

Without loss of efficiency, which is affected only by the visit order of the
AST, we could have implemented the depth-first strategy.

Theorem 3.3 (Correctness of EDA). EDA implements a disambiguation algorithm.

Proof. By Theorem 3.2 it is sufficient to prove that the classification returned by
EDA is the same returned by the refinement process. We observe that

S = ((Zn-1))s, U (Zn1)”

(Zn=2))s,2 U (Zne2)) s, U ((Sn2))s, -y U (Bne2))*
(Zn-2))snes)en U (((Bnm2))s,_)¥ U (Sn2)” (f)
(((En—2)/)sn71)/)sn)lu

(Bn-2))sn))en) U ((Bn2) s) U (Bn2)*

= (- (((((Z0)7)s1))s2)”)5,)" U ()

(- (((((B0))s1))s2)” e) U U (((Z0))s0) " U (o)
where (1) is justified by the two identities ((X)*) = @ and ((2)*)* = (X)*. The
reader can verify that the pseudo-code of EDA is a recursive formulation of (f) for
n = |Dom/(t)|. O

Ezample 3.2 (EDA execution). Consider the AST of Example 1.1. EDA yields a
smaller classification, containing “just” 6 error messages:

Vol. 2 (2008) Spurious Disambiguation Errors and How to Get Rid of Them 367

1. "in £(?; +2z) =75: z is a vector, but is used as a scalar"

2. "in f(?l—i—?g—)Z) =73: 7447, is a scalar, but is used as a vector"

3. "in f(a-x??i_)z) =75: x is a vector, but is used as a scalar"

4. "in f(a_-}xiﬁy——i—)z =7;: y is a vector, but is used as a scalar"

5. "in f(a_-}xiﬁ_-)y—)z) =71 +2z: z is a vector, but is used as a
scalar"

6. "in f(a_fx?ﬂ_fy?z) :?1121 7112 is a vector, but is used as a
scalar"

where (5) is the expected one, while the other errors are spurious. The rating of
errors is unchanged with respect to Example 1.1.

4. Spurious disambiguation errors

We look for a restriction of Criterion 1 which can be integrated in EDA. The
characteristic of EDA (with respect to the general refinement process) is the pre-
visit ordering of Dom (t). This imposes the two following requirements:

a. to interpret an occurrence s, every occurrence s’ preceding s in pre-order
must be interpreted too;

b. when an interpretation ¢ yields an error, every occurrence s’ that follows
in pre-order the last occurrence s added to the domain of ¢ will not be
interpreted by any interpretation ¢’ 3 ¢.

Taken together, (a) and (b) imply that not every sub-formula F' will be
interpreted in any possible way. Actually, (b) is a consequence of (a). This imposes
a non negligible restriction of Criterion 1 for efficiency reasons.

To obtain a formal and implementable definition of Criterion 1, we also need
to understand what does it mean for an error to be “localized in a sub-formula F”.
Suppose that a wrong interpretation ¢’ is obtained from a correct interpretation ¢
by making a choice for s. There are at least two heuristics to decide the error
cause. According to the optimistic heuristic, we assume that the error has only
been caused by the last choice. On the other hand, according to a more pessimistic
heuristic, the error has been caused by the choices of all symbols in the path from
the AST root to s. The latter condition makes sense since the type of a function
constraints the type of its arguments and vice-versa.

The optimistic heuristic localizes the error in the sub-formula F' rooted in s,
where s is the last chosen symbol. Thus, an error is not localized in the sub-
formula F' rooted in s as soon as another interpretation does not localize the error
in F'. On the other hand, the more pessimistic heuristic localizes the error in every
sub-formula F’ containing F'. Thus, an error is not localized in the sub-formula F
rooted in s when every interpretation that is total on the sub-formula rooted in s
is correct.

Ezample 4.1. Consider the (non-typable) AST ¢ corresponding to f(x + y) + y2,
where f is a real-valued function on vectors, the symbol “+” is overloaded on
scalars and vector sums, and exponentiation is defined only on scalars.

368 C. Sacerdoti Coen and S. Zacchiroli Math.comput.sci.

Let ¢ be the typing partial interpretation [+1 — scalar sum; 4+, — vector sum)]
and let ¢’ be ¢ extended with [-2 + scalar ezponentiation]. Since y is used both
as a scalar and as a vector, [t]4 is not well-typed.

The optimistic heuristic localizes the error in the sub-formula y2. The more
pessimistic heuristic localizes the error in the sub-formulae y? and f(x + y) + y?
(but not in £(x +y)).

The two heuristics, combined with the previously discussed requirements for
integration in EDA, yield two different criteria:

Criterion 2 (Prudent spurious error detection). An error message relative to an
interpretation ¢ of an AST t is spurious iff there exists an occurrence s € Dom(t)
and an interpretation ¢’ such that:

L o(s) # ¢'(s);

2. ¢,¢" are both defined on all s’ preceding s in pre-order;

3. R([tl) = v;

4. ¢ is total on the occurrences of overloaded symbols occurring in the sub-tree
rooted at s.

Criterion 3 (Draconian spurious error detection). An error message relative to an
interpretation ¢ of an AST t is spurious iff there exists an occurrence s € Dom(t)
and an interpretation ¢’ such that:

L ¢(s) # ¢'(s);
2. ¢,¢" are both defined on all s’ preceding s in pre-order;
3. R([tly) = v-

The two criteria differ only in the fourth requirement.® The prudent crite-
rion is based on the pessimistic heuristic, while the draconian on the optimistic
heuristic. Dropping from both criteria the second requirement — imposed by Re-
quirement (a) on page 367 — we obtain two different more formal writings of Cri-
terion 1 that differ only in the translation of “error localized in a sub-formula F”.
It is evident that more errors are classified as spurious by the draconian criterion.
Thus, the draconian criterion is to be preferred as long as genuine errors are not
erroneously classified as spurious. In Section 5 we investigate this.

We now address the issue of integrating the two criteria in EDA: Section 4.1
describes an implementation of Criterion 2, Section 4.2 an implementation of Cri-
terion 3.

5Tn the short version [12] of this paper we have investigated a variant of the prudent spurious
error detection criterion where the second requirement was stricter: “¢/(s’) = ¢(s’) for all s’
preceding s in pre-order”. The requirement was induced by a prototypical EDA implementation
that worked depth-first on the choice tree. The criterion was even more prudent than the current
one, but lacked a clear intuition. Practically, too many errors were not classified as spurious by
it with no evident reason; hence, it has been dropped in the present version of the paper.

Vol. 2 (2008) Spurious Disambiguation Errors and How to Get Rid of Them 369

4.1. Prudent spurious error detection

f(2,1), the core of EDA, does not work directly on ¢, but rather on the list {, which
is a serialization of the occurrences of overload symbols in t. In [the tree-structure
of ¢ has been lost. Given that Criterion 2 is defined in terms of sub-trees rooted
at overload symbol occurrences, we cannot make f recognize spurious errors using
Criterion 2 still working on [. As a solution we could make f work by recursion
on (the AST of the formula of) ¢ by integrating in f a pre-visit tree traversal.
Still, we prefer to avoid binding f to the AST data type and to keep separate the
construction of Dom(t) from the actual disambiguation.

Therefore we introduce the new Dom*™*®(t) datatype which is a tree represen-
tation of Dom (t). Dom™®®(t) is a tree which contains only the nodes s € Dom (t)
and preserves the ancestor-descendant relation of t. As a concrete representation of
Dom***¢(t) we adopt the well-known first-child /next-sibling representation. This
representation allows to implement straightforwardly a pre-visit of the tree recog-
nizing when all sub-trees of a given node have been traversed.

Algorithm 3 (Prudent efficient disambiguation algorithm). We call the algorithm
that recognizes spurious errors according to the prudent criterion the prudent
efficient disambiguation algorithm (P-EDA for short). It proceeds by recursion on
Dom**¢(t) and, at the end of children traversal, lowers the rate of spurious errors.
The pseudo code of P-EDA is given below:

P it t = nil

v v x x : $— b
g9(E,1) = ¢ 9(Z)7, b)) Up((Z1)7, (B1) U ()T it =]
where X1 = g((X5)7, ¢)
Eerr if Zok - [Z)
Zo 7267‘7‘ = .
P-EDA() = (Z)7 Up(()7, ()" U (S0)")
where X' = g((20)”, Dom™**(t))

g(-) has the same role f(-) had in EDA, while p(-, -) (mnemonic for “prioritize”)
lowers the rate of spurious errors to s, which is the lowest rating.

Theorem 4.1 (Correctness of P-EDA).

1. P-EDA implements a disambiguation algorithm.
2. An error in a classification returned by P-EDA is spurious according to Cri-

terion 2 iff it is rated (s, p(9)).

Proof. We just give a sketch of the proof, which is involved due to the complexity
of the code.

1. By Theorem 3.3 it is sufficient to prove that the classification returned by

pP-EDA is equal to the classification returned by EDA up to rates. Since both

370

C. Sacerdoti Coen and S. Zacchiroli Math.comput.sci.

algorithms perform a pre-visit of the input tree, we can consider “parallel”
executions of them. At the nth step EDA is called on the list s,, :: ¢t/ while

Sn— b
P-EDA is called on the tree | . The nodes that EDA will encounter
c

processing ¢l are the same (and in the same order) of those P-EDA will
encounter processing c at first and then b. The thesis is reduced to a proof by
induction on the length of ¢l that f((Xs,)",) is equal to (g((Xs,)",¢))* U
9(9((3s,)7,¢)7,b) up to rates.
Recursion is never performed on elements of the current classification corre-
sponding to errors. Thus once an error has been down-rated by p(-, -) its
rating will never be raised again.

Suppose that at a given iteration p(-, -) lowers the rating of an error e
relative to an interpretation ¢ € (X5)* U (9((Xs)”, ¢))*. We interpret that as

Sn

S -
€ being located in | . The set § = S(g((E))/ 1s not empty since € has
C s

been down-rated. ~
We consider now two cases: either there exists ¢’ € S such that ¢(s) #
@'(s) or not. In the former case s and ¢’ satisfy all the requirements of
Criterion 2. In the latter case let ¢’ € S. Let s’ € ¢ be the last occurrence that
follows s in pre-order such that ¢(s’) # ¢’(s’). Consider now the recursive call
S/_) b/
on |, and iterate the above reasoning. Since this time ¢(s’) # ¢'(s),
c
€ is now properly down-rated according to Criterion 2. When the recursive
call on ¢ returns € is still correctly down-rated and p(-, -) leaves its rate
unchanged. (|

Ezample 4.2 (P-EDA execution). Consider again the AST of Examples 1.1 and 3.2.

The first recursive invocation is g(%,7) where: ¥ = {(L,v,{,p(1)))} and 7 =
+— b

|
c

. g computes

Ss = {{¢11,v, b p(¢11))), where [t]g,, = F(1F 2) =22
<¢12? X, ("p(¢12)>>} [[t]]¢12 :f(?l + Z) :?2

and then calls itself recursively on (35)” and c¢ yielding

Sy = {(dunn, v, G p(¢11111))), where [tg,,,,, = fla™ JH-ﬁ y+z) ="
<¢11112; <‘ p(¢11112)>>7 [[t]]¢11112 f(a : x+ﬁ y+Z) =7
(P1112: X, (8, p(d1112))), [tlg11r. = fla- $+71+Z) —?2
<¢112;X> <‘v P(¢112)>>} [[t]]mm f(?1+?2+z)

Since (¥1)” is not empty, all the errors in (X,)* and (¥;)* are recognized as

spurious and their rating is lowered to . In particular the new rating for the

Vol. 2 (2008) Spurious Disambiguation Errors and How to Get Rid of Them 371

error associated to ¢12 will remain the same in the final classification returned by
pP-EDA. Errors coming from (¥;)* were already recognized as spurious; this is not
always the case.

Eventually P-EDA yields the same errors of Example 3.2, but rated differ-
ently: the expected one — error (5) — is rated (&, p(¢5)) and ranked first, as well as
error (6), while the remaining spurious errors are rated (s, p(¢;)). Thus the algo-
rithm has correctly detected that there is a problem in the topmost addition of the
right hand side. Indeed, either the addition does not respect the typing constraint
imposed by the left hand side, or that imposed by its second child z. In the latter
case, in our prototype the user gets the dual error message: z does not respect the
constraint imposed by its parent.

Ezample 4.3 (P-EDA execution: false negative). Consider now a variation of the
previous example: f(a-x+ [-y+2z) = a-£(x)+ [-£(y) + 2-z. The non spurious
error messages detected by P-EDA are:
1. "in f(oz_fxi)ﬁ_)y?r}z) :?1??2: ?11)?2 is a vector, but is used as a
scalar"
2. "in f(a T x+tB7ytz) =a-£(x)+ B-£(y) + 27 z: 27z is a vector,
but is used as a scalar"
3. "in f(a_-}xiﬁ_-)y?z) =a-f(x)+ 0 -f(y) +2-2z: z is a vector, but

is used as a scalar"

The algorithm has correctly detected that there is a problem on the right
hand side of the equation, but it has not been “draconian enough” to blame z or
the last product. Indeed, errors (2) and (3) show that the last product does not
respect at once the typing constraints imposed by its parent and its second child.
On the contrary, not recognizing error (1) as spurious is questionable.

4.2. Draconian spurious error detection

Algorithm 4 (Draconian efficient disambiguation algorithm). We call the algorithm
that recognizes spurious errors according to the draconian criterion the draconian
efficient disambiguation algorithm (D-EDA for short). Differently than P-EDA,
D-EDA does not require a structured domain; as such, it proceeds by recursion
on Dom™®(t), lowering the rate of spurious errors after each domain extension.
The pseudo code of D-EDA is given below:

by if I =]
h(Z,1) = { R((Z)7,tHh Up((X)7, (X)) ifl=s:tl
Yerr if Yop =10

P(Zok, Berr) = { {(6.0.7) | (6.0, (m.p)) € Serrrr = (b)) if Sop £ 0
D-EDA(t) = h((0)”, Dom™* (1)) Up((%0)”, (20)")

h(-) has the same role f(-) had in EDA, while p(-, -) has the same definition it
had in P-EDA.

372 C. Sacerdoti Coen and S. Zacchiroli Math.comput.sci.

Theorem 4.2 (Correctness of D-EDA).

1. D-EDA implements a disambiguation algorithm.
2. An error in a classification returned by D-EDA is spurious according to Cri-
terion 3 iff it is rated (s, p(¢)).

Proof. We just give a sketch of the proof.

1. Since h(-) in D-EDA differs from f(-) in EDA only in the invocation of
p(-, -) to rate errors, and since p(-, -) does not drop any error, D-EDA
implements a disambiguation algorithm because of Theorem 3.3.

2. Recursion is never performed on elements of the current classification corre-
sponding to errors. Thus, as in P-EDA, once an error has been down-rated,
its rate will never be raised again.

p((Xs)7, (X5)*) down-rates an error associated to an interpretation ¢ €
Sz, yx HE there exists an interpretation ¢’ € S5, v iff R([t]4) = v (because
of (1)) and ¢'(s") = ¢(s’) for all s’ preceding s in pre-order (because of (1)
and the definition of 3,), i.e. iff ¢, ¢’ are as required by Criterion 3. O

Ezample 4.4 (D-EDA execution). Consider again Example 4.2. D-EDA yields the
very same result.

Ezample 4.5 (D-EDA execution: no false negative). Consider again Example 4.3.
D-EDA yields the very same errors, but error (1) is now recognized as spurious
since the correct interpretation that yields £ (oz_fx:)ﬂ_-)y?z) =?1+75, which is not
total on the right hand side, is now enough to down-rate the error.

Ezample 4.6 (D-EDA execution: false positive?). Consider the AST of o - £(x) +
B-£(y) +z=1f(a-x+ By + z), which has been obtained swapping the left and
right hand sides of Example 4.4. D-EDA returns only the following two errors as

non spurious:
N

1. "in a-f(x)+ 8 -f(y) +z=1£(?1+2): z is a scalar, but is used as

a vector"

2. "in a-f(x)+ B -f(y) +z=£(?1+2): ?1+2z is a scalar, but is used
as a vector"

On the one hand one can expect that, since before the swap we have blamed
the usage of z on the right hand side, we should now blame the usage of z on the
left hand side. Accordingly, this spurious error is a false positive. On the other
hand, a mathematician that reads formulae from left to right® is likely to think at
z as a scalar, blaming its usage on the right hand side as D-EDA does.”

6 According to linguistic conventions [9], mathematical formulae are read from left to right or from
right to left. Disambiguating formulae in linguistic order is potentially the most effective way to
detect spurious errors the way a mathematician does. Unfortunately, the visit in linguistic order
is not efficient (in the sense of page 365) since it does not respect the father-children requirement.
For instance, the left to right visit of a-z + (8-y + 2z) will refine the term -z + (8 -y +7 2)
where +7 remains a placeholder and 3 -y is not constrained by a-x + -.

7 A related topic is the support for naming conventions, frequently used in mathematics textbooks
to implicitly “type” identifier classes as in “unless otherwise stated we will use u,v,w, ... for real

Vol. 2 (2008) Spurious Disambiguation Errors and How to Get Rid of Them 373

5. Performance of spurious error detection

In this section we quantitatively assess the effectiveness of the presented criteria in
correctly identifying and localizing the errors related to the interpretation meant
by the user. Our criteria localize errors at sub-formulae, that can be identified by
the symbol occurrences they are rooted in. As such, our approach for measuring
the success of a criterion is to introduce a number of errors at symbol occurrences
and then to evaluate the criterion hit ratio in reporting them (as non spurious) to
the user.
Errors spotted by semantic analysis can be classified as follows:

Symbol replacement. The user has written a symbol in place of a different one;
this can happen because of a typo or because of a conceptual error.

Extra or missing argument. The user has applied a function or an operator to
too many or too few arguments.

Structure alteration. The user has misused a notation, altering the structure
of a formula as it is understood by the system. A typical case is when the
precedence order expected by the user in a given formula is not the one used
by the system.

Ezample 5.1 (Structure alteration). The precedence of A used as the logical con-
junction is lower than that of equality that is in turn lower than that of A used
as the lattice meet operator. If the parser is non ambiguous, when applied to
A AB=C it will always build either the AST of (A AB) = C or that of AA (B=C)
not withstanding what the user has in mind.

We believe that this and similar examples motivate in our context the use of
GLR parsers as the one described in [10]. GLR parsers can return the set of all
ASTs matching the input, and our disambiguation algorithm can be run in parallel
on each of them. A possible way to extend spurious error detection criteria in this
setting is to decide that errors coming from an AST are spurious if there exists
another AST having at least one correct interpretation.

Since structure alteration is better handled with general parsers, we consider
in the remainder of the paper only symbol replacement and extra argument errors.
We avoid addressing missing argument errors since they yield exactly the same
refinement error as extra arguments (i.e. arity mismatch), but are more difficult to
benchmark. The reason is that the expected error should be localized in a missing
sub-formula; instead, the error is localized in the parent of the missing argument,
which is informative enough for the user, but makes the benchmarking code dirtier.

vectors”. We do not take explicit advantage of naming conventions, as their declaration is not
treated in this presentation, but some mathematical proof assistants — e.g. Coq (http://coq.
inria.fr) — enable users to declare and exploit naming conventions, to support the widespread
mathematical practice. Always using the type prescribed by the naming convention is not a good
idea, since it does not allow for naming convention exceptions. In Coq the user may force another
type only with a casting operator. In our setting we can do better by simply exploiting naming
conventions to sort alternative interpretations of a formula: the more they adhere to the naming
convention, the higher they rank.

374 C. Sacerdoti Coen and S. Zacchiroli Math.comput.sci.

Concretely, we have implemented our disambiguation algorithms in the Ma-
tita interactive theorem prover [2], we have picked a set of scripts from its library,
and we have automatically introduced at random positions in the AST of ev-
ery statement or definition 3 errors of the symbol replacement or insertion kinds.
Then, we have run two modified versions of the Matita compiler (implementing
Algorithms 3 and 4) on the broken scripts,® collecting all the errors and error
locations reported by the system.

The chosen scripts constitute a development of constructive algebra [7] & la
Bishop [4], up to valued group lattices. It includes 152 theorems and definitions,
comprising: constructive setoids (C, #) with the induced equality =; constructive
partially ordered set (C, £) with the induced order relations < and <; groups (C,
#, 4+, O, —); lattices (C, A, V); valuations (K, C, u); topological spaces (X, O);
and all the algebraic structures (such as group lattices) that inherit from them.
Moreover, the development imports all results on natural numbers (N, O, S, +,
-, <, <, =) from the standard library of Matita.

Our choice for this development has been driven by the high amount of
overloading due to structure inheritance and reuse of natural number notations. In
particular, 0 is overloaded with arity 0 as the neutral element of several structures,
and with arity 1 as the operator that returns the opens of a topological set X.
When used as a symbol argument, for instance in expressions like (0 +x) < y, the
interpretation of 0 forces that of + and <. Moreover, 0 is also frequently quantified
over the type of ordered sets; as such, 0 as an identifier appears both as a free and a
bound name. For all these reasons, 0 is our symbol of choice for introducing errors
in the formula by either replacing it for a symbol, or by adding it in argument
position.

Table 1 presents the results obtained with the two implemented algorithms
and, for comparison, with no spurious error detection at all. Spurious error recog-
nition outputs on the fed scripts are partitioned in the following classes:

Precise. Just one non spurious error location is reported, which is also the one
of the introduced error.

Imprecise. Several alternative non spurious error locations are reported, includ-
ing the one of the introduced error. All the other error locations correspond
to false negatives.

False positive. The location of the introduced error is reported as the location
of at least one spurious error.

Undetected. No detected error is located at the location of the introduced error.

In general, multiple alternative error messages can be reported at the same
location. For this reason, for each of the above classes, Table 1 shows the average
and maximum number of errors (and their locations) which are considered genuine
by the criterion. These figures tell how many different error messages the user is
faced with, assuming that spurious errors are hidden to her. They also suggest

80f the 456 generated scripts, 20 scripts were not actually broken, in the sense that the randomly
modified formula still had a correct interpretation.

Vol. 2 (2008) Spurious Disambiguation Errors and How to Get Rid of Them 375

TABLE 1. Comparison of spurious error recognition criteria.

No Spurious Error Recognition

scripts locations errors
avg max | avg max
precise 204 46.8% | 1.0 1] 3.0 3
imprecise 129 29.6% | 2.6 6| 5.3 13
false-positive 0 0.0% | n/a 0| n/a 0
undetected 103 23.6% | 1.2 41 1.5 15
total 436 100.0% | 1.5 6| 3.3 15

Prudent Criterion

scripts locations errors
avg max | avg max
precise 250 57.3% | 1.0 1] 29 5
imprecise 81 18.6% | 2.1 31 5.0 11
false-positive 2 05% | 2.5 3135 4
undetected 103 23.6% | 1.1 3| 1.3 8
total 436 100.0% | 1.2 3129 11

Draconian Criterion

scripts locations errors
avg max | avg max
precise 323 74.1% | 1.0 1] 3.0 9
imprecise 0 0.0% | n/a 0| n/a 0
false-positive | 10 23% | 1.7 2129 5
undetected 103 23.6% | 1.0 2| 1.2 6
total 436 100.0% | 1.0 21 26 9

that the error location is more significant than the error message since multiple
messages are associated to the same location. This does not come as a surprise.
Consider the formula f x 0 where £ has arity 1. The algorithms easily detect
that 0 is the error, independently from the interpretation of 0. However, each
interpretation potentially yields a different error message, always localized in 0.
For this reason, we decided to define precision in terms of locations.

When spurious error recognition is not in effect (upper part of Table 1), all
errors are reported as genuine and the user can be faced with up to 15 errors,
or 6 locations, per statement. On the average, the system reports more than one
location, forcing the user to waste time to understand where the error actually
is. The average number of errors reported as genuine is about 3; remember that
in the test cases we have always introduced exactly one error per statement. The
error location is undetected in 23.6% of the scripts. This is inherited from EDA,
it is orthogonal to spurious error detection, and common to all criteria. In the
remaining cases, more than 1/3 of the errors are reported imprecisely.

376 C. Sacerdoti Coen and S. Zacchiroli Math.comput.sci.

The draconian criterion (lowest part of Table 1) never reports errors impre-
cisely, at the price of 10 false positives over 436 tests. Moreover, it also decreases
the average and maximum number of errors and locations presented to the user.

Eight of the false positives are similar: they contain a sub-formula O 7 s
where s is an overloaded symbol and ? is a user-provided placeholder the system
should infer. Now, O 7 can be interpreted as the set of opens of some topological
space (to be inferred), which in turn is identified with its characteristic function.
Thus O 7 ?; is a correct term (meaning ?; € O ?), and all errors are eventually
located in s, since no overloaded interpretation of s is an open set.

One of the remaining false positives is related to an error inserted in the
definiens of subtraction in a group: x + —y is replaced with O 4+ —y. The type of O
forces the type of + that is unconstrained being the root of the definiens; thus all
errors are reported on — since O + - expects a natural number while y has been
declared as a group element. The last false positive is similar.

The prudent criterion (middle part of Table 1) improves over the lack of
spurious error detection, without coming close to the draconian performance. The
eight equal false positives of the draconian criteria are imprecisely detected by the
prudent criterion. The remaining two are still reported as false positives.

6. Conclusions

In this paper we have analyzed the problem of rating errors coming from multiple
interpretations of user provided formulae due to symbol overloading. We have
introduced the notions of spurious vs genuine errors, and proposed two heuristic
criteria for the classification of errors in the two classes. An error is spurious when it
is not relative to the formula interpretation expected by the user. The criteria have
been specifically thought for integration in an efficient disambiguation algorithm
which is also described and proved correct in the paper. We have also shown
the resulting algorithms, which have also been implemented and benchmarked in
Matita.

We have been motivated to study spurious errors by an on-going formalization
in Matita of constructive algebra. Indeed, in such an abstract setting there are
plenty of overloaded operators, and without spurious error recognition it is not
unusual for users to be annoyed with several error messages at multiple locations.

The benchmarks, based on such formalization, validates the usefulness of
spurious error recognition. Indeed, in the current implementation we have decided
to hide spurious errors from the user, unless explicitly asked for. This choice has
sensibly decreased the amount of error messages, but in the general case it is
still possible to be faced with more than one error message, though usually error
messages can be grouped according to their locations, whose number is on average 1
using the more demanding criterion. The latter observation paves the way to future
studies in the human computer interaction field on the effective presentation of
the remaining error messages and their locations.

Vol. 2 (2008) Spurious Disambiguation Errors and How to Get Rid of Them 377

As expected, the benchmarks confirm that the more demanding criterion is
much more effective in pruning spurious errors, at the price of a few false posi-
tives. The less demanding criterion is moderately better than no spurious error
recognition at all, without being completely false positive free. Practically, noth-
ing hinders the combination of the two criteria to obtain an increasingly verbose
error reporting mechanism: first we show genuine errors according to the more
demanding criterion; then, upon user request when reported errors do not match
the interpretation she has in mind, we add those errors that are genuine only ac-
cording to the less demanding criterion; finally, if the user is still unsatisfied, she
can ask to see all errors.

Acknowledgements

We would like to thank the anonymous referees for having spotted an important
mistake in one lemma, and for their stimulating suggestions on how to better
present substantial parts of this paper.

References

[1] A. Asperti, F. Guidi, C. Sacerdoti Coen, E. Tassi, and S. Zacchiroli. A content
based mathematical search engine: Whelp. In Post-proceedings of the Types 2004
International Conference, volume 3839 of Lecture Notes in Computer Science, pages
17-32. Springer-Verlag, 2004.

[2] A. Asperti, C. Sacerdoti Coen, E. Tassi, and S. Zacchiroli. User interaction with the
Matita proof assistant. Journal of Automated Reasoning, 39(2), August 2007. Special
Issue on User Interfaces for Theorem Proving.

[3] G. Bancerek and P. Rudnicki. Information retrieval in MML. In A. Asperti, B. Buch-
berger, and J. Davenport, editors, Proceedings of the Second International Confer-
ence on Mathematical Knowledge Management, MKM 2003, volume 2594 of Lecture
Notes in Computer Science. Springer-Verlag, 2003.

[4] E. Bishop and D. Bridges. Constructive Analysis. Springer, 1985.
[5] H. Geuvers and G.I. Jojgov. Open proofs and open terms: A basis for interactive
logic. In J. Bradfield, editor, Computer Science Logic: 16th International Work-

shop, CSL 2002, volume 2471 of Lecture Notes in Computer Science, pages 537-552.
Springer-Verlag, January 2002.

[6] M. Kauers, M. Kerber, R. Miner, and W. Windsteiger, editors. Towards Mecha-
nized Mathematical Assistants, 14th Symposium, Calculemus 2007, 6th International
Conference, MKM 2007, Hagenberg, Austria, June 27-30, 2007, Proceedings, volume
4573 of Lecture Notes in Computer Science. Springer, 2007.

[7] R. Mines, F. Richman, and W. Ruitenburg. A Course in Constructive Algebra.
Springer, 1 edition, December 1987.

[8] C. Mutioz. A Calculus of Substitutions for Incomplete-Proof Representation in Type
Theory. PhD thesis, INRIA, November 1997.

378 C. Sacerdoti Coen and S. Zacchiroli Math.comput.sci.

[9] H. Naciri and L. Rideau. Formal mathematical proof explanations in natural lan-
guage using mathml: An application to proofs in arabic. In Proceedings of MathML
International Conference, 2002.

[10] J. Rekers. Parser Generation for Interactive Environments. PhD thesis, University
of Amsterdam, 1992.

[11] C. Sacerdoti Coen and S. Zacchiroli. Efficient ambiguous parsing of mathematical
formulae. In A. Asperti, G. Bancerek, and A. Trybulec, editors, Proceedings of Math-
ematical Knowledge Management 2004, volume 3119 of Lecture Notes in Computer
Science, pages 347-362. Springer-Verlag, 2004.

[12] C. Sacerdoti Coen and S. Zacchiroli. Spurious disambiguation error detection. In
Proceedings of Mathematical Knowledge Management 2007, volume 4573 of Lecture
Notes in Artificial Intelligence, pages 381-392. Springer-Verlag, 2007.

[13] Zentralblatt MATH. http://www.emis.de/ZMATH/.

Claudio Sacerdoti Coen
Department of Computer Science
University of Bologna

Mura Anteo Zamboni, 7

1-40127 Bologna

Italy

e-mail: sacerdot@cs.unibo.it

Stefano Zacchiroli

Université Paris Diderot
Laboratoire PPS, UMR 7126
175 Rue du Chevaleret
F-75013 Paris

France

e-mail: zack@pps.jussieu.fr

Received: December 16, 2007.
Revised: June 4, 2008.
Accepted: June 12, 2008.

