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Abstract

An algorithm for computing a Gröbner basis of an ideal of poly-
nomials whose coefficients are taken from a ring with zero divisors,
is presented; such rings include Zn and Zn[i], where n is not a prime
number. The algorithm is patterned after (1) Buchberger’s algorithm
for computing a Gröbner basis of a polynomial ideal whose coefficients
are from a field and (2) its extension developed by Kandri-Rody and
Kapur when the coefficients appearing in the polynomials are from a
Euclidean domain. The algorithm works as Buchberger’s algorithm
when a polynomial ideal is over a field and as KandriRody-Kapur’s
algorithm when a polynomial ideal is over a Euclidean domain. The
proposed algorithm and the related technical development are quite
different from a general framework of reduction rings proposed by
Buchberger in 1984 and generalized later by Stifter to handle reduc-
tion rings with zero divisors. These different approaches are contrasted
along with the obvious approach where for instance, in the case of Zn,
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the algorithm for polynomial ideals over Z could be used by aug-
menting the original ideal presented by polynomials over Zn with n
(similarly, in the case of Zn[i], the original ideal is augmented with n
and i2 + 1).

1 Introduction

An algorithm for computing a Gröbner basis of a polynomial ideal in which
the coefficients of monomials in polynomials are taken from a ring with zero
divisors (i.e., there exist c1, c2 �= 0 in such a ring with c1 ·c2 = 0) is presented.
Such coefficient rings include, for examples, Zn where n is not a prime num-
ber, as well as Zn[i] where i2 + 1 = 0, and so on. The proposed algorithm is
patterned after (1) Buchberger’s algorithm for computing a Gröbner basis of
a polynomial ideal where the coefficients of monomials are from a field and
(2) its generalization by Kandri-Rody and Kapur [8, 9] when the coefficients
of monomials in polynomials are from a Euclidean domain.

The input to the proposed algorithm is an ideal specified by a finite set of
polynomials. The algorithm produces another finite basis of the ideal which
can be used to reduce polynomials so that (1) every polynomials in the ideal
reduces to 0 and (2) every polynomial in the polynomial ring reduces to a
unique normal form such that polynomials equivalent with respect to the
ideal have the same normal form. An interested reader may wish to refer
to a survey article by Buchberger [7] for a brief introduction to the subject
as well as numerous applications of a Gröbner basis algorithm. Below, we
provide a brief historical background.

The concept of a Gröbner basis of an ideal was introduced by Bruno Buch-
berger in 1965 in his Ph.D. thesis [4]. Buchberger defined such a specialized
basis of an ideal as having the property that any element in the underlying
ring has a canonical form (unique normal form) with respect to the ideal,
along with the canonical form for the elements in the ideal being 0; further-
more, two elements in the ring modulo a given ideal have the same canonical
form. For polynomial ideals over a field, Buchberger not only showed that
every polynomial ideal has a Gröbner basis but also gave an algorithm for
computing a Gröbner basis from any basis of the ideal. It took some years
before the concept became popular among mathematicians and computer sci-
entists. By now, numerous interesting applications of the concept have been
found as many computational problems can be solved by computing Gröbner
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bases of polynomial ideals. Most commercially available computer algebra
systems provide implementations of Gröbner basis algorithms. There are
highly specialized fast stand-alone software systems available for computing
Gröbner basis as well.

Kandri-Rody and Kapur [8, 9] generalized Buchberger’s algorithm by
defining a rewriting relation induced by a polynomial on a polynomial ring
using a division algorithm over a Euclidean domain. They defined a well-
founded order on polynomials using the well-founded order on the elements
of a Euclidean domain induced by the division algorithm. Using these ideas,
they developed a Gröbner basis algorithm to work on polynomial ideals over
Euclidean domains. Subsequently, Kapur and Narendran [11] as well as Pan
[15] proposed algorithms to compute a Gröbner basis of a ideal in polyno-
mial rings over principal ideal domain (PID). Unlike Buchberger’s algorithm
as well as KandriRody-Kapur’s algorithm which computes canonical forms
for elements in the quotient ring defined on a polynomial ring by an ideal,
Kapur and Narendran’s as well as Pan’s algorithms do not have this prop-
erty. Instead, every polynomial in a given polynomial ideal reduces to 0 using
a Gröbner basis of the polynomial ideal; however, different elements in the
polynomial ring which are equivalent modulo the polynomial ideal could have
different normal forms. In this sense, Kapur and Narendran’s algorithm as
well as Pan’s algorithm compute a weak Gröbner basis of an ideal, in con-
trast to Buchberger’s algorithm as well as KandriRody-Kapur’s algorithm
that compute a strong Gröbner basis of an ideal.

KandriRody-Kapur’s algorithm cannot, however, work on polynomial ide-
als over a non-Euclidean domain, for example, a ring with zero divisors.
Kapur and Madlener [10] attempted to develop an algorithm to compute a
Gröbner basis of polynomial ideals over a ring with zero divisors, which is
closely related to the algorithm proposed in the paper1. The key new idea
due to Kapur and Madlener [10] was that a single polynomial could also
generate additional polynomials (the so-called critical pairs) to complete a
basis. This idea was subsequently used by Madlener and Reinert [13] in their
generalization of Gröbner bases for polynomial ideals over monoid rings; they
called it the saturation of a given polynomial.

The proposed algorithm works as Buchberger’s algorithm when a poly-
nomial ideal is over a field and as KandriRody-Kapur’s algorithm when a

1Kapur presented the preliminary results of this approach in 1988 at a workshop orga-
nized by Mathematical Sciences Institute at Cornell University
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polynomial ideal is over a Euclidean domain.
In the next subsection, we discuss different approaches for generalizing

Gröbner basis of a polynomial ideal where the coefficients are from a com-
mutative ring. We also contrast how these approaches could be adapted to
be used for computing Gröbner basis of a polynomial ideal where the coef-
ficients could be zero-divisors. Section 2 gives basic definitions and lemmas,
particularly emphasizing the properties of zero-divisors. The concept of a
divisible and annihilable ring (a D-A ring) on which the proposed approach
works is defined, and its properties are discussed. In section 3, a well-founded
order on polynomials is defined using a well-founded order on the elements
of a D-A ring. This leads to the definition of a rewriting relation induced by
a polynomial using a division algorithm over a D-A ring. Almost all proofs
are patterned after the proofs of related lemmas and properties in [8, 15, 3].
The main differences are that a special attention has to be paid in case the
head coefficient of a polynomial in a basis is a zero divisor. These differences
are pointed out in subsequent sections before detailed proofs are given. Sec-
tion 4 gives a Gröbner basis algorithm. The algorithm is illustrated using an
example in section 5. The comparison between the reduction ring method
and our algorithm is given in section 6. Section 7 extends our algorithm to
a polynomial ring over a generalized principle ideal ring (GPIR).

1.1 Related Work: Generalization of Buchberger’s Al-
gorithm for Polynomial Ideals over a field

There are at least three different approaches to generalizing Buchberger’s
algorithm for computing Gröbner bases of polynomial ideals over a commu-
tative Noetherian ring:

• Syzygy method proposed by a number of researchers including Shtokhamer,
Trinks, Zacharias, Schaller and Möller which works for polynomial ide-
als over Noetherian rings in which certain kinds of syzygies can be
solved (see [14, 1], etc.).

• KandriRody-Kapur’s algorithm for polynomial ideals over a Euclidean
domain based on reduction relations, which was subsequently general-
ized by Pan as well as by Kapur and Narendran for polynomial ideals
over a principal ideal domain.
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• Buchberger’s framework of a reduction ring, which was subsequently
generalized by Stifter [16, 17, 18]. A reduction ring satisfies axioms
needed for Buchberger’s algorithm to be applicable in a general setting.

We briefly discuss each of these approaches and then later, we will dis-
cuss how polynomial ideals with coefficients from a ring with zero divisors
will be considered. In contrast to Buchberger’s approach in which (1) a sin-
gle polynomial is used to reduce other polynomials and (2) new polynomials
to complete a basis are generated by considering pairs of polynomials, ap-
proaches proposed by Shtokhamer, Trinks, Zacharias, Schaller and Möller
used every finite subset of polynomials in a basis for reduction as well as for
generating new polynomials to be added to the basis. As a result, reduction
as well as methods for generating new polynomials in their approaches are
quite complex. In order to perform these computations, one needs to solve
linear nonhomogeneous equations over the coefficient ring as well as compute
a basis for syzygies over the coefficient ring. The underlying coefficient ring
thus must admit algorithmic solvability of the problem of computing syzy-
gies in the coefficient ring. Furthermore, polynomials which are equivalent
modulo a given polynomial ideal need not be reduced to the same canonical
form using algorithms based on these approaches. In these respects, their
algorithms are not in the spirit of Buchberger’s algorithm; see also [5, 6, 9]
for comments on differences between their approaches and the approaches
based on rewriting techniques.

In 1984, Buchberger also developed a general version of the Gröbner basis
algorithm for commutative rings, which satisfy certain conditions. He intro-
duced the notion of a reduction ring and described a generalization of his
Gröbner basis algorithm for polynomial ideals over a field (1965). Roughly,
reduction rings are rings on which the Gröbner basis approach is possible,
implying that Gröbner basis computations can be performed. Reduction
rings are characterized by axioms that relate the arithmetical operations in
the ring with an order. Once a ring R is shown to be a reduction ring, it is
possible to compute a Gröbner basis of ideals over the ring. Buchberger also
proved that (1) a polynomial ring over a reduction ring R is also a reduction
ring, (2) there exists a Gröbner basis for every polynomial ideal and further-
more, (3) such a Gröbner basis can be computed. In Buchberger [5], the ring
of integers is proven to be a reduction ring. After learning about Kapur and
Madlener’s approach [private communication, 1988], Stifter [16] generalized
the notion of a reduction ring by giving weaker axioms that characterize a
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wider class of rings, and proved that the ring of integers modulo m (i.e.,
Zn), n an arbitrary not necessarily prime number, is a reduction ring in the
generalized sense.

In order to show that a ring R is a reduction ring, one has to choose a
Noetherian order on R, finite index sets Jc for each c ∈ R, and sets of mul-
tipliers Mulic for each c ∈ R and i ∈ Jc such that the axioms of a reduction
ring are satisfied. The absence of any additional structure on reduction rings
makes it necessary to introduce a totally new approach for the formulation
of critical pairs that involves only the arithmetical operations and the or-
der. The new concept of a least common reducible of two elements (denoted
by LCR(., .)) is defined by first introducing a reduction relation based on
the arithmetical operations and the order predicate. As a consequence, the
construction for computing critical pairs and a Gröbner basis from the ring
operations can be quite involved technically. An algorithm for constructing a
Gröbner basis over a reduction ring is given in Buchberger [5] and Stifter [16]:
Given a finite set C ⊆ R, find a finite set D ⊆ R such that←→∗

C=←→∗
D and

−→D has the Church-Rosser property (see [2]). The key idea is: set D := C
and compute LCR(c1, c2) for any c1, c2 ∈ C, then reduce LCR(c1, c2) by c1

and c2 respectively, while only the multipliers in Mulic1 and Muljc2 can be
quotients for two given indices i, j ∈ Jc. A critical pair is obtained in this
way and the normal forms < b1, b2 > of the critical pair is computed so that
a new element b1 − b2 can be added into D. The example below illustrates
the role of multipliers.

Kandri-Rody and Kapur [9] designed an algorithm for computing a Gröbner
basis of a polynomial ideal in which the coefficients of polynomials are from
a Euclidean domain, admitting a division algorithm, e.g., such as the ring of
integers, Gaussian integers, as well as algebraic integers in quadratic num-
ber fields. The algorithm is a generalization of Buchberger’s Gröbner basis
algorithm for a polynomial ideal over a field, relying only on the existence
of a division algorithm over the coefficients. Using the division algorithm,
simplification of polynomials by another polynomial is defined in a natural
way. A Gröbner basis is then a complete rewriting system when polynomials
are viewed as rewrite rules, which can be used to generate canonical forms for
equivalence classes in the quotient ring defined by the ideal on a polynomial
ring. KandriRody-Kapur’s algorithm cannot work, however, on polynomial
ideals over a non-Euclidean domain, such as a ring with zero divisors. This
paper extends KandriRody-Kapur’s algorithm so that a Gröbner basis of a
polynomial ideal over a ring with zero-divisors, such as Zn and Zn[i] (i2 = −1)
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for any integer n, can be computed. As will be discussed, the main idea is to
generate additional polynomials from a given polynomial whose head coeffi-
cient is a zero divisor, and to add these polynomials as well to a given basis.
In this sense, critical pairs are generated even from a single polynomial if
its head coefficient is a zero divisor, by multiplying it by the annihilator of
its head coefficient. We now illustrate key differences in various approaches
using a simple example of a polynomial ideal with integer coefficients.

Example 1 Consider an ideal over Z[x, y] generated by

F = {f1 = 6x, f2 = 32y}.
Buchberger’s method defined an order 0 < −1 < 1 < −2 < 2 < · · · over Z,
and LCR(c1, c2) = max(LCR(c1), LCR(c2)), where

LCR(c) =

{ |c|/2 if c is even
−(|c|+ 1)/2 if c is odd

for any c, c1, c2 ∈ Z (see [5]).

1. Since LCR(6, 32) = 16, the superposition of f1 and f2 is defined as
16xy, and the critical pair is obtained: < p1 = −2xy, p2 = −16xy >
as 16 = 3 ∗ 6− 2 −→6 −2 and 16 = 1 ∗ 32− 16 −→32 −16.

2. In Buchberger-Stifter’s method, there exists an algorithm A such that
for all a, c: if a −→c, i.e., a is reducible modulo c, then there exists
A(a, c) ∈ Mulc such that a − A(a, c)c < a. Then the polynomial p2 is
reducible modulo f1 to: p3 = 2xy as −16 = (−3) ∗ 6 + 2 −→6 2.

3. A new polynomial (S-polynomial) can be obtained from p1 and p3:
f3 = p1 − p3 = −4xy.

4. Since LCR(6,−4) = 3, the superposition of f1 and f3 is defined as
3xy, and the critical pair is obtained: < p4 = −3xy, p5 = −xy > as
3 = 1 ∗ 6− 3 −→6 −3 and 3 = (−1) ∗ (−4)− 1 −→−4 −1.

5. Since −3 = 1 ∗ (−4) + 1 −→−4 1, the polynomial p4 can be further
reduced modulo f3 to: p6 = xy.

6. A new polynomial (S-polynomial) can be obtained from p5 and p6:
f4 = p5 − p6 = −2xy.
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7. The polynomial f3 can be deleted by f4.

8. No new polynomials can be produced from f1, f2, and f4. A Gröbner
basis of the ideal Id(F ) is {6x, 32y,−2xy}.

Using the syzygy based method for computing a Gröbner basis, F is already a
Gröbner basis. While −2xy and 2xy cannot be reduced by either 6x or 32y in
Buchberger-Stifter’s method and KandriRody-Kapur’s algorithm, they can
be reduced to 0 using both 6x and 32y in the method based on syzygies.
Since −2xy = (5y) ∗ (6x) + (−x) ∗ (32y), it reduces to 0; similarly, 2xy =
(−5y) ∗ (6x) + (x) ∗ (32y); it reduces to 0 too.

KandriRody-Kapur’s algorithm defined an order 0 < 1 < −1 < 2 < −2 <
· · · over Z (see [9]).

1. Since max(6, 32) = 32, the superposition of f1 and f2 is defined as
32xy, and the critical pair is obtained: < p1 = 2xy, p2 = 0 > as
32 = 5 ∗ 6 + 2 −→6 2 and 32 = 1 ∗ 32 + 0 −→32 0.

2. A new polynomial (S-polynomial) can be obtained from p1 and p2:
f3 = p1 − p2 = 2xy.

3. No new polynomials can be produced from f1, f2, and f3. A Gröbner
basis of the ideal Id(F ) is {6x, 32y, 2xy}.

The above example computes the Gröbner bases of polynomial ideals over
a ring without any zero-divisors. We found that KandriRody-Kapur’s algo-
rithm is simpler than Buchberger-Stifter’s method, and the syzygy method
is quite different from the other two methods.

We know that Buchberger-Stifter’s method and the syzygy method can
compute Gröbner bases of polynomial ideals over a ring with zero-divisors,
but KandriRody-Kapur’s algorithm cannot. Our new algorithm extends
KandriRody-Kapur’s algorithm so that Gröbner bases of polynomial ideals
over a ring with zero-divisors can be computed too. The difference between
the new method and Buchberger-Stifter’s method can be seen in Example 3
in section 6.

2 Basic Definitions and Lemmas

In the following, we assume R is a commutative ring with an identity element
with respect to multiplication ∗, denoted by 1, i.e., for all a ∈ R, 1 ∗ a =
a ∗ 1 = a.
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Definition 1 An element ε ∈ R is called a unit if there exists an ε′ in R
such that ε ∗ ε′ = 1, the units set of R is denoted as Units(R).

For example, 1 is a unit. Let ε, ε′ ∈ Units(R) with ε ∗ ε′ = 1. If there
exists a ∈ R such that aε = 0, then

a = a ∗ 1 = a ∗ (ε ∗ ε′) = (a ∗ ε) ∗ ε′ = 0 ∗ ε′ = 0,

i.e., no unit of R is a zero divisor.
A ring with an identity element 1 could have more than one unit. In Z,

for example, both 1 and −1 are units. For Z[i], the units are 1,−1, i,−i. In
Z20, the units are 1, 3, 7, 9, 11, 13, 17, 19. In Z12[i], the units are {a+ bi|a, b ∈
Z12, gcd(a2 + b2, 12) = 1}, for example, ±1 ± 2i, ±2 ± 3i, etc. For Z[s]
with s3 = 1, the units are 1,−1, s,−s, s2,−s2. For any field F (such as
the rational number field Q), every element in F − {0} is a unit of F , i.e.,
Units(F) = F − {0}.

Definition 2 Two elements, a, b ∈ R, are called associated if and only if
there exists a unit ε such that a = b ∗ ε.

It is easy to see that associatedness is an equivalence relation on R. In
particular, all units are associated. Moreover, if a = b ∗ ε and ε ∗ ε′ = 1, then
b = a ∗ ε′.

2.1 Order on R
Definition 3 Let rep: R −→ R be a selection function, called representa-
tive, which picks a unique element for each associatedness equivalence class.
We call rep(a) as the representative form of a ∈ R.

In the following, we assume that for each element in R, its representative
form is computable.

If a and b are associated, then rep(a) = rep(b). An element a is called
representative if and only if rep(a) = a. In general, for any u ∈ Units(R),
we set rep(u) = 1. For example, for any field F , if for any z ∈ F − {0, 1},
0 < 1 < z is defined, then the unique representative element is 1.

Given any a ∈ R and b ∈ R − {0}, if there exists q ∈ R such that
a = q ∗ b, then we say b is a divisor of a, denoted by b|a. If b|a, i.e., a = q ∗ b,
then rep(b)|a, because there exists a unit ε ∈ R with ε ∗ rep(b) = b such that
a = (q ∗ ε) ∗ rep(b). Moreover, if rep(a) = rep(b), i.e., a and b are associated,
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then there exist ε, ε′ ∈ Units(R) with ε ∗ ε′ = 1 such that a = ε ∗ b and
b = ε′ ∗ a, so a|b and b|a.

Definition 4 Let < be a partial well-founded order on R. It is called a
representable order if and only if (1) rep(a) ≤ a for each a ∈ R, and (2)
for any a, b ∈ R−{0}, if b|a then rep(b) ≤ rep(a), and (3) for any a, b ∈ R,
rep(a) and rep(b) are comparable under <.

2.2 Division Algorithm and RGCD

Let < be a representable order onR and b ∈ R−{0}; an element b induces an
equivalence relation onR as follows: a =b c if and only if there exists a q such
that a = q ∗ b + c. Given a ∈ R, if a unique minimal element with respect to
< exists in the equivalence class induced by the equivalence relation =b, then
define the remainder r obtained by dividing a by b as the unique minimal
element, denoted by rem(a, b). Obviously r ≤ a as a = 0 ∗ b + a. We say a
can be reduced modulo b to r if r < a. If ANN(b) �= {0}, then there exists
q′ ∈ R not equal to q, such that a = q′ ∗ b + c with α = q′ − q ∈ ANN(b), as
a = qb + c = (q + α) ∗ b + c = q′ ∗ b + c. With the unique minimal remainder
r, if a unique minimal element with respect to < satisfying a = q ∗ b + r
exists, then define the quotient q as the unique minimal element, denoted
by quot(a, b).

Definition 5 Let < be a representable order on R, and let a, b ∈ R−{0}. If
α ∈ R is representative and the greatest among all the representative common
divisors of a and b under <, then α is called the representative greatest
common divisor of a and b, denoted by rgcd(a, b).

Lemma 1 Assume that there exist a representable order < on R and a di-
vision algorithm, such that for any a, b ∈ R − {0}, both r = rem(a, b) < b
and q = quot(a, b) are computable such that a = qb + r. Then for any
a, b ∈ R−{0}, rgcd(a, b) is computable. Moreover, there exist α, β ∈ R such
that rgcd(a, b) = αa + βb.

Proof: Given a, b ∈ R − {0}, from the definition of D-A rings, we know
r = rem(a, b) < b. If r �= 0, then r2 = rem(b, r) < r. If r2 �= 0, then
r3 = rem(r, r2) < r2. Continue this process, and it will terminate as < is
well-founded. Let r1 = r and r0 = b, we get a finite sequence:

0 = rk+1 < rk < · · · < r1 < r0
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where ri+2 = rem(ri, ri+1) for any i = 0, 1, · · · , k − 1.
For any a and b, we show by induction on k that there exist α, β ∈ R

such that rep(rk) = rgcd(a, b) = αa + βb.
(1) Basis step: k = 0, i.e., r1 = r = 0 and there exists q = quot(a, b) such

that a = q∗b. There exist ε, ε′ ∈ Units(R) with εε′ = 1 such that b = ε∗rep(b)
and a = q ∗ b = (qε) ∗ rep(b), so rep(b) is a representative common divisor of
a and b. If there exists another common divisor of a and b, say c, i.e., there
exists a q′ ∈ R such that b = q′ ∗ c, then rep(b) = ε′b = ε′q′c, i.e., c|rep(b),
so rep(c) ≤ rep(b). Since r0 = b, we get rgcd(a, b) = rep(b) = rep(r0), and
rgcd(a, b) = αa + βb where α = 0 and β = ε′.

(2) Inductive step: Given any a′, b′ ∈ R− {0} such that

0 = r′k+1 < r′k < · · · < r′1 < r′0 = b′

where r′1 = rem(a′, b′), and r′i+2 = rem(r′i, r
′
i+1) for any i = 0, 1, · · · , k − 1.

Assume that there exist α′, β ′ ∈ R such that rep(r′k) = rgcd(a′, b′) = α′a′ +
β ′b′.

Let a, b ∈ R− {0} such that

0 = rk+2 < rk+1 < · · · < r1 < r0 = b

where r1 = rem(a, b), and ri+2 = rem(ri, ri+1) for any i = 0, 1, · · · , k.
By the induction hypothesis, there exist α′, β ′ ∈ R such that rep(rk+1) =

rgcd(b, r1) = α′b+β ′r1. Since r1 = rem(a, b), there exists q = quot(a, b) such
that a = q ∗ b + r1, then from rep(rk+1) = rgcd(b, r1) we have rep(rk+1)|a,
i.e., rep(rk+1) is a representative common divisor of a and b. If there exists
another common divisor of a and b, say c, i.e., c|a and c|b, then from a =
qb + r1, we have c|r1. Since rep(rk+1) = α′b + β ′r1, we get c|rep(rk+1), then
rep(c) ≤ rep(rk+1). So rgcd(a, b) = rep(rk+1). Moreover, let α = β ′ and
β = α′ − qβ ′, we get rgcd(a, b) = α′b + β ′r1 = α′b + β ′(a− q ∗ b) = αa + βb.

Hence the proof.

In fact, an algorithm to compute the rgcd of any two elements inR follows
from the above proof of Lemma 1.

Lemma 2 Assume that (1) a well-founded order < is defined on R such that
for any a, b ∈ R − {0}, if b|a then rep(b) ≤ rep(a); and (2) there is a rgcd
algorithm such that for any a, b ∈ R − {0}, rgcd(a, b) is computable. Then
R is Noetherian.
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Proof: At first, there is a unique minimal nonzero representative element
in any nonzero ideal of R. If not, say there are at least two minimal nonzero
representative elements, a and b. By the assumptions, rgcd(a, b) ≤ rep(a) =
a and rgcd(a, b) ≤ rep(b) = b. Further, since both a and b are minimal,
rgcd(a, b) < a and rgcd(a, b) < b. But rgcd(a, b) is in the ideal, i.e., a or b is
not minimal in the ideal, this leads to a contradiction.

It is shown that any nonzero ideal of R can be generated by the unique
minimal nonzero representative element a in the ideal. If not, say there is a
nonzero element b in the ideal, such that b �= q ∗ a for any q ∈ R. By the
assumptions, rgcd(a, b) ≤ rep(a) = a. Further, since a � |b, rgcd(a, b) < a.
But rgcd(a, b) is in the ideal, i.e., a is not the minimal nonzero representative
element in the ideal, there is a contradiction. Thus, any nonzero ideal of R
is principal, which implies that R is Noetherian.

2.3 Annihilators on R
Definition 6 Let c ∈ R − {0}. An element a ∈ R is called an annihilator
of c if c ∗ a = 0. The set of all annihilators of c is called the annihilator set
of c, denoted by ANN(c), i.e., ANN(c) = {a ∈ R|a ∗ c = 0}.
For any c ∈ R, 0 ∈ ANN(c), and if c is not a zero divisor, then ANN(c) = {0}.
Moreover, if 0 �= a ∈ ANN(c), then rep(a) ∈ ANN(c).

If c is not a zero divisor, it is easy to see that ANN(c) is an nonzero ideal of
R. Then by Lemma 2, under the assumptions in the lemma, ANN(c) can be
generated by the unique minimal nonzero representative element in ANN(c),
we denote it as ann(c). If c is not a zero divisor, then define ann(c) = 0.

2.4 D-A rings

Definition 7 Let R be a commutative ring with the identity element 1. R
is called a divisible and annihilable ring, simply denoted by a D-A ring
or DAR, if and only if

(1) For each element in R, its representative form is computable.
(2) There exist a representable order < on R and a division algorithm,

such that for any a, b ∈ R − {0}, both r = rem(a, b) < b and q = quot(a, b)
are computable such that a = qb + r.

(3) For any c ∈ R− {0}, ann(c) is computable.
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A field or a Euclidean domain is a D-A ring. A D-A ring can have zero-
divisors, whereas there are no zero-divisors in a Euclidean domain; it is easy
to see that both the ring of integers modulo n (Zn) and the ring of Gaussian
integers modulo n (Zn[i]), where n is any non-prime integer, are D-A rings.

A representable order for a D-A ring does not have to be total; instead,
it can be partial. For example, for any field F , one possible ordering is
0 < 1 < z for any other z ∈ F−{0, 1}, where 1 is picked as the representative
form of any nonzero element in F ; for the integer ring Z, the ordering 0 <
1 < 2 < 3 < · · · and a < −b for any positive integers a, b (i.e., negative
integers are not comparable with each other) works, where positive integer a
is picked as the representative form of ±a; and so on.

As the reader saw, there can be distinct multiple representable orders on
a D-A ring. But for convenience, we assume below

(1) a representable order <Z on Z is always defined as follows: for any
a, b ∈ Z, a <Z b if and only if (i) |a| < |b| or (ii) a = −b > 0. That is,

0 < 1 < −1 < 2 < −2 < 3 < −3 < · · · .

(2) a representable order <Zn on Zn := {0, 1, · · · , n− 1} is always defined
as follows: for any a, b ∈ Zn, a <Zn b if and only if min<Z

(a, a± n) <Z

min<Z
(b, b± n). That is,

0 < 1 < n− 1 < 2 < n− 2 < · · · < [
n + 1

2
].

For example, the representable order < on Z6 is: 0 < 1 < 5 < 2 < 4 <
3.

(3) a representable order <Z[i] on Z[i] with i2 = −1 is always defined as
follows: for any a, b, α, β ∈ Z, a + bi <Z[i] α + βi if and only if (1)
a2 + b2 < α2 + β2 or (2) a2 + b2 = α2 + β2 and b <Z β or (3) b = β and
a <Z α. That is,

0 < 1 < −1 < i < −i < 1+i < −1+i < 1−i < −1−i < 2 < −2 < · · · .

(4) a representable order on Zn[i] with i2 = −1 is always defined as follows:
for any a, b, α, β ∈ Zn, a+bi <Zn[i] α+βi if and only if min<Z

(a, a±n)+
min<Z

(b, b±n)i <Z[i] min<Z
(α, α±n)+min<Z

(β, β±n)i. For example,
on Z3[i], the order is: 0 < 1 < 2 < i < 2i < 1+i < 2+i < 1+2i < 2+2i.

13



2.5 Properties of D-A rings

By Lemma 1, there is a rgcd algorithm on D-A rings. Moreover, by Lemma
2, D-A rings are Noetherian. Below, we assume R to be a D-A ring with a
representable order < on R.

Lemma 3 Let c ∈ R, ann(c) �= 0 and a ∈ ANN(c), then ann(c)|a.
Proof: If there exists an a ∈ ANN(c) such that ann(c) � |a, then from
Lemma 1, we have b = rgcd(ann(c), a) ∈ R such that b|ann(c), then b =
rep(b) ≤ ann(c).

Moreover, there exist α, β ∈ R such that b = α ∗ ann(c) + βa, then
b ∗ c = (α ∗ ann(c) + βa) ∗ c = 0, i.e., b ∈ ANN(c). According to the
definition of ann(c), we have ann(c) ≤ b. Thus b = ann(c), and this leads to
a contradiction with ann(c) � |a.

Further, since the representable order < on R is Noetherian and ANN(c)
is an ideal of R, ANN(c) has a finite generating set {a1, · · · , ak}. By the
above lemma 3, we know ann(c) is a common divisor of a1, · · · , ak. By Lemma
1, rgcd(a1, · · · , ak) ∈ ANN(c), then ann(c)|rgcd(a1, · · · , ak), so ann(c) ≤
rgcd(a1, · · · , ak). Since ann(c) can be generated by {a1, · · · , ak}, we get
rgcd(a1, · · · , ak)|ann(c), so rgcd(a1, · · · , ak) ≤ ann(c). Hence, ann(c) =
rgcd(a1, · · · , ak).

Lemma 4 Let a, b ∈ R− {0}, then rem(a, b) < rep(b).

Proof: By the definition of D-A rings, we can assume a = q ∗ rep(b) + r′,
where r′ = rem(a, rep(b)) < rep(b). Let rep(b) = b ∗ ε, where ε ∈ Units(R).

Since a = q ∗ rep(b)+ r′ = (qε) ∗ b+ r′, it follows that rem(a, b) ≤ r′, then
rem(a, b) < rep(b).

If two nonzero elements are comparable, then the bigger element is re-
ducible modulo the smaller from the definition of D-A rings. Further, we
have the following lemma:

Lemma 5 Let a, b ∈ R − {0}, and rep(b) ≤ rep(a). Then a is reducible
modulo b.

Proof: According to the definition of D-A rings, there exist q, r ∈ R such
that a = q ∗ b + r, where r = rem(a, b) < b. Further, from the definition
of the remainder, we have r ≤ a. If r < a, then a is reducible modulo b;
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otherwise, r = a, by Lemma 4, rep(a) ≤ a = r = rem(a, b) < rep(b). This
leads to a contradiction with the assumption rep(b) ≤ rep(a).

Lemma 6 Let a, b, c1, c2 ∈ R − {0} with b = rem(a, c1) and c2|b. Then
rep(c2) < rep(c1), and rem(c1, c2) < b.

Proof: By Lemma 4, b = rem(a, c1) < rep(c1). Since c2|b, it follows that
rep(c2) ≤ rep(b) ≤ b. Then rep(c2) < rep(c1). By Lemma 4, rem(c1, c2) <
rep(c2). Then rem(c1, c2) < b.

3 Gröbner basis of a Polynomial Ideal

In the following, we assume that R is a D-A ring, and R[x̄] is a polynomial
ring in the variables x̄ =< x1, · · · , xd >. Further, an admissible term order2

is defined such that we can define the leading (head) term, the leading coef-
ficient, and the leading monomial of a given polynomial p ∈ R[x̄], denoted
by lt(p), lc(p), and lm(p), respectively. Moreover, we denote p − lm(p) by
rest(p).

For convenience, if we say m = ct is a monomial in R[x̄], then usually it
means that c ∈ R − {0} is the coefficient and that t is the term in R[x̄] of
m. Let t1 and t2 are terms in R[x̄], we say t1|t2 if and only if there exists a
term s ∈ R[x̄] such that t2 = st1. Moreover, let m1 = c1t1 and m2 = c2t2 are
monomials in R[x̄], we say m1|m2 if and only if c1|c2 and t1|t2.

3.1 Well-founded order on a Polynomial Ring

An admissible term order on R[x̄] and a representable order on R defines a
well-founded order < on polynomials in R[x̄] in a natural way:

Definition 8 For any two polynomials f, g ∈ R[x̄], f < g if and only if
(1) lt(f) < lt(g)

or (2) lt(f) = lt(g) and lc(f) < lc(g)
or (3) lm(f) = lm(g) and rest(f) < rest(g).

2< is an admissible term order iff < is total and for any terms s, t, u: (1) 1 ≤ s; (2)
s ≤ t⇒ su ≤ tu
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3.2 Polynomials as Rewrite Rules

Let p = lm(p)+ rest(p) ∈ R[x̄]−{0}. The rewrite rule corresponding to p is:

lm(p) −→ −rest(p).

If p is a monomial, then the right-hand side of its rule is 0.

Definition 9 Let f, g, p ∈ R[x̄]. f reduces to g modulo p, denoted by
f −→p g, if and only if there exists a monomial m = at in f such that
lt(p)|t, say t = s ∗ lt(p), and

g = f − qsp = rt− qs ∗ rest(p) + f1,

where q = quot(a, lc(p)), r = rem(a, lc(p)) < lc(p) and f1 = f − at.
Let G be a finite set of polynomials in R[x̄]. A polynomial f reduces to g

modulo G, denoted by f −→G g, if and only if there exists p ∈ G such that
f −→p g.

This definition of a rewriting relation is similar to the definition in [8, 9].

Theorem 1 Given any finite basis G of polynomials in R[x̄], the rewriting
relation −→G induced by G is Noetherian.

Proof: Given any polynomial p ∈ G, and let f, g ∈ R[x̄] and f −→p g.
Let f = ct + f1, and ct be a monomial in f that can be rewritten using the
rule corresponding to p. Let r = rem(c, lc(p)), then r < c.

This −→p either eliminates the monomial ct from f when r = 0, in which
case g < f , or replaces the coefficient c by r upon division by lc(p) with
r < c while leaving all higher monomials unchanged, in which case we see
that again g < f . Considering that the order on R[x̄] is well-founded, we
have thus proved that −→G is Noetherian.

3.3 A-polynomials

Definition 10 Let f = ct + rest(f) ∈ R[x̄]− {0} where ct = lm(f), and

g = ann(c) ∗ f = ann(c) ∗ rest(f).

The polynomial g is called the A-polynomial of f , denoted by apol(f).
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Let f ∈ R[x̄]− {0}; if ann(lc(f)) = 0, then apol(f) = 0.
Given f = ct + rest(f) ∈ R[x̄] − {0} where ct = lm(f), let g1 = c1t1 +

rest(g1) �= 0 be the A-polynomial of f where c1t1 = lm(g1), i.e.,

g1 = apol(f) = ann(c) ∗ rest(f).

We have
g2 = ann(c1) ∗ g1 = ann(c1) ∗ rest(g1)

is the A-polynomial of g1. We denote g2 = apol(g1) = apol2(f). If g2 �= 0,
we can continue this process until apol(gl) = apoll+1(f) = 0 for some l ∈ N.
This process will terminate after at most k steps where k is the number of
terms in f .

We get a finite sequence of A-polynomials, g1, · · · , gl, where gi = apoli(f) �=
0 for all i = 1, · · · , l, and apol(gl) = 0.

Definition 11 Let f ∈ R[x̄] such that apoli(f) �= 0 for 1 ≤ i ≤ l, and
apoll+1(f) = 0. The set of all the A-polynomials,

⋃l
i=1{apoli(f)} is called

the saturated A-polynomials set generated by f , denoted by SAP(f).
Let G be a finite set of polynomials in R[x̄], the saturated A-polynomials

set generated by all polynomials in G is denoted by SAP(G) = {g|∃f ∈
G, s.t. g ∈ SAP(f)}.
For example, let f = 15x4 + 5x3 − x2 + 2x− 3 ∈ Z30[x], we have

g1 = apol(f) = ann(15) ∗ (5x3 − x2 + 2x− 3) = 10x3 − 2x2 + 4x− 6,

g2 = apol(g1) = ann(10) ∗ (−2x2 + 4x− 6) = −6x2 + 12x− 18,

g3 = apol(g2) = ann(−6) ∗ (12x− 18) = 0.

Then SAP(f) = {g1, g2}.
Let f = ct + rest(f) ∈ R[x̄] − {0} where ct = lm(f). Let gi = citi +

rest(gi) = apoli(f) where citi = lm(gi). Then

gi = apoli(f) = ann(ci−1) ∗ · · · ∗ ann(c1) ∗ ann(c) ∗ f

for 1 ≤ i ≤ l. So SAP(f) is a subset of the ideal generated by f , i.e.,
SAP(f) ⊆ Id(f), where Id(f) is the ideal of f . If G is a finite set of polyno-
mials in R[x̄], then SAP(G) ⊆ Id(G), where Id(G) is the ideal of G.

Lemma 7 Let p ∈ R[x̄]−{0} and f = mp �= 0 with a monomial m = as. If
a ∗ lc(p) = 0, then there exist k ≥ 1 and ak ∈ R such that f = aks ∗ apolk(p),
and ak ∗ lc(apolk(p)) �= 0.
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Proof: Since a ∗ lc(p) = 0, by Lemma 3, there exists a1 ∈ R such that
a = a1 ∗ ann(c). Then f = mp = a1s ∗ (ann(c) ∗ p) = a1s ∗ apol(p).

If a1 ∗ lc(apol(p)) = 0, then by Lemma 3, there exists a2 ∈ R such that
a1 = a2 ∗ ann(lc(apol(p))). Then f = mp = a1s ∗ apol(p) = a2s ∗ apol2(p).

If a2 ∗ lc(apol2(p)) = 0, continue the above process. This process termi-
nates since SAP(p) is finite. Since f �= 0, we can assume that

f = mp = a1s ∗ apol(p) = · · · = aks ∗ apolk(p)

such that ak ∗ lc(apolk(p)) �= 0.

3.4 Rewriting Relation and Ideal Congruence

For convenience, we assume below that G is a finite set of polynomials in
R[x̄], rewriting relations −→ are of modulo G, −→∗ is the reflexive-transitive
closure of −→, −→+ is the transitive closure of −→, and −→k means k steps
of −→ for some integer k.

Under the assumption that every polynomial in SAP(G) can reduce to
0 modulo G, it must be shown that the rewriting relation as defined in
subsection 3.2 is strong enough to capture the ideal congruence relation,
i.e., the reflexive, symmetric and transitive closure of the relation −→ for
G denoted as ←→∗

G, is indeed the ideal congruence relation =Id(G)
, and

f =Id(G)
g if and only if f = g +

∑n
i=1 hipi for some h1, · · · , hn ∈ R[x̄] and

some p1, · · · , pn ∈ G.

Lemma 8 Let p ∈ G, f, g ∈ R[x̄] and f = g + asp, where a ∈ R −
ANN(lc(p)), s is a term. Then there exist α ∈ R and f ′, g′ ∈ R[x̄] such
that f −→∗

p f ′, g −→∗
p g′, and f ′ − g′ = αs ∗ apol(p).

Proof: Let p = ct1 + rest(p) with ct1 = lm(p). Then t = lt(asp) = st1 and
b1 = lc(asp) = ac �= 0 as a ∈ R− ANN(lc(p)). Let g = b2t + g1 such that g1

has no term t. Let b2 = q2c+r, where r = rem(b2, c) ≤ b2 and q2 = quot(b2, c).
Then f = g+asp = (b2t+g1)+(b1t+as∗rest(p)) = (b1+b2)t+(g1+as∗rest(p)).

Let b = b1+b2 = qc+r′, where r′ = rem(b, c) ≤ b and q = quot(b, c). Since
b = b1 +b2 = (a+q2)c+r, r′ = rem(b, c) ≤ r. Since b2 = b−b1 = (q−a)c+r′,
r = rem(b2, c) ≤ r′. Then r = r′, i.e., b = qc + r with r = rem(b, c) ≤ b.
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Moreover, from b = qc + r = (a + q2)c + r, we get a + q2 − q ∈ ANN(c), then
there exists α ∈ R such that a + q2 − q = α ∗ ann(c).

(1) If r < b2, then g −→p g′ = rt + q2s ∗ rest(p) + g1; otherwise, i.e., r = b2

and q2 = 0, let g′ = g.

(2) If r < b, then f −→p f ′ = rt + (q + a)s ∗ rest(p) + g1; otherwise, i.e.,
r = b and q = 0, let f ′ = f .

The polynomial g −→∗
p g′ and f −→∗

p f ′. Moreover, f ′ − g′ = (q + a− q2)s ∗
rest(p) = αs ∗ apol(p). Hence the proof.

Lemma 9 Assume that every polynomial in SAP(G) can reduce to 0 modulo
G. Let p ∈ G, then there exist h1, · · · , hk ∈ R[x̄] and p1, · · · , pk ∈ G such
that apol(p) =

∑k
i=1 hipi, and lt(pi) < lt(p) for 1 ≤ i ≤ k.

Proof: By the assumption that every polynomial in SAP(G) can reduce
to 0 modulo G, we have apol(p) −→k

G 0 for some k ≥ 0, it is easy to show by
induction on k that there exist h1, · · · , hk ∈ R[x̄] and p1, · · · , pk ∈ G such
that apol(p) =

∑k
i=1 hipi, and lt(pi) ≤ lt(apol(p)) < lt(p) for 1 ≤ i ≤ k.

Theorem 2 Assume that every polynomial in SAP(G) can reduce to 0 mod-
ulo G. Then ←→∗

G = =Id(G)
.

Proof: (⊆) ←→∗
G ⊆ =Id(G)

: It is trivial to show this by induction that

for every k, ←→k
G ⊆ =Id(G)

.

(⊇) ←→∗
G ⊇ =Id(G)

: Let G = {p1, · · · , pn}. f =Id(G)
g implies f =

g +
∑n

i=1 hipi, where hi ∈ R[x̄] for 1 ≤ i ≤ n. Without loss of generality, we
assume that lt(p1) ≤ lt(p2) ≤ · · · ≤ lt(pn) under the order < defined in the
subsection 3.1. We show that f ←→∗

G g by induction on n.
(1) Basis Step: n = 0: obvious.
(2) Inductive Step: Given n > 0, let f̂ , ĝ ∈ R[x̄] such that f̂ = ĝ +∑n−1

i=1 ĥipi, where ĥ1, · · · , ĥn−1 ∈ R[x̄]. Assume that f̂ ←→∗
G ĝ for such f̂

and ĝ.
Let f = g+

∑n
i=1 hipi, and g′ = g+hnpn, then by the induction hypothesis,

we have f ←→∗
G g′.

Given any monomial as, and let f1, f2 ∈ R[x̄] such that f1 = f2 + aspn,
there are two cases:
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Case 1: a ∈ ANN(lc(pn)). Then there exists â ∈ R such that a =
â ∗ ann(lc(pn)), then aspn = âs ∗ apol(pn). By Lemma 9, there ex-
ist h′

1, · · · , h′
n−1 ∈ R[x̄] such that apol(pn) =

∑n−1
i=1 h′

ipi. Then, aspn =

âs ∗ apol(pn) =
∑n−1

i=1 (âsh′
i)pi. By the induction hypothesis, f1 ←→∗

G

f2.

Case 2: a �∈ ANN(lc(pn)). By Lemma 8, there exist α ∈ R and f ′
1, f

′
2 ∈

R[x̄] such that f1 −→∗
G f ′

1, f2 −→∗
G f ′

2, and f ′
1 − f ′

2 = αs ∗ apol(pn).
By Lemma 9, there exist h′

1, · · · , h′
n−1 ∈ R[x̄] such that apol(pn) =∑n−1

i=1 h′
ipi. Thus, αs∗apol(pn) =

∑n−1
i=1 (αsh′

i)pi. Then by the induction
hypothesis, f ′

1 ←→∗
G f ′

2, it follows that

f1 −→∗
G f ′

1 ←→∗
G f ′

2 ←−∗
G f2.

According to the above two cases, it is easy to show that g′ ←→∗
G g by

induction on the number of terms of hn. Therefore, f ←→∗
G g′ ←→∗

G g.
Hence the proof.

3.5 Test for a Gröbner basis

Definition 12 Let G be a finite set of polynomials in R[x̄]. G is a Gröbner
basis of Id(G) if every polynomial in Id(G) can reduce to 0 modulo G.

Given c1, c2 ∈ R − {0}, if rep(c1) ≥ rep(c2), then by Lemma 5, it follows
that c1 is reducible modulo c2, i.e., rem(c1, c2) < c1. We have the following
definition:

Definition 13 Let pi = citi + rest(pi) ∈ R[x̄], where citi = lm(pi). Let
rep(c1) ≥ rep(c2) and t = lcm(t1, t2) = siti for i = 1, 2. Let q = quot(c1, c2)
and r = rem(c1, c2) < c1. The S-polynomial of p1 and p2 is rt − qs2 ∗
rest(p2) + s1 ∗ rest(p1) = s1p1 − qs2p2, denoted by spol(p1, p2).

Lemma 10 Assume that for every pair of polynomials in G, every S-polynomial
can reduce to 0 under −→∗. Then for any f ∈ R[x̄] with f −→∗ 0, there
exists p ∈ G such that lm(p)|lm(f).

Proof: Let f −→∗ 0. We show that there exists p ∈ G such that
lm(p)|lm(f) by induction on f using the well-founded order < defined in
subsection 3.1.
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(1) Basis step: f = 0, obvious.
(2) Inductive step: For any g < f with g −→∗ 0, assume that there exists

h ∈ G such that lm(h)|lm(g).
Let f = at + rest(f) ∈ R[x̄]− {0} with f −→+ 0. Among all rules used

in f −→+ 0, there exists p1 ∈ G with c1t1 = lm(p1) such that at = lm(f) can
be rewritten by p1, i.e., t1|t and b1 = rem(a, c1) < a. That is, we can assume

f −→∗ f ′ −→p1 g −→∗ 0.

If b1 �= 0, then lm(g) = b1t. Since g −→∗ 0 with g < f , by the induction
hypothesis, it follows that there exists p2 ∈ G with c2t2 = lm(p2) such that
lm(p2)|lm(g), i.e., t2|t and c2|b1. By Lemma 6, rep(c2) < rep(c1) and b2 =
rem(c1, c2) < b1. Moreover, since t1|t and t2|t, it follows that lcm(t1, t2)|t.

If b2 �= 0, then lm(spol(p1, p2)) = b2lcm(t1, t2) < at = lm(f), i.e.,
spol(p1, p2) < f . By the assumption, spol(p1, p2) −→∗ 0. By the induction
hypothesis, there exists p3 ∈ G with c3t3 = lm(p3) such that lm(p3)|lm(spol(p1, p2)),
i.e., t3|t and c3|b2. By Lemma 6, rep(c3) < rep(c2) and b3 = rem(c2, c3) < b2.
Moreover, since t2|t and t3|t, it follows that lcm(t2, t3)|t.

If b3 �= 0, then lm(spol(p2, p3)) = b3lcm(t2, t3) < at = lm(f), i.e.,
spol(p2, p3)) < f . By the assumption, spol(p2, p3) −→∗ 0. By the induction
hypothesis, there exists p4 ∈ G with c4t4 = lm(p4) such that lm(p4)|lm(spol(p2, p3)),
i.e., t4|t and c4|b3. By Lemma 6, rep(c4) < rep(c3) and b4 = rem(c3, c4) < b3.
Moreover, since t3|t and t4|t, it follows that lcm(t3, t4)|t.

Continue the above process until bk+1 = 0. Since bi+1 < bi and < is
Noetherian inR, this process terminates. Let b0 = a; we get a finite sequence:

a = b0 > b1 > b2 > b3 > · · · > bk > bk+1 = 0,

and corresponding polynomials in G: {p1, p2, · · · , pk+1} with lm(pi) = citi
and ti|t for 1 ≤ i ≤ k + 1, such that b1 = rem(a, c1) < a and bj+1 =
rem(cj , cj+1) < bi and cj+1|bj for 1 ≤ j ≤ k.

Since bk+1 = 0, ck+1|ck. Since bj+1 = rem(cj , cj+1) and cj+1|bj for 1 ≤ j ≤
k, it is easy to see that ck+1|cj and ck+1|bj for each 1 ≤ j ≤ k by induction
on k. Since b1 = rem(a, c1), ck+1|c1 and ck+1|b1, we have ck+1|a. Together
with tk+1|t, we get ck+1tk+1|at, i.e., lm(pk+1)|lm(f). It follows that pk+1 is
the polynomial in G that we were looking for.
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Lemma 11 Assume that for every pair of polynomials in G, every S-polynomial
can reduce to 0 under −→∗. Let p1, p2 ∈ G with citi = lm(pi), for i = 1, 2.
Then there exists h ∈ G such that lt(h)|lcm(t1, t2) and lc(h)|rgcd(c1, c2).

Proof: Let t = lcm(t1, t2). Assume w.l.o.g. that rep(c2) ≤ rep(c1).
If b1 = rem(c1, c2) �= 0, then lm(spol(p1, p2)) = b1t. By the assumption,

spol(p1, p2) −→∗ 0. By Lemma 10, there exists p3 ∈ G with c3t3 = lm(p3)
such that lm(p3)|lm(spol(p1, p2)), i.e., t3|t and c3|b1. By Lemma 6, rep(c3) <
rep(c2) and b2 = rem(c2, c3) < b1. Moreover, since t2|t and t3|t, it follows
that lcm(t2, t3)|t.

If b2 �= 0, then lm(spol(p2, p3)) = b2lcm(t2, t3). By the assumption,
spol(p2, p3) −→∗ 0. By Lemma 10, there exists p4 ∈ G with c4t4 = lm(p4)
such that lm(p4)|lm(spol(p2, p3)), i.e., t4|t and c4|b2. By Lemma 6, rep(c4) <
rep(c3) and b3 = rem(c3, c4) < b2. Moreover, since t3|t and t4|t, it follows
that lcm(t3, t4)|t.

Continue the above process until bk = 0. Since bi+1 < bi and < is Noethe-
rian on R, this process terminates. This gives a finite sequence:

b1 > b2 > · · · > bk−1 > bk = 0,

and corresponding polynomials in G: {p1, p2, · · · , pk+1} with lm(pi) = citi
and ti|t for 1 ≤ i ≤ k + 1, such that bi = rem(ci, ci+1) for 1 ≤ i ≤ k and
ci+2|bi for 1 ≤ i ≤ k − 1.

Since bk = 0, ck+1|ck. Since bi = rem(ci, ci+1) for 1 ≤ i ≤ k and ci+2|bi

for 1 ≤ i ≤ k− 1, it is easy to see that ck+1|cj and ck+1|bj for each 1 ≤ i ≤ k
by induction on k. Since ck+1|c1 and ck+1|c2, ck+1|rgcd(c1, c2). Together with
tk+1|t, it follows that pk+1 is the polynomial in G that we were looking for.

Corollary 1 Assume that every S-polynomial can reduce to 0 under −→∗

for every pair of polynomials in G. Let pi = citi + rest(pi) ∈ G where
citi = lm(pi), for i = 1, 2, · · · , k. Then there exists h ∈ G such that
lt(h)|lcm(t1, t2, · · · , tk) and lc(h)|rgcd(c1, c2, · · · , ck).

Proof: By Lemma 11, it is easy to show it by induction on k.

22



Definition 14 Let f ∈ R[x̄]. A standard representation of f w.r.t. G
is a representation

f =

N∑
i=1

mipi

with monomials mi and pi ∈ G such that lc(mi) ∗ lc(pi) �= 0 and lt(mipi) ≤
lt(f) for 1 ≤ i ≤ N . If f = 0, then we say f = 0 is the standard representa-
tion of f .

In the above definition, pi can be same with pj even if i �= j.
Our aim is to show that G is a Gröbner basis if (1) every A-polynomial in

SAP(G) can reduce to 0 under −→∗, and (2) every S-polynomial can reduce
to 0 under −→∗ for every pair of polynomials in G. With the above definition
of standard representation and Lemma 11, at first we will prove below some
lemmas and theorems similar to those given in [3, 15] (such as Lemma 10.3,
Theorem 10.11, etc. in [3]). Since a D-A ring may not be a PID, we don’t
have a gcd algorithm though we have a rgcd algorithm. Moreover, we have
to consider zero-divisors in a D-A ring R in the proofs.

Lemma 12 Let f ∈ R[x̄] and assume that f −→∗ 0. Then f has a standard
representation w.r.t G.

Proof: We show it by induction on k, where k is the number of steps, i.e.,
f −→k 0.

(1) Basis step: k = 0, obvious.
(2) Inductive step: Given k > 0, assume that g has a standard represen-

tation w.r.t G if g −→k−1 0.
Let f −→p h −→k−1 0, where p ∈ G. Let at be the monomial in f which

is rewritten by p, then h = f −mp, where m = qs is a monomial, s ∗ lt(p) =
t, q = quot(a, lc(p)), and rem(a, lc(p)) < lc(p). Then lc(m) ∗ lc(p) �= 0,
lt(mp) ≤ lt(f), and lt(h) ≤ lt(f).

By the induction hypothesis, h has a standard representation w.r.t G,
i.e.,

h =
N∑

i=1

mipi

with monomials mi and pi ∈ G such that lc(mi) ∗ lc(pi) �= 0 and lt(mipi) ≤
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lt(h) ≤ lt(f) for 1 ≤ i ≤ N . Thus,

f = mp + h = mp +

N∑
i=1

mipi

is a standard representation of f w.r.t G.

The following lemma and its two corollaries are trivial over a PID, but
not obvious over a D-A ring because of zero-divisors.

Lemma 13 Assume that every A-polynomial in SAP(G) can reduce to 0
under −→∗. Let f = mp with a monomial m and p ∈ G, then f has a
standard representation w.r.t. G.

Proof: If f = mp = 0, then it is trivial.
Let f = mp �= 0. We will show that f has a standard representation by

induction on p ∈ G using the well-founded order < defined in subsection 3.1.
(1) Basis step: Let p be a minimal nonzero polynomial in G. If apol(p) �=

0, then by the assumption, we have apol(p) −→+ 0, i.e., apol(p) is reducible
modulo some g ∈ G, then from lt(g) ≤ lt(apol(p)) < lt(p), we get g < p.
This leads to a contradiction as p is a minimal nonzero polynomial in G. So
apol(p) = 0, then by Lemma 3, lc(m)∗ lc(p) �= 0. Thus, f = mp is a standard
representation w.r.t. G.

(2) Inductive step: Assume that mg has a standard representation for
any monomial m and g ∈ G with g < p.

Let f = mp with m = as and lm(p) = ct. If lc(m) ∗ lc(p) = ac �= 0, then
f = mp is a standard representation w.r.t. G.

Let ac = 0, then by Lemma 7, there exists k ≥ 1 and ak ∈ R such that

f = mp = aks ∗ apolk(p)

and ak ∗ lc(apolk(p)) �= 0.
By the assumption, apolk(p) −→′ 0. Then by Lemma 12, apolk(p) has a

standard representation

apolk(p) =

N∑
i=1

mipi,
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with monomials mi and pi ∈ G such that lc(mi) ∗ lc(pi) �= 0 and lt(mipi) ≤
lt(apolk(p)) for 1 ≤ i ≤ N . Then

f = aks ∗ apolk(p) =

N∑
i=1

(aksmi)pi. (3.1)

For any index 1 ≤ i ≤ N , since lc(mi) ∗ lc(pi) �= 0, we have lt(mipi) =
lt(mi) ∗ lt(pi), then by lt(mipi) ≤ lt(apolk(p)) and lt(apolk(p)) < lt(p), we
get

lt(pi) ≤ lt(mipi) ≤ lt(apolk(p)) < lt(p),

i.e., pi < p. Moreover, since ak ∗ lc(apolk(p)) �= 0, we get

lt((aksmi)pi) ≤ s ∗ lt(mipi) ≤ s ∗ lt(apolk(p)) = lt(f). (3.2)

By pi < p and the induction hypothesis, (aksmi)pi has a standard repre-
sentation. Substituting the corresponding standard representation for each
(aksmi)pi in (3.1), then from (3.2), we obtain a standard representation of f
w.r.t. G.

Corollary 2 Assume that every A-polynomial in SAP(G) can reduce to 0
under −→∗. Let f ∈ Id(G), then f has a representation f =

∑N
i=1 mipi with

monomials mi and pi ∈ G such that lc(mi) ∗ lc(pi) �= 0 for 1 ≤ i ≤ N .

Proof: Since f ∈ Id(G), assume that

f =

N∑
i=1

mipi (3.3)

with monomials mi and pi ∈ G, where mipi �= 0, for 1 ≤ i ≤ N .
By Lemma 13, mipi has a standard representation. Substituting the

corresponding standard representation for each mipi in (3.3), we obtain the
representation that we were looking for.

Corollary 3 Assume that every A-polynomial in SAP(G) can reduce to 0
under −→∗. Let f = mg with a monomial m and g ∈ Id(G) with lc(m) ∗
lc(g) �= 0, and let g has a standard representation w.r.t. G. Then f has a
standard representation w.r.t. G.
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Proof: Let f = mg with a monomial m = as and g ∈ Id(G) with
a ∗ lc(g) �= 0, and let the standard representation w.r.t. G of g be

g =
N∑

i=1

mipi (3.4)

with monomials mi and pi ∈ G such that lc(mi) ∗ lc(pi) �= 0 and lt(mipi) ≤
lt(g), for 1 ≤ i ≤ N .

By (3.4), f has a representation

f = mg =
N∑

i=1

(asmi)pi. (3.5)

For any index 1 ≤ i ≤ N , by lt(mipi) ≤ lt(g), we have

lt((asmi)pi) ≤ s ∗ lt(mipi) ≤ s ∗ lt(g) = lt(asg) = lt(f) (3.6)

since a ∗ lc(g) �= 0.
By Lemma 13, (asmi)pi has a standard representation. Substituting the

corresponding standard representation for each (asmi)pi in (3.5), we obtain
a standard representation w.r.t. G by (3.6).

Theorem 3 Assume that (i) every A-polynomial in SAP(G) can reduce to 0
under −→∗, and (ii) every S-polynomial can reduce to 0 under −→∗ for every
pair of polynomials in G. Then every polynomial in Id(G) has a standard
representation w.r.t. G.

Proof: Let f ∈ Id(G). Let

f =
N∑

i=1

mipi (3.7)

with monomials mi = αisi �= 0 and pi = citi +rest(pi) ∈ G with citi = lm(pi),
for 1 ≤ i ≤ N . We may assume that s = max{siti|1 ≤ i ≤ N} is minimal
among all such representations of f . Thus s ≥ lt(f). If s = lt(f), by
Corollary 2, f has a standard representation.
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We assume that s > lt(f). Let J ⊆ {1, 2, · · · , N} be the set of all indices
with the property that s = siti. Let Ns be the size of J . For a contradiction,
we will show that f has a representation

f =
N ′∑
i=1

m′
ip

′
i

of the same kind such that s′ = max{lt(m′
i) · lt(p′i)|1 ≤ i ≤ N ′} < s by

induction on Ns.
(1) Basis step: Ns = 1. Assume w.l.o.g. that s1t1 = s. Since s > lt(f), s

cancels out in the representation in (3.7), then lm(m1p1) < s. By Lemma 13,

m1p1 has a standard representation, say m1p1 =
∑N ′′

i=1 m′′
i p

′′
i . Substituting

for m1p1 in (3.7), we obtain a representation

f =

N ′′∑
i=1

m′′
i p

′′
i +

N∑
i=2

mipi (3.8)

where the maximum of the leading terms occurring in the first sum is not
larger than lm(m1p1), i.e., less than s since lm(m1p1) < s; the maximum of
the leading terms occurring in the first sum is less than s by our assumption
Ns = 1. The maximum s′ of the leading terms in the representation (3.8)
satisfies s′ < s, which means that (3.8) is the s′-representation that we were
looking for.

(2) Inductive step: Given Ns ≥ 1, assume that g ∈ Id(G) has a standard
representation w.r.t. G if g has a representation (3.7) where the number of
the largest terms is not larger than Ns.

Assume that f has a representation (3.7) whose size of the largest terms
is Ns + 1. Assume w.l.o.g. that s1t1 = s2t2 = s, so lcm(t1, t2)|s. By Lemma
11, there exists h = αt′+rest(h) ∈ G with αt′ = lm(h) such that t′|lcm(t1, t2)
and α|rgcd(c1, c2), then rep(α) ≤ rep(cj) for j = 1, 2.

For any index j = 1, 2, let lcm(tj, t
′) = vjtj = v′

jt
′ where vj , v

′
j are terms,

and let cj = bjα with bj = quot(cj , α). Then

spol(pj, h) = vj ∗ rest(pj)− bjv
′
j ∗ rest(h).

Since t′|lcm(t1, t2) and lcm(t1, t2)|s, we can thus find a term uj such that
s = uj ∗ lcm(tj , t

′), then

s = sjtj = (uj) ∗ lcm(tj , t
′) = (ujvj)tj = (ujv

′
j)t

′,
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so sj = ujvj. Let aj = βjbj and v = ujv
′
j, then ajα = βjcj and sjtj = vt′.

Thus,

mjpj − ajvh = [(βjcj)(sjtj) + βjsj ∗ rest(pj)]− [(ajα)(vt′) + ajv ∗ rest(h)]

= βjsj ∗ rest(pj)− ajv ∗ rest(h)

= βjuj(vj ∗ rest(pj)− bjv
′
j ∗ rest(h))

= βjuj ∗ spol(pj, h)

for j = 1, 2.
We can now modify our representation (3.7) of f as follows:

f =
2∑

j=1

(mjpj − ajvh) + (a1 + a2)vh +
N∑

i=3

mipi

=

2∑
j=1

βjuj ∗ spol(pj , h) + (a1 + a2)vh +

N∑
i=3

mipi

By the assumption (ii) and Lemma 12, spol(pj , h) has a standard represen-
tation. By Corollary 3, βjuj ∗ spol(pj, h) has a standard representation, for
each j = 1, 2; by Corollary 3, (a1 + a2)v ∗ h has a standard representation;
by the induction hypothesis,

∑N
i=3 mipi has a standard representation.

If we now add up these representations to obtain, say, f =
∑N ′

i=1 m′
ip

′
i,

then it is easy to see that s′ = max{lt(m′
i) · lt(p′i)|1 ≤ i ≤ N ′} < s as desired.

Lemma 14 Let f ∈ Id(G) has a standard representation w.r.t. G. As-
sume that every S-polynomial can reduce to 0 under −→∗ for every pair of
polynomials in G. Then there exists h ∈ G such that lm(h)|lm(f).

Proof: Let the standard representation w.r.t. G of f be

f =
N∑

i=1

mipi (3.9)

with monomials mi and pi ∈ G, where lc(mi)∗ lc(pi) �= 0 and lt(mipi) ≤ lt(f)
for 1 ≤ i ≤ N .
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Let I ⊆ {1, 2, · · · , N} be the set of all indices with the property that
lt(m′

ip
′
i) is the largest term in (3.9). Then lm(f) =

∑
i∈I lm(mipi), and thus

lcm(lt(pi)|i ∈ I) | lt(f),

rgcd(lc(pi)|i ∈ I) | lc(f).

By Corollary 1, there exists h ∈ G such that lt(h)|lcm(lt(pi)|i ∈ I), and
lc(h)|rgcd(lc(pi)|i ∈ I). We see that lm(h)|lm(f).

Theorem 4 G is a Gröbner basis if and only if (i) every A-polynomial in
SAP(G) can reduce to 0 under −→∗, and (ii) every S-polynomial can reduce
to 0 under −→∗ for every pair of polynomials in G.

Proof: (⇐) part: This is obvious since every A-polynomial in SAP(G)
and every S-polynomial are in Id(G).

(⇒) part: Let f ∈ Id(G). We show that f −→∗ 0 by induction on f
using the well-founded order < defined in subsection 3.1.

(1) Basis Step: f = 0, obvious.
(2) Inductive Step: Assume that g −→∗ 0 for any polynomials g ∈ Id(G)

with g < f .
By Theorem 3, every f ∈ Id(G) has a standard representation w.r.t. G.

By Lemma 14, there exists h ∈ G such that lm(h)|lm(f), thus f −→h g with
g = f −mh ∈ Id(G) and g < f , where m is a monomial. By the induction
hypothesis, g −→∗ 0. Then f −→ g −→∗ 0.

The above theorem provides a criterion for G to be a Gröbner basis which
can be effectively tested. More importantly, we can use it to construct, from
a finite subset F of R[x̄], a Gröbner basis G with Id(F ) = Id(G) in the next
section. Moreover, we can obtain the unique reduced Gröbner basis that
allow the computation of unique normal forms3 by the following theorem
similar to Theorem 10.23 in [3].

Theorem 5 Let G be a Gröbner basis, and f ∈ R[x̄]. Then f has a unique
normal form modulo G.

3A normal form of f modulo G is a polynomial g that is not reducible modulo G and
satisfies f −→∗

G g.
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Proof: Let f1 and f2 be two normal forms of f modulo G. By Theorem
2, f − f1 are f − f2 are in Id(G). From

f1 − f2 = −(f − f1) + (f − f2),

we have f1 − f2 ∈ Id(G). Then since G is a Gröbner basis, it follows that

f1 − f2 −→∗ 0.

Assume that f1 �= f2. Let t = lt(f1 − f2), and f1 = a1t + g1, and
f2 = a2t+g2, where g1 and g2 have no term t. Then lc(f1−f2) = a1−a2 �= 0.
By Theorem 4 and Lemma 10, there exists p ∈ G such that lm(p)|lm(f1−f2),
i.e., lm(p)|(a1−a2)t. Then lt(p)|t and there exists q ∈ R such that a1−a2 =
q ∗ lc(p).

Since f1 and f2 are normal forms modulo G, it follows that both a1t and
a2t cannot be reduced modulo p, then rem(a1, lc(p)) = a1 and rem(a2, lc(p)) =
a2 as lt(p)|t. It follows that a1 = rem(a1, lc(p)) ≤ a2 as a1 = q ∗ lc(p) + a2,
and a2 = rem(a2, lc(p)) ≤ a1 as a2 = −q ∗ lc(p) + a1. Thus a1 = a2, but this
leads to a contradiction with lc(f1 − f2) = a1 − a2 �= 0. So f1 = f2. That is,
f has a unique normal form modulo G.

4 A Gröbner basis algorithm

If a given basis G of an ideal is not a Gröbner basis, it can be completed to
get a Gröbner basis of its ideal. For every polynomial p, we add new rules
corresponding to the normal forms of polynomials in SAP(p), if any. For
every pair of polynomial, we compute its S-polynomials and add new rules
corresponding to their normal forms, if any. Thus a new basis for the same
ideal is generated. This step is repeated until

(1) every f in SAP(G) can reduce to 0 under −→∗.

(2) every S-polynomial can reduce to 0 under −→∗ for every pair of poly-
nomials in G.

By Theorem 4, a Gröbner basis is obtained.
We now give the algorithm:
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Algorithm 1 Given F , a finite set of polynomials in R[x̄], find G such that the
ideal Id(G) = Id(F ) and G is a Gröbner basis.

function G =GRÖBNER OVER DAR(F )
begin

G := F ; P := ∅;
B := {(g1, g2) | g1, g2 ∈ G with g1 �= g2};
for all p ∈ G do

A := COMPUTE APOLs(p);
P := P

⋃
A;

end
[G,B] := ADD APOLs RULEs(P,G,B);
while B �= ∅ do

Select (g1, g2) from B;
B := B − {(g1, g2)};
if gi is reducible modulo gj (i, j = 1, 2 and i �= j) then

G := G− {gi};
B := B − {(gi, g) | g ∈ G};
h′ := gi;

else
h′ := spol(g1, g2);

end
h := the normal form of h′ modulo G;
if h �= 0 then

B := B
⋃{(g, h) | g ∈ G};

G := G
⋃{h};

A := COMPUTE APOLs(h);
[G,B] := ADD APOLs RULEs(A,G,B);

end
end
return G

end GRÖBNER OVER DAR

function A = COMPUTE APOLs(f)
begin

A := ∅; g := apol(f);
while g �= 0 do

A := A
⋃{g};

g := apol(g);
end
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return A
end COMPUTE APOLs

function [G,D] = ADD APOLs RULEs(A,G,D)
begin

while A �= ∅ do
Select f from A;
A := A− {f};
h := the normal form of f modulo G;
if h �= 0 then

D := D
⋃{(g, h) | g ∈ G};

G := G
⋃{h};

end
end
return [G,D]

end ADD APOLs RULEs

Theorem 6 The algorithm GRÖBNER OVER DAR terminates for every
finite subset F of R[x̄].

Proof: Assume that the algorithm does not terminate. Let {hn}n∈N be
the non-zero normal form of A-polynomials and S-polynomials in the order
that they are being added to G. For n ∈ N, let mn = ansn = lm(hn), and
Gn = {F ⋃{hi|i < n}}. Thus, we get two infinite sequences: {sn}n∈N and
{an}n∈N.

By Dickson’s Lemma (Theorem 5.2 in [3]) for the set of all terms and
Proposition 4.45 in [3], in the sequence {sn}n∈N, there exists an infinite sub-
sequence {sni

}i∈N (ni < nj iff i < j) such that sni
|snj

for all i < j ∈ N.
Since Gni

⊂ Gnj
and hnj

is in normal form modulo Gnj
, lm(hnj

) = anj
snj

is
not reducible modulo ani

sni
for all i < j. It follows that anj

is not reducible
modulo ani

as sni
|snj

, then rep(ani
) > rep(anj

) for all i < j. That is, we
obtain an infinite strictly descending sequence {rep(ani

)}i∈N. This leads to a
contradiction with that < is a well-founded ordering on R.

5 Examples

Example 2 Given R[x, y] = (Z12[i])[x, y] where i2 + 1 = 0, compute a
Gröbner basis of F = {(5 + 3i)x2y − y, (3 + 2i)xy2 − x}.
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We assume the total degree order induced by y > x and <Zn[i]. Using this
order, polynomials in F are transformed into the following 2 rules:

1. (5 + 3i)x2y −→ y

2. (3 + 2i)xy2 −→ x

1. Since 5 + 3i is a zero-divisor with ann(5 + 3i) = 6 + 6i, we get the
corresponding rule of the A-polynomial from rule 1:

3. (6 + 6i)y −→ 0.

3 + 2i is not a zero divisor, so no A-polynomial is generated from rule
2.

2. From rules 1 and 2, the superposition is (5 + 3i)x2y2, which gives the
rule:

4. y2 −→ (−3− i)x2

from 5 + 3i = (−3− i) ∗ (3 + 2i).

3. From rules 1 and 3, the superposition is (6 + 6i)x2y, which gives the
rule:

3′. 6y −→ 0

from 6 + 6i = 6 ∗ (5 + 3i). The rule 3 is deleted.

4. Rule 3′ can be used to reduce rule 1 to:

1′. (−1 + 3i)x2y −→ y.

The rule 1 is deleted.

5. From rules 1′ and 3′, the superposition is 6x2y, which gives the following
rule

3′′. (3 + 3i)y −→ 0

from 6 = (3− 3i) ∗ (−1 + 3i). The rule 3′ is deleted.

6. From rules 1′ and 3′′, the superposition is (3 + 3i)x2y, which gives the
following rule

3′′′. 3y −→ 0

from 3 + 3i = −3 ∗ (−1 + 3i). The rule 3′′ is deleted.

33



7. Rule 3′′′ can be used to reduce rule 1′ to:

1′′. x2y −→ −y.

The rule 1′ is deleted.

8. Rule 3′′′ can be used to reduce rule 2 to:

2′. ixy2 −→ −x.

The rule 2 is deleted.

9. From rules 2′ and 3′′′, the superposition is 3xy2, which gives the rule:

5. 3ix −→ 0

from 3 = −3i ∗ i.

10. From rules 2′ and 5, the superposition is 3ixy2, which gives the rule:

5′. 3x −→ 0

from 3i = 3 ∗ i. The rule 5 is deleted.

11. Rule 5 can be used to reduce rule 4 to:

4′. y2 −→ −ix2.

The rule 4 is deleted.

12. Rule 4′ can be used to reduce rule 2′ to:

2′′. x3 −→ −x.

The rule 2′ is deleted.

After the above 12 steps, we get a Gröbner basis of rules 1 and 2 over
(Z12[i])[x, y] with i2 + 1 = 0, which consists of polynomials corresponding
to rules 1′′, 2′′, 3′′′, 4′, 5′, i.e.,

{x2y + y, x3 + x, 3y, y2 + ix2, 3x}.
The reader should note that Gröbner basis can often be computed faster
using rgcd.

If a Gröbner basis algorithm over Z[i, x, y] is used to compute a Gröbner
basis of a polynomial ideal over Z12[i][x, y] by augmenting its basis over
Z[i, x, y] with the polynomials i2 + 1 and 12, in this case we will obtain
another basis after a considerably more steps.
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6 Comparison with the reduction ring method

For the ring of integers (without zero-divisors), Example 1 was used to illus-
trate a comparison between Buchberger-Stifter’s method and KandriRody-
Kapur’s algorithm In the following, we give a comparison between our new
method and Buchberger-Stifter’s method for polynomial ideals over a ring
with zero divisor.

We briefly introduce Buchberger-Stifter’s method over a reduction ring
with zero-divisors at first. LetR be a reduction ring with Mulc, Mul+c , Mul−c ⊂
R, where Mulc is the set of all multipliers of c, and let Mul+c and Mul−c be
two sets of multipliers of c such that Mul+c

⋃
Mul−c = Mulc, for each c ∈ R.

Let c1t1 −→ f1 and c2t2 −→ f2 be two rules (they may be identical such
that critical pairs for one rule in the basis can be considered), where citi
is a monomial and fi is a polynomial with terms less than ti for i = 1, 2.
Then the superposition of these two rules will be LCR(c1, c2)lcm(t1, t2). Let
t = lcm(t1, t2), LCR(c1, c2) = qici + ri with qi ∈ Mulci

and ri < LCR(c1, c2)
for i = 1, 2, where (q1, c1) and (q2, c2) are irrelative4. A critical pair for them
is

< r1t + q1f1, r2t + q2f2 >,

and the S-polynomial is (r1 − r2)t + q1f1 − q2f2.
For example, over a ring Zn with n not a prime number, Stifter [16]

defined Mul+c := {q|0 < q < ann(c)}, and Mul−c := {q| − q ∈ Mul+c }, and
Mulc := Mul+c

⋃
Mul−c for each c ∈ Zn − {0}, under the order 0 < 1 < 2 <

· · · < n − 1. Further, the non-trivial least common reducible of c1 and c2 is
defined as

LCR(c1, c2) = max(LCR(c1), LCR(c2))

for any c1, c2 ∈ Zn, where LCR(c) = gcd(c, n).

Example 3 Given R[x] = Z12[x], compute a Gröbner basis of the following
one rule:

1. 3x −→ 1

Using Buchberger-Stifter’s reduction ring method, the order is defined as
0 < 1 < 2 < · · · < 11.

4(q1, c1) and (q2, c2) are irrelative if and only if (1) c1 �= c2; or (2) c1 = c2, q1 ∈Mul+c1

and q2 ∈Mul−c1
; (ii) c1 = c2, q1 ∈Mul−c1

and q2 ∈Mul+c1
.
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1. Since LCR(3) = gcd(3, 12) = 4, we can get a = LCR(c1, c1) = 3
where c1 = 3 is the left-hand-side coefficient of rule 1. By computing
ann(c1) = 4, we get Mul+c1 := {1, 2, 3} and Mul−c1 := {−1,−2,−3}.
Then by the division algorithm, we get a = 1 ∗ 3 + 0 −→c1 0 and
a = (−3) ∗ 3 + 0 −→c1 0, where two multipliers q1 = 1 ∈ Mul+c1 and
q2 = −3 ∈Mul−c1, i.e., (q1, c1) and (q2, c1) are irrelative. For the rule 1,
the superposition can be set as 3x, and the critical pair is: 1 and −3.
A new rule is obtained:

2. 4 −→ 0.

2. Since LCR(3) = gcd(3, 12) = 4 and LCR(4) = gcd(4, 12) = 3, we
can get a = LCR(c1, c2) = 4 where c1 = 3 and c2 = 4 are the left-
hand-side coefficients of rule 1 and rule 2. By computing ann(c1) = 4
and ann(c2) = 3, we get Mulc1 := {1, 2, 3,−1,−2,−3} and Mulc2 :=
{1, 2,−1,−2}. Then by division algorithm, we have a = 1∗3+1 −→c1 1
and a = 1 ∗ 4 + 0 −→c2 0, where two multipliers q1 = 1 ∈ Mulc1 and
q2 = 1 ∈Mulc2 , i.e., (q1, c1) and (q2, c2) are irrelative. From rule 1 and
rule 2, the superposition can be set as 4x, and the critical pair is: x+1
and 0. A new rule is obtained:

3. x −→ −1.

Thus, the Gröbner basis {x + 1, 4} is obtained.
In the above example, we found that in each step, for given two rules

c1t1 −→ f1 and c2t2 −→ f2, Buchberger-Stifter’s method must have the
following operations (over Zn):

(1) Compute LCR(c1) and LCR(c2) using gcd algorithm, then get LCR(c1, c2).

(2) Compute ann(c1) and ann(c2), then get Mulc1 and Mulc2 , or Mul+c1
and Mul−c1 if c1 = c2.

(iii) Compute the remainder ri and the quotient qi of LCR(c1, c2) divided by
ci for i = 1, 2 using a division algorithm, such that (q1, c1) and (q2, c2)
are irrelative.

(iv) Compute a critical pair and get an S-polynomial.

Using the order <Zn for this example, each step in our proposed algorithm
is simpler though the number of steps is the same.
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1. By computing ann(c1) where c1 = 3 is the left-hand-side coefficient of
rule 1, we get the following A-polynomial rule from rule 1:

2. 4 −→ 0.

2. From rule 1 and 2, the superposition is 4x, the following rule is obtained
by using the division algorithm:

3. x −→ −1.

Thus we have gotten the same Gröbner basis {x + 1, 4}.
Hence, in our algorithm, for each step, we have the following operations

(over Zn): Given a rule whose leading coefficient is zero-divisor, compute
its annihilator, and get the A-polynomial. Otherwise, given two different
rules c1t1 −→ f1 and c2t2 −→ f2, assume that c1 is reducible modulo c2,
then compute the remainder r and the quotient q of c1 divided by c2 using a
division algorithm, and get an S-polynomial.

By comparison with Buchberger-Stifter’s method, our algorithm is quite
simple. In particular, Buchberger-Stifter’s method computes the A-polynomial
quite inefficiently from one rule. Over Zn, let c1t1 −→ f1 be a rule. By
Buchberger-Stifter’s method, we observe that we always have LCR(c1, c1) =
gcd(c1, n) = q1c1 = q2c1 with two multipliers q1 = 1 ∈ Mul+c1 = {q|0 < q <
ann(c)} and q2 = −(ann(c1) − 1) ∈ Mul−c1 = {q|0 < −q < ann(c)}, and
then get the S-polynomial f = (q1 − q2)f1 = ann(c1)f1. However, the same
polynomial, called as A-polynomial in the paper, can be computed by our
algorithm much easily.

In fact, there doesn’t exist a general approach to compute the LCR(c1, c2)
for any c1 and c2 in Buchberger-Stifter’s reduction ring method for a special
reduction ring. Furthermore, we found that Buchberger-Stifter’s reduction
ring method will have more steps in general. See Example 1 for such an
illustration.

7 Extension to other Structures

We have so far discussed how to compute a Gröbner basis of a polynomial ring
over a D-A ring; however, this method can be extended to a polynomial ideal
over a generalized principle ideal ring (GPIR), which is defined as follows.
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Definition 15 Let R be a commutative ring with the identity element 1, and
assume that for each element in R, its representative form is computable. Let
< be a partial well-founded order on R. It is called a weak representable
order if and only if for any a, b ∈ R− {0}, if b|a then rep(b) ≤ rep(a).

Now if there exist a weak representable order < and a rgcd algorithm on R,
then by Lemma 2, such a R is Noetherian, thus there is an ann(c) for any
zero divisor c ∈ R. So we can have the following definition:

Definition 16 Let R be a commutative ring with the identity element 1. R
is called a generalized principle ideal ring, simply denoted by a GPIR,
if and only if

(1) For each element in R, its representative form is computable. (2)
There exist a weak representable order < on R and a rgcd algorithm, such
that for any a, b ∈ R−{0}, rgcd(a, b) is computable, and there exist α, β ∈ R
such that rgcd(a, b) = αa + βb.

(3) For any c ∈ R− {0}, ann(c) is computable.

A principle ideal ring (PIR) is a GPIR. Moreover, by Lemma 1, a D-A ring
is a GPIR too.

For any a, b ∈ R−{0}, using the rgcd algorithm on R, the representative
least common multiple of a and b, rlcm, can be computed as well: rlcm(a, b) =
rep(a ∗ b/rgcd(a, b)).

Definition 17 Let R be a GPIR, and let f, g, p ∈ R[x̄]. We say that f
G-reduces to g modulo p and write f −→p g if and only if there exists a
monomial m in f such that lm(p)|m, say m = m′ ∗ lm(p), and g = f −m′p.

Definition 18 Let R be a GPIR, and let G be a finite set of polynomials
in R[x̄]. G is a weak Gröbner basis of Id(G) (the ideal of G) if every
polynomial in Id(G) can G-reduce to 0 modulo G.

Definition 19 Let pi = citi + rest(pi) ∈ R[x̄], where citi = lm(pi). Let
lcm(t1, t2) = siti, and a = qici = rlcm(c1, c2) with qi = quot(a, ci) for i = 1, 2.

(1) The S-polynomial of p1 and p2 is defined as spol(p1, p2) = q1s1p1 −
q2s2p2.

(2) Let b1, b2 ∈ R such that rgcd(c1, c2) = b1c1 + b2c2. Then define the
G-polynomial of p1 and p2 as gpol(p1, p2) = b1s1p1 + b2s2p2.
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Assume that every S-polynomial and G-polynomial can G-reduce to 0 under
−→∗ for every pair of polynomials in G. Then, under the assumption and
above new definitions, Lemma 10, Lemma 11, Corollary 1 and Lemma 14 are
trivial. Moreover, if we assume that every A-polynomial in SAP(G) can G-
reduce to 0 under −→∗, then under the assumption and the above modified
definitions, we can prove results corresponding to Lemma 12, Lemma 13,
Corollary 2, Corollary 3 and Theorem 3. This gives us:

Theorem 7 G is a weak Gröbner basis if and only if (1) every A-polynomial
in SAP(G) can G-reduce to 0 under −→∗, and (2) every S-polynomial and
G-polynomial can G-reduce to 0 under −→∗ for every pair of polynomials in
G.

The following algorithm computes a weak Gröbner basis over a GPIR.

Algorithm 2 Given F , a finite set of polynomials in R[x̄], find G such that the
ideal Id(G) = Id(F ) and G is a weak Gröbner basis.

function G =GRÖBNER OVER GPIR(F )
begin

G := F ; P := ∅;
B := {(g1, g2) | g1, g2 ∈ G with g1 �= g2};
for all p ∈ G do

A := COMPUTE APOLs(p);
P := P

⋃
A;

end
[G,B] := ADD APOLs RULEs(P,G,B);
C := B; D := ∅;
while B �= ∅ do

while C �= ∅ do
Select (g1, g2) from C;
C := C − {(g1, g2)};
if gi is reducible modulo gj (i, j = 1, 2 and i �= j) then

G := G− {gi};
C := C − {(gi, g) | g ∈ G};
h′

1 := gi; h′
2 := 0;

else
h′

1 := spol(g1, g2); h′
2 := gpol(g1, g2);

end
for i = 1, 2 do
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hi := the G-normal form of h′
i modulo G;

if hi �= 0 then
D := D

⋃{(g, hi) | g ∈ G};
G := G

⋃{hi};
A := COMPUTE APOLs(hi);
[G,D] := ADD APOLs RULEs(A,G,D);

end
end

end
C := D; B := D; D := ∅;

end
return G

end GRÖBNER OVER GPIR

Theorem 8 The algorithm GRÖBNER OVER GPIR terminates for every
finite subset F of R[x̄].

Proof: Assume that the algorithm does not terminate. Let {hn}n∈N

be the non-zero G-normal forms of A-polynomials, S-polynomials and G-
polynomials in the order that they are being added to G. For n ∈ N, let
mn = ansn = lm(hn), and Gn = {F ⋃{hi|i < n}}. We get two infinite
sequences: {sn}n∈N and {an}n∈N. Note that at the end of each run through
the outer while-loop, the new pairs are just added to G, but all S-polynomials
of new pairs of elements of G are being treated during the next run. There
is a function φ : N −→ N such that

∀i, n ∈ N with i < n, lm(gpol(hi, hn)) is reducible modulo Gφ(n). (7.1)

By Dickson’s Lemma (Theorem 5.2 in [3]) for the set of all terms and
Proposition 4.45 in [3], in the sequence {sn}n∈N, there exists an infinite sub-
sequence {sni

}i∈N (ni < nj iff i < j) such that

sni
|snj

for all i < j ∈ N. (7.2)

Since Gni
⊂ Gnj

and hnj
is in G-normal form modulo Gnj

, mni
� |mnj

. It
follows that ani

� |anj
as sni

|snj
for all i < j.

We can recursively define a sequence {ki}i∈N with the following properties:

(1) For any ki, there exists nj such that ski
|snj

;

(2) rep(akj
) < rep(aki

) for all i < j ∈ N.
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Set k1 = n1, and assume that k1, · · · , ki have been defined. Let j ∈ N such
that ski

|snj
. By (7.2), we may assume that ki < nj and thus aki

� |anj
. By

(7.1), lm(gpol(hki
, hnj

)) is reducible modulo Gφ(nj). This means that there
exists n < φ(nj) such that

mn|lm(gpol(hki
, hnj

)) = rgcd(anj
, aki

) · snj

Since aki
� |anj

and an|rgcd(anj
, aki

), rep(an) ≤ rgcd(anj
, aki

) < rep(aki
). Set

ki+1 = n, then ski+1
|snj

and rep(aki+1
) < rep(aki

). That is, we obtain an infi-
nite strictly descending sequence {rep(aki

)}i∈N. This leads to a contradiction
with that < is a well-founded ordering on R.

8 Conclusion

An algorithm for computing a Gröbner basis of a polynomial ideal where
the coefficients are from a ring with zero divisors is given. The notions of
D-A and GPIR rings admitting certain additional properties are introduced
so that the algorithm can be applied on polynomial ideals over such rings.
Such rings include Zn and Zn[i] with an arbitrary integer n. The Gröbner
basis algorithm for polynomial ideals over a D-A ring is an extension of
Buchberger’s algorithm for polynomial ideals over a field in the sense that

1. the method is based on the definition of reduction of polynomials using
a single polynomial at a time,

2. the algorithm computes a strong Gröbner basis of a polynomial ideal,
i.e., not only every polynomial in the ideal simplifies to 0, but all poly-
nomials in the same residue class in the quotient structure induced by
the ideal on the polynomial ring has the same normal form, and

3. a reduced unique Gröbner basis can be associated with every polyno-
mial ideal once an admissible ordering is chosen on terms.

In the case of the coefficient ring being GPIR on which a division algorithm
cannot be assumed, the algorithm discussed above computes a weak Gröbner
basis of a polynomial ideal, i.e., every polynomial in the ideal simplifies to
0 and all polynomials in the polynomial ring have a unique normal form,
even though different polynomials in the same residue class in the quotient
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structure induced by the ideal on the polynomial ring need not have the same
normal form. If elements equivalent modulo units are totally ordered in a
GPIR, a reduced unique Gröbner basis can be associated with a polynomial
ideal as well.

If the coefficient ring is a quotient structure generated by an ideal over
a polynomial ring with many noncomparable parameters, then the proposed
algorithms do not seem to generalize. It is possible that there may exist
non-comparable multi-annihilators for an element in the coefficient ring. For
example, in Z2[a, b] with a2 = a and b2 = b (see also [12] where Boolean rings
modeling prepositional calculus are discussed), an annihilator of ab+ a+ b+
1 ∈ Z2[a, b] can be either a or b. If these parameters cannot be compared,
there is no single generator of the annihilator set of ab+a+b+1. Furthermore,
if there are noncomparable parameters also serving as coefficients of terms
in a polynomial, their gcd may not be defined (or it may not be possible to
define division of one parameter by another parameter). It is an interesting
open question to generalize Buchberger’s algorithm for such quotient rings.
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a polynomial ideal over a Euclidean domain, J. Symbolic Computation
6, 37-57.

[10] Kapur, D. and Madlener, K. (1988). Construction of Gröbner bases in
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