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Abstract. Singleton attractor (also called fixed point) detection is known to
be NP-hard even for AND/OR BNs (i.e., BNs consisting of AND/OR nodes),
where the Boolean network (BN) is a mathematical model of genetic networks
and singleton attractors correspond to steady states. In our recent paper, we
developed an O(1.787n) time algorithm for detecting a singleton attractor of a
given AND/OR BN where n is the number of nodes. In this paper, we present
an O(1.757n) time algorithm with which we succeeded in improving the above
algorithm. We also show that this problem can be solved in O((1 + ε)n) time
when a BN is planar, where ε is any positive constant.
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1. Introduction

Symbolic computational perspective for studying biological networks is becoming
more important in various areas such as bioinformatics, computational biology
and systems biology. To analyze them, various kinds of mathematical models of
biological networks have been proposed. Among them, the Boolean network (BN,
in short), which is a model of genetic networks, has received much attention [2, 3,
6, 12, 13]. It is a very simple model: each node (e.g., gene) takes either 0 (inactive)
or 1 (active) and the states of nodes change synchronously according to regulation
rules given as Boolean functions [9, 23].

In a BN, stable states are called attractors (or fixed points). Since stable states
play an important role in biological systems, attractors have also received much
attention. In particular, extensive studies have been done for analyzing the number
and length of attractors [5, 13, 21]. Most of existing studies on attractors focus on
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average case features of random BNs with low indegree (connectivity). However,
not much attention has been paid on analysis of attractors in a specific BN. In
particular, to our knowledge, only several studies have been done on algorithms
for detecting attractors in a given BN.

Detection of a singleton attractor (i.e., an attractor with period 1) is known to
be NP-hard by a polynomial time reduction from SAT (the satisfiability problem
of Boolean formulas in conjunctive normal form) [1]. Milano and Roli indepen-
dently proposed a similar reduction [18]. Zhang et al. developed algorithms with
guaranteed average case time complexity [27]. For example, it is shown that in the
average case, one of the algorithms identifies all singleton attractors in O(1.19n)
time for a random BN with maximum indegree two. However, these algorithms
may take O(2n) or more time in the worst case even if there exist only a small
number of singleton attractors. Recently, Leone et al. applied SAT algorithms
to identify singleton attractors in a BN [15]. However, they did not focus on the
time complexity issue. Tamura and Akutsu studied the time complexity of that ap-
proach and showed that detection of a singleton attractor for a BN with maximum
indegree k can be reduced to (k + 1)-SAT [24].

The attractor detection problem has a close relationship with the SAT prob-
lem, which is a well-known NP-complete problem, as mentioned above. Exten-
sive studies have been done for developing O(cn) time algorithms with smaller
c for k-SAT, where n is the number of variables and each clause in k-SAT con-
sists of at most k literals. In 2004, Iwama and Tamaki published O(1.324n) and
O(1.474n) time algorithms for 3-SAT and 4-SAT respectively [10]. To our knowl-
edge, O(1.324n) time algorithm for 3-SAT was the fastest until Rolf improved it
to O(1.323n) [20] and the O(1.474n) time algorithm for 4-SAT is still the fastest.
However, no O((2 − ε)n) (ε > 0) time algorithms are known for general SAT.
On the other hand, Hirsh developed an Õ(1.239m) time algorithm for SAT with
m-clauses [8], which was further improved to Õ(1.234m) time by Yamamoto [26],
where Õ(f(m)) means O(f(m)poly(m,n)). However, these algorithms cannot be
directly applied to our problem although we utilize the algorithm in [26] as a
subroutine.

Recently, we presented an O(1.787n) time algorithm [24] for detecting a sin-
gleton attractor of a given AND/OR BN, in which a Boolean function assigned to
each node is restricted to be a conjunction or disjunction of literals as shown in
Fig.1 (a). This was the first result in which the computational time of the algo-
rithm is O((2 − ε)n) (ε > 0) with non-restricted indegree although numbers and
lengths of attractors of AND/OR BNs had been studied in [4, 7]. In this paper, we
present an O(1.757n) time algorithm with which we succeeded in improving the
above algorithm. The O(1.787n) time algorithm is based on an observation that
there exist at most 3 possible assignments (among 22 = 4 assignments) for two
adjacent nodes and utilizes Yamamoto’s algorithm as a subroutine, where details
of the algorithm and analysis are involved. In this paper, we extend this algorithm
and obtain an improved O(1.757n) time algorithm. In this improved algorithm,
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we make use of an observation that there exist at most 5 possible assignments
(among 23 = 8 assignments) for three adjacent nodes, in addition to the observa-
tion used in the O(1.787n) time algorithm. However, this improvement is far from
straight-forward. It requires further ideas and much more involved analyses, to be
presented in Sections 3 and 4.

Since it is interesting to study whether much faster algorithms exist for spe-
cial cases of the attractor detection problem, we consider planar AND/OR BNs.
Singleton attractor detection for a planar AND/OR BN is clearly NP-hard since
the reduction from SAT to singleton attractor detection can directly be applied to
the reduction from planar SAT, which is also known to be NP-hard [16]. Utilizing
Lipton and Tarjan’s separator algorithm for planar graphs [17], we developed an
O((1 + ε)n) time algorithm for a planar AND/OR BN for any positive constant ε
in Section 5.

2. Preliminaries

Here we briefly review BN and attractors. A BN N(V, F ) consists of a set of n
nodes V and a set of n Boolean functions F , where V = {v1, v2, . . . , vn} and
F = {f1, f2, . . . , fn}. In general, V and F correspond to a set of genes and a set
of gene regulatory rules respectively. Let vi(t) represent the state of vi at time
t. The overall expression level of all the genes in the network at time t is given
by the vector v(t) = [v1(t), v2(t), . . . , vn(t)]. This vector is referred as the Gene
Activity Profile (GAP) of the network at time t, where vi(t) = 1 means that the
i-th gene is expressed and vi(t) = 0 means that the i-th gene is not expressed.
Since v(t) ranges from [0, 0, . . . , 0] (all entries are 0) to [1, 1, . . . , 1] (all entries are
1), there are 2n possible states. The regulatory rules among the genes are given
as vi(t + 1) = fi(v(t)) for i = 1, 2, . . . , n. When the state of gene vi at time t + 1
depends on the states of ki genes at time t, the indegree of gene vi is ki and
denoted by id(vi). These id(vi) (=ki) genes are called parents of vi. The number
of genes that are directly influenced by gene vi is called the outdegree of gene vi

and denoted by od(vi). Furthermore, these od(vi) genes are called children of vi.
The states of all genes are updated simultaneously according to the corresponding
Boolean functions. A consecutive sequence of GAPs v(t), v(t + 1), . . . , v(t + p) is
called an attractor with period p if v(t) = v(t + p). When p = 1, an attractor is
called a singleton attractor. When p > 1, it is called a cyclic attractor.

For example, a BN where v1(t+1) = v2(t)∨v3(t), v2(t+1) = v1(t)∨v2(t)∨v3(t)
and v3(t + 1) = v1(t) ∧ v2(t) is given in Fig. 1 (a). Note that “•” means “NOT”.
The state transition of [v1, v2, v3] is as shown in Fig. 1 (b). [0, 1, 0] is a singleton
attractor since v(t + 1) = [0, 1, 0] when v(t) = [0, 1, 0].

In this paper, we treat Boolean functions which can be represented by either
(vi1

a1∧vi2
a2∧· · ·∧viki

aki )b or (vi1
a1∨vi2

a2∨· · ·∨viki

aki )b where vij , aj , b ∈ {0, 1}.
Note that a and b express whether or not negations exist. If every Boolean function
of a BN satisfies the above condition, we call it AND/OR Boolean network. The
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Figure 1. (a) An example of AND/OR BN where v1(t + 1) =
v2(t) ∨ v3(t), v2(t + 1) = v1(t) ∨ v2(t) ∨ v3(t) and v3(t + 1) =
v1(t) ∧ v2(t) are satisfied. “∧”, “∨” and “•” mean “AND”, “OR”
and “NOT” respectively. (b) The state transition of [v1, v2, v3].

number of nodes in AND/OR BN is obtained by counting “AND” and “OR”. For
example, in Fig. 1 (a), the AND/OR BN has 3 nodes. If no confusion arises, we
treat an AND/OR BN as a directed graph as shown in Fig. 1 (a) and denote
N(V,E) where V is a set of nodes and E is a set of directed edges.

If a BN is acyclic and does not have self-loops, there is a polynomial time
algorithm for detecting an attractor [1, 27]. In such a case, the number of attractors
is only one and it is a singleton attractor. On the other hand, if a BN is acyclic
and has self-loops, detection of an attractor is NP-hard [1]. In this paper, we allow
that a BN has self-loops.

In our main algorithm for detecting a singleton attractor, there are steps,
which we call consistency checks, to determine whether or not 0-1 assignments for
nodes contradict 0-1 assignments for their parent nodes. That is, it checks whether
or not a given (partial) 0-1 assignment for nodes is consistent with the definition
of a singleton attractor. For example, in Fig. 1 (a), if v1(t) = 0 and v2(t) = 0 are
assigned, the consistency check detects a contradiction since v1(t+1) = 1 6= v1(t).
Note that consistency checks just detect change of values of nodes from time steps t
to t+1 and then they do not contribute directly to reduce the computational time
of our proposed algorithm. The following lemma shows that consistency checks
can be done in ignorable time since our main algorithm takes exponential time of
n and O(nkan) ¿ O((a + ε)n) holds for any a > 1 and ε > 0, where k is a small
positive integer.

Lemma 2.1. [24] A consistency check for a GAP or a partial GAP can be done in
O(n2) time.
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In this paper, we treat only singleton attractors. Since v(t) = v(t + 1) must
hold for a singleton attractor, it suffices to consider only time step t. Thus, we
omit t from here on.

As mentioned in Introduction, detection of a singleton attractor for a BN
with maximum indegree k is reduced to (k + 1)-SAT [24]. For example of k = 2,
v1(t + 1) = v2(t) ∧ v3(t) can be represented by 3-SAT as follows:

v1(t + 1) = v2(t) ∧ v3(t) ⇐⇒ v1 = v2 ∧ v3

⇐⇒ (v1 ∨ (v2 ∧ v3)) ∧ (v1 ∨ (v2 ∧ v3))
⇐⇒ (v1 ∨ v2) ∧ (v1 ∧ v3) ∧ (v1 ∨ v2 ∨ v3).

However, the computational time increases as k increases.

3. O(1.774n) time algorithm

In this section, we present an O(1.774n) time algorithm which detects a singleton
attractor of a given AND/OR BN. The O(1.757n) time algorithm, which is to
be shown in the next section, can be obtained by improving the analysis of this
O(1.774n) time algorithm. Although the detection of a singleton attractor for a
BN with maximum indegree k can be reduced to (k + 1)-SAT [24], it cannot be
directly applied to our problem since no O((2 − ε)n) (ε > 0) time algorithms are
known for SAT with general k.

Let (V, E) denote the structure of a given BN. An edge (u, v) ∈ E from
u to v is called a non-assigned edge if no assignment has been done on any of
u and v. The notation of (u, v) is treated as if it were undirected although it is
actually directed in a given BN. It should be noted there exist at most 3 consistent
assignments (among 4 possible assignments) on (u, v) even if there exist self-loops
since either a conjunction of literals or a disjunction of literals is assigned to v [24].
For example in Fig. 2, (k, l) = (0, 0), (0, 1), (1, 1) are consistent, but (k, l) = (1, 0)
is not consistent. Moreover, two undirected edges (u, v), (v, w) ∈ E are called non-
assigned neighboring edges if no assignment has been done on any of u, v and w.
The notations of (u, v), (v, w) are also treated as if they were undirected although
they are actually directed in a given BN. It should also be noted there exist at most
5 consistent assignments (among 8 possible assignments) on (u, v, w). For example
in Fig. 2, (e, i, j) = (0, 0, 0),(0, 0, 1), (1, 0, 0), (1, 0, 1), (1, 1, 1) are consistent, but
(e, i, j) = (0, 1, 0),(0, 1, 1),(1, 1, 0) are not consistent.

We show below a pseudo code of the algorithm, which is to be later explained
using an example.
Begin

/*STEP1*/
for s1 = 1 to n do

vs1 is non-assigned;
/*STEP2*/
for s1 = 1 to n do



6 T. Tamura and T. Akutsu

for s2 = 1 to n do
for s3 = 1 to n do

if s1 6= s2 and s2 6= s3 and s3 6= s1 and (vs1 , vs2) ∈ E
and (vs2 , vs3) ∈ E and vs1 is non-assigned and vs2 is non-
assigned and vs3 is non-assigned
then examine all possible assignments on {(vs1 , vs2), (vs2 , vs3)},
which are at most 5 cases, recursively;
U = the set of nodes whose values were determined at this
step;

/*STEP3*/
for s1 = 1 to n do

for s2 = 1 to n do
if s1 6= s2 and (vs1 , vs2) ∈ E and vs1 is non-assigned and vs2 is
non-assigned
then examine all possible 3 assignments on (vs1 , vs2) recursively;
X = the set of nodes whose values were determined at this step;
W = V − U −X, |U | = K and |X| = L;

/*STEP4*/
if K > α(n− L)
then examine all possible assignments on W and then perform consistency
check;
else compute an appropriate assignment on W by using Yamamoto’s algo-
rithm and then perform consistency check on U and X;

End
It is to be noted that the subgraph induced by W is a set of isolated nodes

(with self-loops). Therefore, each node v in W is classified into the following types:
type I:. the value of v is directly determined from assignment on U + X,
type II:. the value of v is not directly determined from assignment on U + X,

where type I nodes consist of the following:
• The value of v is determined from the values of the input nodes to v,
• v is an input of AND node u and 1 is assigned to u,
• v is an input of OR node u and 0 is assigned to u.

Based on this fact, we can use Õ(1.234m) time SAT algorithm for m-clauses to
compute an appropriate assignment on type II nodes of W in the following way,
where Õ(f(m)) means O(f(m)poly(m)). Suppose that vi1 , · · · , vip in W are type
II input nodes to node u ∈ U + X. We assume w.l.o.g. that u is an AND node to
which 0 is already assigned (we can treat analogously the case where u is an OR
node). Furthermore, we can assume w.l.o.g. that u is defined as u = li1∧li2∧· · ·∧lip

where lij is either vij or vij . Then, the constraint of li1 ∧ li2 ∧ · · · ∧ lip = 0 can
be rewritten as a SAT clause li1 ∨ li2 ∨ · · · ∨ lip . Therefore, we can use the SAT
algorithm to find an assignment on W that leads to a singleton attractor.

From the above, it is straight-forward to see the correctness of the algorithm.
Thus, we analyze the time complexity.
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Lemma 3.1. Recursive execution of STEP 2 generates O(1.71K) assignments.

Proof. Since at most 5 assignments are examined per three nodes, the number
of possible assignments generated at STEP 2 is bounded by f(K) where f(K) is
defined by

f(3) = 5, f(K) = 5 · f(K − 3).
Then, f(K) is O(5K/3), which is at most O(1.710K) (=O(1.71K)). ¤
Lemma 3.2. Recursive execution of STEP 3 generates O(1.733L) assignments.

Proof. Since 3 assignments are examined per two nodes, the number of possible
assignments generated at STEP 3 is bounded by f(L) where f(L) is defined by

f(2) = 3, f(L) = 3 · f(L− 2).

Then, f(L) is O(3L/2), which is at most O(1.733L). ¤
Lemma 3.3. If the former part of STEP 4 is executed, the total number of examined
assignments is O(2n−K−L · 1.71K · 1.733L).

Lemma 3.4. If the latter part of STEP 4 is executed, the total computational time
is O(1.234K · 1.71K · 1.733L).

Proof. Assume that a SAT clause is constructed when STEP 3 is executed. There
must be a directed edge which is terminated by either u or v and initialized by
a node a ∈ V whose value has not been determined yet. We can assume w.o.l.g.
(a, u) has been a non-assigned edge before values of (u, v) are assigned. Therefore
{(a, u), (u, v)} are non-assigned neighboring edges at the beginning of STEP 3 and
it contradicts the definition of STEP 2. Thus, no SAT-clauses are constructed in
STEP 3. Since the number of constructed SAT clauses in STEP 2 is at most the
number of nodes assigned in STEP 2, the lemma holds. ¤
Theorem 3.5. Detection of a singleton attractor can be done in O(1.774n) time for
AND/OR BNs.

Proof. Assume that L is obtained. If n is a large enough constant, then 2n−K−L ·
1.71K · 1.733L and 1.234K · 1.71K · 1.733L are monotone decreasing and increasing
function of K respectively. Therefore, the computational time of the proposed
algorithm can be bounded by that of the case in which 1.234K = 2n−K−L holds.
By solving

1.234K = 2n−K−L,

we obtain
K = 0.767n− 0.767L.

Therefore, by letting α = 0.767, the computational time can be bounded by

max
0≤L≤n

{1.2340.767n−0.767L · 1.710.767n−0.767L · 1.733L} (3.1)

where 0 ≤ K + L ≤ n must hold. However, 0 ≤ K + L ≤ n always holds for any
L (0 ≤ L ≤ n) since

K + L = 0.767n + 0.233L
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Figure 2. Example for explaining our proposed algorithm.
{(d, g), (g, h)} and {(e, i), (i, j)} are selected as non-assigned
neighboring edges and (k, l) is selected as a non-assigned edge.

holds. Since
(1.234 · 1.71)0.767 > 1.773 > 1.733

, (3.1) is a monotone decreasing function of L if n is a large enough constant.
Therefore, (3.1) takes the maximum value when L = 0. Thus, since the compu-
tational time of the proposed algorithm can be bounded by assigning L = 0 to
(3.1),

1.2340.767n · 1.710.767n < 1.774n

is obtained as the upper bound. ¤

Example 1. In an example shown in Fig. 2, suppose that (d, g, h) = (0, 1, 0) and
(e, i, j) = (1, 0, 1) are assigned at STEP 2 and (k, l) = (0, 0) is assigned at STEP 3.
In STEP 2, SAT clauses (a∨ b∨ c), (a∨ c), (b∨ f), (a∨n), (f ∨n) are constructed
by d, g, e, i, j respectively. Note that d, g, h, e, i, j, k, l are not included in SAT
clauses since they are assigned either 0 or 1 directly. Since m and n are determined
as 0 by h = 0, they are type I nodes. On the other hand, a, b, c, f are Type II nodes.
In STEP 3, no SAT clauses are constructed (See Lemma 3.4). If the former part of
STEP 4 is executed, all possible assignments for a, b, c, f , which has 24 cases, are
examined. Otherwise the SAT problem is solved by Yamamoto’s algorithm [26].

4. Improved analysis

In this section, we present an improved analysis of the algorithm in Section 3. We
show that the algorithm works in O(1.757n) time. Though this improved analysis
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is based on the idea used in the improved analysis of our previous algorithm,
the analysis given here is much more involved and is far from a straight-forward
extension of [19].

For example, in Fig. 3 (a), since v1 and v3 are “∨” and v2 is “∧”, the possible
assignments for [v1, v2, v3] are [0, 0, 0], [0, 0, 1], [1, 0, 0], [1, 0, 1] and [1, 1, 1]. Note
that [0, 1, 0], [0, 1, 1], [1, 1, 0] do not satisfy the condition of a singleton attractor.
Suppose that [v1, v2, v3]=[0, 0, 0] is assigned. Then, values of parents of v1 are de-
termined uniquely. Similarly, values of parents of v3 are also determined uniquely.
However, values of parents of v2 are not determined but a SAT clause which is a
disjunction of values of parent nodes of v2 is constructed. In such a case, we say
that v2 adds a SAT clause.

By applying the above discussion to any non-assigned neighboring edges,
the numbers of added SAT clauses can be bounded for each case. For example,
in Fig. 3 (a), numbers of added SAT clauses by [v1, v2, v3] = [0, 0, 0], [0, 0, 1],
[1, 0, 0], [1, 0, 1] [1, 1, 1] are 1, 2, 2, 3 and 2 respectively. Similarly, in Fig. 3 (b), the
possible assignments for [v4, v5, v6] are [0, 0, 0], [1, 0, 0], [1, 0, 1], [1, 1, 0] and [1, 1, 1]
and numbers of added SAT clauses by them are 2, 3, 2, 2 and 1 respectively.
Furthermore, in Fig. 3 (c), the possible assignments for [v7, v8, v9] are [0, 0, 0],
[0, 1, 0], [1, 0, 0], [1, 1, 0] and [1, 1, 1] and numbers of added SAT clauses by them
are 1, 2, 2, 3 and 2 respectively. Although there are assignments which add less
numbers of SAT clauses, by examining all cases it is seen that the worst case is as
follows:

• one of the five assignments adds one clause.
• three of the five assignments add two clauses.
• one of the five assignments adds three clause.

From Lemma 3.1, the number of cases generated in STEP 2 is O(5
K
3 ) (≤ O(1.71K)).

For each case of them, the number of added SAT clauses is determined according
to which one of five assignments is selected in each non-assigned neighboring edges.
For example, in Fig. 3, if [v1, v2, v3] = [0, 0, 0], [v4, v5, v6] = [0, 0, 0] and [v7, v8, v9]
= [0, 0, 0] are assigned, the total number of added SAT clauses is 4 (=1+2+1).
Similarly, if [v1, v2, v3] = [1, 0, 1], [v4, v5, v6] = [1, 0, 0] and [v7, v8, v9] = [1, 1, 0] are
assigned, the total number of added SAT clauses is 9 (=3+3+3). Then, the num-
ber of cases where one clause is added i times and three clauses are added j times
is

K
3∑

i=0

K
3 −i∑

j=0

3( K
3 −i−j) · K

3
Ci · K

3 −iCj

since the number of cases where two clauses are added is 3
K
3 −i−j . Moreover, the

total number of added SAT clauses in this case is 2K
3 − i + j. Therefore, the

computational time in the case where the latter part of STEP 4 is executed is
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Figure 3. Three types of non-assigned neighboring edges. By
examining all cases, it is seen that the numbers of possible
assignments and added SAT clauses are at most 5 and 10
(=1+2+2+2+3) respectively for each type. Note that “*” indi-
cates that the corresponding node adds a SAT clause.
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bounded by

g(K, L) = 1.733L ·
K
3∑

i=0

K
3 −i∑

j=0

1.234( 2K
3 −i+j) · 3( K

3 −i−j) · K
3
Ci · K

3 −iCj .

To estimate g(K,L), we show the following lemmas. Let β and γ be constants
where 0 ≤ β ≤ 1

3 and 0 ≤ γ ≤ 1
3 − β hold.

Lemma 4.1. K
3
CβK is O

({ 1
3

β3β ·( 1
3−β)1−3β

}K
3
)

and K
3 −βKCγK is

O
({

( 1
3−β)1−3β

γ3γ ·( 1
3−β−γ)1−3β−3γ

}K
3
)

.

Proof. From Stirling’s formula, K
3
CβK is O(p(K,β)) where

p(K,β) =
(K

3 )
K
3

(βK)βK · (K
3 − βK)

K
3 −βK

=

{
K
3

(βK)3β · (K
3 − βK)1−3β

}K
3

=

{
1
3

β3β · ( 1
3 − β)1−3β

}K
3

Similarly, K
3 −βKCγK is O(q(K, β, γ)) where

q(K,β, γ) =
(K

3 − βK)
K
3 −βK

(γK)γK · (K
3 − βK − γK)

K
3 −βK−γK

=

{
(K

3 − βK)1−3β

(γK)3γ · (K
3 − βK − γK)1−3β−3γ

}K
3

=

{
( 1
3 − β)1−3β

γ3γ · ( 1
3 − β − γ)1−3β−3γ

}K
3

¤

To estimate terms including K
3
CβK and K

3 −βKCγK , we divide β and γ into
N and 2N intervals respectively.

Lemma 4.2. Suppose that i−1
3N ≤ β ≤ i

3N , j−1
6N ≤ γ ≤ j

6N and N is a positive even
integer.

1. If i ≤ N
2 , then K

3
CβK ≤ K

3
C iK

3N
holds. Otherwise K

3
CβK ≤ K

3
C (i−1)K

3N
holds.

2. If j ≤ N−i+1, then K
3 −βKCγK ≤ K

3 − (i−1)K
3N

C jK
6N

holds. Otherwise K
3 −βKCγK ≤

K
3 − (i−1)K

3N
C (j−1)K

6N
holds.

Proof. 1. If K is a constant, then K
3
CβK is convex upward with β and takes the

maximum value when β = 1
6 . By solving i

3N = 1
6 , we obtain i = N

2 (See also
Fig. 4 (a)). Note that K

3 and N
2 are integers from their definitions.
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β0 1
6

1
3

β1

i
3N

β2

i
3N

1 2

K
3

β KC  < CK
3

i
3N

K
3 β K
C   > CK

3
(i

3N
1 -1)

1
2

(a)

γ0
1
2

1
3

γ1

j
6N

γ2

j
6N

1 2

K
3

K C  <    C

(b)

1
3
-
3N
i-11

3
-
3N
i-1

i
3N
-1- γ K1

K
3

K
i
3N
-1- 6N

j1 K K
3

K
C    >    Ci

3N
-1- γ K2

K
3

K
i
3N
-1- 6N

(j2 K-1)

1
3N

2
3N N

3N=

1
6N

2
6N

2N
6N=

K K2

-1

-1

Figure 4. (a)If β ≤ 1
6 , then K

3
CβK ≤ K

3
C iK

3N
holds. Otherwise

K
3
CβK ≤ K

3
C (i−1)K

3N
holds. (b)If j ≤ 1

2 ( 1
3 − β), then K

3 −βKCγK ≤
K
3 − (i−1)K

3N
C jK

6N
holds. Otherwise K

3 −βKCγK ≤ K
3 − (i−1)K

3N
C (j−1)K

6N

holds.
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2. From the assumption, K
3 −βKCγK ≤ K

3 − i−1
3N KCγK holds. If K is a constant,

then K
3 − i−1

3N KCγK is convex upward with γ and takes the maximum value
when γ = 1

2 ( 1
3 − i−1

3N ). Note that i and N are constants. By solving 1
2 ( 1

3 −
i−1
3N ) = j

6N , we obtain j = N − i + 1 (See also Fig. 4 (b)).
¤

Theorem 4.3. Detection of a singleton attractor can be done in O(1.757n) time for
AND/OR BNs.

Proof.

g(K, L) = 1.733L · 1.234
2K
3 · 3K

3 ·
K
3∑

i=0

(1.234 · 3)−i · K
3
Ci ·

K
3 −i∑

j=0

(1.234
3

)j

· K
3 −iCj

< 1.733L · 1.234
2K
3 · 3K

3 ·
K
3∑

i=0

0.2702i · K
3
Ci ·

K
3 −i∑

j=0

0.4114j · K
3 −iCj

< 1.733L · (1.2342 · 3)
K
3 ·

( K

3N
· K

6N

)
·

{ N
2∑

i=1

f1

( i− 1
3N

)
· f2

( i

3N

) N−i∑

j=1

f3

(j − 1
6N

)
· f4

( i− 1
3N

,
j

6N

)

+

N
2∑

i=1

f1

( i− 1
3N

)
· f2

( i

3N

) 2(N−i)∑

j=N−i+1

f3

(j − 1
6N

)
· f4

( i− 1
3N

,
j − 1
6N

)

+
N∑

i= N
2 +1

f1

( i− 1
3N

)
· f2

( i− 1
3N

) N−i∑

j=1

f3

(j − 1
6N

)
· f4

( i− 1
3N

,
j

6N

)

+
N∑

i= N
2 +1

f1

( i− 1
3N

)
· f2

( i− 1
3N

) 2(N−i)∑

j=N−i+1

f3

(j − 1
6N

)
· f4

( i− 1
3N

,
j − 1
6N

)}

= 1.733L · (1.2342 · 3)
K
3 · poly(K) · h(K)

where

f1(i) = (0.27023i)
K
3 , f2(i) =

{
1
3

i3i · ( 1
3 − i)1−3i

}K
3

,

f3(j) = (0.41143j)
K
3 , f4(i, j) =

{
( 1
3 − i)1−3i

j3j · ( 1
3 − i− j)1−3i−3j

}K
3



14 T. Tamura and T. Akutsu

hold from Lemma 4.1. By setting N = 10000, it can be confirmed that h(K) <

O(1.683
K
3 ). Although this confirmation can be done manually, we used a computer

since it requires a vast amount of routine works. Note that larger N yields a
smaller upper bound of h(K). However, O(1.683

K
3 ) is almost not improved by N

which is larger than 10000. Thus, if the latter part of STEP 4 is executed, the
computational time of the proposed algorithm is O((1.2342 ·3 ·1.683)

K
3 ·1.733L) <

O(1.974K · 1.733L). Similar to the proof of the previous theorem, assume that
L is obtained. If n is a large enough constant, then 2n−K−L · 1.71K · 1.733L and
1.974K ·1.733L are monotone decreasing and increasing functions of K respectively.
Therefore, the computational time of the proposed algorithm can be bounded
by that of the case in which 1.974K = 2n−K−L · 1.71K holds. By solving this
equation, we obtain K = 0.8286n− 0.8286L. Therefore, by letting α = 0.8286, the
computational time can be bounded by

max
0≤L≤n

{1.9740.8286n−0.8286L · 1.733L} (4.1)

where 0 ≤ K + L ≤ n must hold. However, 0 ≤ K + L ≤ n always holds for
any L (0 ≤ L ≤ n) since K + L = 0.8286n + 0.1714L holds. Since 1.9740.8286 =
1.757 > 1.733, (4.1) is a monotone decreasing function of L if n is a large enough
constant. Therefore, (4.1) takes the maximum value when L = 0. Thus, since the
computational time of the proposed algorithm can be bounded by assigning L = 0
to (4.1),

O(1.9740.8286n) < O(1.757n)

is obtained as the upper bound. ¤

5. Algorithm for planar AND/OR BN

In this section, we consider singleton attractor detection problem of a planar
AND/OR BN, where “planar BN” is defined as follows: Let G(V, E) be a di-
rected graph, where (vi, vj) ∈ E when vi is a parent of vj . If G(V, E) is planar,
the corresponding BN N(V, F ) is also called a planar BN.

Proposition 5.1. Detection of a singleton attractor of a planar AND/OR BN is
NP-hard.

Proof. The method for the reduction from SAT to detection of a singleton attractor
of an ordinary AND/OR BN [27] can also be applied to the reduction from planar
SAT [16] to this problem. ¤

For this problem, we show below an O((1+ε)n) time algorithm, where ε is any
positive constant. The algorithm is based on a divide and conquer method which
utilizes Lipton and Tarjan’s separator algorithm for planar graphs [17]. Now, we
review the separator theorem for planar graphs.
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A A C B B

C

va1 vas vcj vb1 vbt

vci

C

vck

Figure 5. By generating 3 constraints for each node in C, A and
B can be treated separately in a planar AND/OR BN.

Theorem 5.2. [17] Let G be any n-vertex planar graph. The vertices of G can be
partitioned into three sets A, B, C such that no edge joins a vertex in A with a
vertex in B, neither A nor B contains more than 2n/3 vertices, and C contains
no more than 2

√
2
√

n vertices.

An O(n) time algorithm for finding such a partition A, B, C was also shown
in [17]. The main idea of our proposed algorithm is to examine all 0-1 assignments
for C so that A and B can be treated separately and then recursively apply the
separator theorem to A and B. If this idea is reflected to the algorithm appropri-
ately, the computational time f(n) for singleton attractor detection problem for a
planar AND/OR BN can be bounded by O(22

√
2
√

n) ·2f(2n/3)+O(n2) due to the
above theorem. However, even when every node in C has already been assigned,
A and B affect each other as follows:

For example, let va1 , . . . , vas , vb1 , . . . , vbt , vcj , vck
be parents of vci as shown

in Fig. 5 and assume va1 , . . . , vas ∈ A, vb1 , . . . , vbt ∈ B and vci , vcj , vck
∈ C. We

can assume vci be “∧” without loss of generality. When vci = 1 is assigned, every
parent of vci must be 1 to satisfy the condition of a singleton attractor. On the
other hand, when vci = 0 is assigned, one of the parents of vci must be 0 and then
the worst case computational time may be O(22

√
2
√

n · f(|A|) · f(|B|)). However,
to treat A and B separately, the proposed algorithm divides this constraint into
the following three cases:
• one of va1 , . . . , vas must be 0.
• one of vb1 , . . . , vbt must be 0.
• vcj or vck

must be 0.
Since the algorithm examines every 0-1 assignment for nodes in C, we can omit
the case “vcj or vck

must be 0”. Thus, when vci is “∧” and either 0 or 1 is assigned
to vci , we have to consider the following three cases:
• vci = 0.
• vci = 1 and one of va1 , . . . , vas must be 0.
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• vci
= 1 and one of vb1 , . . . , vbt

must be 0.

By generating 3 constraints for each node in C, we can treat A and B separately,
that is, the computational time is O(3|C| · (f(|A|) + f(|B|))). Then, for each case,
A and B are recursively partitioned by the Lipton and Tarjan’s algorithm.

Constraints may be more divided when a recursive step is called. However,
the number of combinations of constraints which should be taken into account by
the k-th recursive step can be bounded by 3(15.5

√
n)k

as shown later. The number
of variables in a constraint is O(n) and the total number of constraints for each
case is bounded by 15.5

√
n as shown later. Therefore, the consistency checks for

the constraints can be done in O(n
√

n) and thus the total computational time for
consistency checks is bounded by O(n2) for each case. Now we show below the
pseudo code of the proposed algorithm and then estimate the computational time.

Begin

Initialize V ′ = V , constraints = φ

Procedure PlanarAttractor(V ′, constraints)

if |V ′| ≤ c for some constant c,
then

for all 0-1 assignments on V’ do
if consistency check does not find any contradiction

then return true
else

(A,B, C) ↔ LiptonTarjan(V ′)
for all 3-constraint-assignments on C do

if consistency check finds any contradiction, then continue
for all vcm ∈ C do

add an appropriate constraints generated from vcm to
constraints

if PlanarAttractor(A, constraints) = true and
PlanarAttractor(B, constraints) = true,

then return true
return false

End

Theorem 5.3. Detection of a singleton attractor can be done in O((1 + ε)n) time
for planar AND/OR BNs for any positive constant ε.
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Proof. On the i-th recursion step of the algorithm, the number of generated con-
straints is at most 3c where

c = 2
√

2
√

n + 2
√

2
√

(2/3)n + 2
√

2
√

(2/3)2n + · · ·
≤ 2

√
2
√

n · {1 +
√

2/3 +
√

(2/3)2 + · · · }
≤ 2

√
2
√

n ·
(

1
1−

√
2/3

)

≤ 15.5
√

n.

Therefore, when Lipton and Tarjan’s algorithm is applied, the number of newly
generated constraints is at most γ

√
n = 315.5

√
n. The computational time f(n, m)

for a subnetwork with m nodes of our proposed algorithm is represented by

f(n, m) ≤ γ
√

n · 2 · f(n, 2m/3) + O(n2). (5.1)

Hence, the order of the total computational time of the algorithm is
log 3

2
n∑

k=1

(γ
√

n)k · 2k ≤ log 3
2

n · (γ
√

n)
log 3

2
n · 2log 3

2
n
, (5.2)

where O(n2) of (5.1) was ignored since O(nyzn) ¿ O((z+δ)n) holds for any z > 1
and δ > 0, where y is a small positive integer. To estimate the upper bound of
(5.2), we prove (5.2) ≤ βn for some constant β. Since the inequality still holds for
logarithms of both members, it is sufficient to prove

log2
3
2

n + (log 3
2

n) · √n · log γ + log 3
2

n · log 2 ≤ n · log β. (5.3)

When n is large enough, (5.3) holds for any β > 1. Thus the theorem holds by
setting β = 1 + ε.

¤

6. Conclusion and future works

We improved the computational time of the algorithm for detecting a singleton
attractor in a given AND/OR BN from O(1.787n) [24] to O(1.757n). Readers may
think that further improvement is possible by making use of 4 or more adjacent
nodes (in addition to 2 and 3 adjacent nodes). However, it is unclear whether such
a simple idea leads to an improvement. At least, algorithm and analysis would be
quite involved. Thus, improvement of the proposed algorithm is left as an open
problem. Extension of the proposed algorithm to the enumeration problem (i.e.,
efficient and output-sensitive enumeration of all singleton attractors) is also left
as an open problem.

Since it is important to study whether faster algorithms exist for special
classes of AND/OR BNs, we considered planar AND/OR BNs. We developed an
O((1 + ε)n) time algorithm for a planar AND/OR BN for any positive constant ε.
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An important future work is to find other classes which can be solved in polynomial
time or in O((1 + ε)n) time.

For the singleton attractor detection problem, every BN can be transformed
into an AND/OR BN although additional nodes are needed as discussed in [24]. If
the number of additional nodes is less than 0.229n, the computational time of our
algorithm is still O((2− ε)n) (ε > 0) for general BNs because 1.757n+0.229n < 2n.
This value (0.229n) was also improved from that of [24]. Since canalizing functions
and nested canalizing functions are known to be good models for regulatory rules
of eukaryotic genes [14, 22], the number of such additional nodes are considered to
be not large for real biological networks when compared to the case where Boolean
functions are assigned to nodes purely at random. It also deserves to mention that
the class of nested canalizing functions is equal to that of unate cascade functions
[11]. An experimental comparison of proposed algorithms is also one of our future
works.

Although this paper focused on the Boolean network as a biological network
model, the proposed techniques might be useful for designing algorithms which
find steady states in other models [19] as already discussed in [24]. Application
and extension of the proposed techniques to other types of biological networks are
important future works.
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