Skip to main content
Log in

A General Approach to Isolating Roots of a Bitstream Polynomial

  • Published:
Mathematics in Computer Science Aims and scope Submit manuscript

Abstract

We describe a new approach to isolate the roots (either real or complex) of a square-free polynomial F with real coefficients. It is assumed that each coefficient of F can be approximated to any specified error bound and refer to such coefficients as bitstream coefficients. The presented method is exact, complete and deterministic. Compared to previous approaches (Eigenwillig in Real root isolation for exact and approximate polynomials using Descartes’ rule of signs, PhD thesis, Universität des Saarlandes, 2008; Eigenwillig et al. in CASC, LNCS, 2005; Mehlhorn and Sagraloff in J. Symb. Comput. 46(1):70–90, 2011) we improve in two aspects. Firstly, our approach can be combined with any existing subdivision method for isolating the roots of a polynomial with rational coefficients. Secondly, the approximation demand on the coefficients and the bit complexity of our approach is considerably smaller. In particular, we can replace the worst-case quantity σ(F) by the average-case quantity \({\prod_{i=1}^n\sqrt[n] {\sigma_i}}\) , where σ i denotes the minimal distance of the i -th root ξ i of F to any other root of F, σ(F) := min i σ i , and n = deg F. For polynomials with integer coefficients, our method matches the best bounds known for existing practical algorithms that perform exact operations on the input coefficients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akritas A., Strzebonski A.: A comparative study of two root isolation methods. Nonlinear Anal. Model. Control 10, 297–304 (2005)

    MathSciNet  MATH  Google Scholar 

  2. Akritas A.G.: The fastest exact algorithms for the isolation of the real roots of a polynomial equation. Computing 24(4), 299–313 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  3. Alesina A., Galuzzi M.: A new proof of Vicent’s theorem. L’Enseignement Mathematique 44, 219–256 (1998)

    MathSciNet  MATH  Google Scholar 

  4. Beberich, E., Emeliyanenko, P., Sagraloff, M.: An elimination method for solving bivariate polynomial systems: eliminating the usual drawbacks. In: ALENEX, pp. 35–47. SIAM, Philadelphia (2011)

  5. Berberich E., Kerber M., Sagraloff M.: An efficient algorithm for the stratification and triangulation of an algebraic surface. Comput. Geom. Theory Appl. (CGTA) 43(3), 257–278 (2009)

    MathSciNet  Google Scholar 

  6. Collins G., Johnson J., Krandick W.: Interval arithmetic in cylindrical algebraic decomposition. JSC 34, 143–155 (2002)

    MathSciNet  Google Scholar 

  7. Collins G.E., Akritas A.G.: Polynomial real root isolation using Descartes’ rule of signs. In: Jenks, R.D. (eds) Proceedings of the 1976 ACM Symposium on Symbolic and Algebraic Computation, pp. 272–275. ACM Press, New York (1976)

    Chapter  Google Scholar 

  8. Du, Z., Sharma, V., Yap, C.: Amortized bounds for root isolation via Sturm sequences. In: SNC, pp. 113–130 (2007)

  9. Eigenwillig A.: On multiple roots in Descartes’ rule and their distance to roots of higher derivatives. J. Comput. Appl. Math. 200(1), 226–230 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Eigenwillig, A.: Real root isolation for exact and approximate polynomials using Descartes’ rule of signs. PhD thesis, Universität des Saarlandes (2008)

  11. Eigenwillig, A., Kerber, M., Wolpert, N.: Fast and exact geometric analysis of real algebraic plane curves. In: Proceedings of the 2007 International Symposium on Symbolic and Algebraic Computation (ISSAC 2007), pp. 151–158 (2007)

  12. Eigenwillig, A., Kettner, L., Krandick, W., Mehlhorn, K., Schmitt, S., Wolpert, N.: An exact descartes algorithm with approximate coefficients. In: CASC. LNCS, vol. 3718, pp. 138–149 (2005)

  13. Eigenwillig, A., Sharma, V., Yap, C.: Almost tight complexity bounds for the Descartes method. In: ISSAC, pp. 71–78 (2006)

  14. Gerhard J.: Modular algorithms in symbolic summation and symbolic integration. LNCS, pp. 3218. Springer, Berlin (2004)

    Google Scholar 

  15. Gourdon, X.: Combinatoire, Algorithmique et Géométrie des Polynômes. Thèse, École polytechnique (1996)

  16. Hemmer, M., Tsigaridas, E.P., Zafeirakopoulos, Z., Emiris, I.Z., Karavelas, M.I., Mourrain, B.: Experimental evaluation and cross benchmarking of univariate real solvers. In: SNC, pp. 45–54 (2009)

  17. Johnson J.: Algorithms for polynomial real root isolation. In: Caviness, B., Johnson, J. (eds) Quantifier Elimination and Cylindrical Algebraic Decomposition, Texts and monographs in Symbolic Computation, pp. 269–299. Springer, Berlin (1998)

    Google Scholar 

  18. Johnson J.R., Krandick W.: Polynomial real root isolation using approximate arithmetic. In: Küchlin, W. (eds) ISSAC, pp. 225–232. ACM Press, New York (1997)

    Chapter  Google Scholar 

  19. Kerber, M.: Geometric Algorithms for Algebraic Curves and Surfaces. PhD thesis, Universität des Saarlandes (2009)

  20. Krandick W., Mehlhorn K.: New bounds for the Descartes method. J. Symb. Comput. 41(1), 49–66 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lickteig T., Roy M.-F.: Sylvester-Habicht sequences and fast Cauchy index computation. J. Symb. Comput. 31, 315–341 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  22. Mehlhorn K., Ray S.: Faster algorithms for computing Hong’s bound on absolute positiveness. J. Symb. Comput. 45((6), 677–683 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. Mehlhorn K., Sagraloff M.: A deterministic algorithm for isolating real roots of a real polynomial. J. Symb. Comput. 46(1), 70–90 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  24. Mitchell, D.P.: Robust ray intersection with interval arithmetic. In: Graphics Interface’90, pp. 68–74 (1990)

  25. Mourrain, B., Rouillier, F., Roy, M.-F.: The Bernstein basis and real root isolation. In: Goodman, J.E., Pach, J., Welzl, E. (eds.) Combinatorial and Computational Geometry, number 52 in MSRI Publications, pp. 459–478. Cambridge University Press, Cambridge (2005)

  26. Pan V.Y.: Sequential and parallel complexity of approximate evaluation of polynomial zeros. Comput. Math. Appl. 14(8), 591–622 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  27. Pan V.Y.: Solving a polynomial equation: some history and recent progress. SIAM Rev. 39(2), 187–220 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  28. Rouillier F., Zimmermann P.: Efficient isolation of [a] polynomial’s real roots. J. Comput. Appl. Math. 162, 33–50 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  29. Sagraloff, M., Yap, C.: A simple but exact and efficient algorithm for complex root isolation. In: International Symposium on Symbolic and Algebraic Computation (ISSAC), pp. 353–360 (2011)

  30. Schönhage, A.: The fundamental theorem of algebra in terms of computational complexity, 1982. Manuscript, Department of Mathematics, University of Tübingen. Updated (2004)

  31. Schönhage A.: Quasi-GCD computations. J. Complex. 1(1), 118–137 (1985)

    Article  MATH  Google Scholar 

  32. Sharma V.: Complexity of real root isolation using continued fractions. Theor. Comput. Sci. 409, 292–310 (2008)

    Article  MATH  Google Scholar 

  33. Smale S.: The fundamental theorem of algebra and complexity theory. Bull. (N.S.) AMS 4(1), 1–36 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  34. Smith B.T.: Error bounds for zeros of a polynomial based upon Gerschgorin’s theorems. J. ACM 17(4), 661–674 (1970)

    Article  MATH  Google Scholar 

  35. Tsigaridas E.P., Emiris I.Z.: On the complexity of real root isolation using continued fractions. Theor. Comput. Sci. 392(1–3), 158–173 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  36. Vincent A.J.H.: Sur la résolution des equations numériques. Journal de Mathématiques Pures et Appliquées 1, 341–372 (1836)

    Google Scholar 

  37. Yap C.K.: Fundamental Problems in Algorithmic Algebra. Oxford University Press, UK (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Sagraloff.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sagraloff, M. A General Approach to Isolating Roots of a Bitstream Polynomial. Math.Comput.Sci. 4, 481 (2010). https://doi.org/10.1007/s11786-011-0071-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11786-011-0071-8

Keywords

Navigation