Skip to main content
Log in

Stochastic Arithmetic in Multiprecision

  • Published:
Mathematics in Computer Science Aims and scope Submit manuscript

Abstract

Floating-point arithmetic precision is limited in length the IEEE single (respectively double) precision format is 32-bit (respectively 64-bit) long. Extended precision formats can be up to 128-bit long. However some problems require a longer floating-point format, because of round-off errors. Such problems are usually solved in arbitrary precision, but round-off errors still occur and must be controlled. Interval arithmetic has been implemented in arbitrary precision, for instance in the MPFI library. Interval arithmetic provides guaranteed results, but it is not well suited for the validation of huge applications. The CADNA library estimates round-off error propagation using stochastic arithmetic. CADNA has enabled the numerical validation of real-life applications, but it can be used in single precision or in double precision only. In this paper, we present a library called SAM (Stochastic Arithmetic in Multiprecision). It is a multiprecision extension of the classic CADNA library. In SAM (as in CADNA), the arithmetic and relational operators are overloaded in order to be able to deal with stochastic numbers. As a consequence, the use of SAM in a scientific code needs only few modifications. This new library SAM makes it possible to dynamically control the numerical methods used and more particularly to determine the optimal number of iterations in an iterative process. We present some applications of SAM in the numerical validation of chaotic systems modeled by the logistic map.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Li X.S., Demmel J.W., Bailey D.H., Henry G., Hida Y., Iskandar J., Kahan W., Kang S.Y., Kapur A., Martin M.C., Thompson B.J., Tung T., Yoo D.J.: Design, implementation and testing of extended and mixed precision BLAS. ACM Trans. Math. Softw. 28(2), 152–205 (2002)

    Article  Google Scholar 

  2. Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: MPFR: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13:1–13:15 (2007). (http://www.mpfr.org)

    Google Scholar 

  3. Wilkinson J.H.: Rounding errors in algebraic processes. Prentice-Hall Inc., Englewood Cliffs (1963)

    MATH  Google Scholar 

  4. Higham N.J.: Accuracy and stability of numerical algorithms. 2nd edn. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2002)

    Book  MATH  Google Scholar 

  5. Einarsson B. et al.: Accuracy and Reliability in Scientific Computing. Software-Environments-Tools. SIAM, Philadelphia (2005)

    Book  Google Scholar 

  6. Chaitin-Chatelin F., Frayssé V.: Lectures on Finite Precision Computations. Society for Industrial and Applied Mathematics, Philadelphia (1996)

    Book  MATH  Google Scholar 

  7. Moore R.: Interval analysis. Prentice Hall, Saddle River (1966)

    MATH  Google Scholar 

  8. Alefeld G., Herzberger J.: Introduction to interval analysis. Academic Press, New York (1983)

    Google Scholar 

  9. Moore R., Kearfott R., Cloud M.: Introduction to interval analysis. Society for Industrial and Applied Mathematics, Philadelphia (2009)

    Book  MATH  Google Scholar 

  10. Chesneaux J.M.: L’arithmétique stochastique et le logiciel CADNA. Habilitation à diriger des recherches Université Pierre et Marie Curie, Paris (1995)

    Google Scholar 

  11. Vignes J.: A stochastic arithmetic for reliable scientific computation. Math. Comput. Simul. 35, 233–261 (1993)

    Article  MathSciNet  Google Scholar 

  12. Goubault, E., Putot, S., Baufreton, P., Gassino, J.: Static analysis of the accuracy in control systems: Principles and experiments. In: Proceedings of Formal Methods in Industrial Critical Systems, LNCS 4916, Springer, Berlin (2007)

  13. Chesneaux, J.M., Graillat, S., Jézéquel, F.: Rounding Errors. In: Encyclopedia of Computer Science and Engineering, vol. 4, pp. 2480–2494. Wiley, New York (2009)

  14. Revol, N., Rouillier, F.: MPFI (Multiple Precision Floating-point Interval library) (2009). (Available at http://gforge.inria.fr/projects/mpfi).

  15. Bailey D.H.: A Fortran 90-based multiprecision system. ACM Trans. Math. Softw. 21(4), 379–387 (1995)

    Article  MATH  Google Scholar 

  16. Brent R.P.: A fortran multiple-precision arithmetic package. ACM Trans. Math. Softw. 4(1), 57–70 (1978)

    Article  Google Scholar 

  17. Priest, D.M.: Algorithms for arbitrary precision floating point arithmetic. In Kornerup, P., Matula, D.W., (eds.) Proceedings of the 10th IEEE Symposium on Computer Arithmetic (Arith-10), Grenoble, France, pp. 132–144. IEEE Computer Society Press, Los Alamitos (1991)

  18. Shewchuk J.R.: Adaptive precision floating-point arithmetic and fast robust geometric predicates. Discret. Comput. Geom. 18(3), 305–363 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  19. Bailey, D.H.: A Fortran-90 double-double library (2001). (Available at http://crd.lbl.gov/~dhbailey/mpdist/index.html)

  20. Hida, Y., Li, X.S., Bailey, D.H.: Algorithms for quad-double precision floating point arithmetic. In: Proceedings of 15th IEEE Symposium on Computer Arithmetic, pp. 155–162. IEEE Computer Society Press, Los Alamitos (2001)

  21. IEEE Computer Society, New York: IEEE Standard for Binary Floating-Point Arithmetic, ANSI/IEEE Standard, pp. 754–1985 (1985). (Reprinted in SIGPLAN Notices 22(2), 9–25 (1987))

  22. Grandlund, T.: GNU MP: The GNU Multiple Precision Arithmetic Library. (http://gmplib.org)

  23. Kulisch U.: Advanced Arithmetic for the Digital Computer. Springer, Wien (2002)

    Book  MATH  Google Scholar 

  24. Chesneaux J.M.: Study of the computing accuracy by using probabilistic approach. In: Ullrich, C. (eds) Contribution to Computer Arithmetic and Self-Validating Numerical Methods, pp. 19–30. IMACS, New Brunswick (1990)

    Google Scholar 

  25. Chesneaux J.M., Vignes J.: Sur la robustesse de la méthode CESTAC. C. R. Acad. Sci. Paris Sér. I Math. 307, 855–860 (1988)

    MATH  MathSciNet  Google Scholar 

  26. Vignes J.: Zéro mathématique et zéro informatique. C. R. Acad. Sci. Paris Sér. I Math 303, 997–1000 (1986)

    MATH  MathSciNet  Google Scholar 

  27. Vignes J.: Zéro mathématique et zéro informatique. La Vie des Sciences 4(1), 1–13 (1987)

    MATH  MathSciNet  Google Scholar 

  28. Université Pierre et Marie Curie, Paris, F.: CADNA: Control of Accuracy and Debugging for Numerical Applications. (http://www.lip6.fr/cadna)

  29. Jézéquel F., Chesneaux J.M.: CADNA: a library for estimating round-off error propagation. Comput. Phys. Commun. 178(12), 933–955 (2008)

    Article  MATH  Google Scholar 

  30. Jézéquel F., Chesneaux J.M., Lamotte J.L.: A new version of the CADNA library for estimating round-off error propagation in Fortran programs. Comput. Phys. Commun. 181(11), 1927–1928 (2010)

    Article  Google Scholar 

  31. Lamotte J.L., Chesneaux J.M., Jézéquel F.: CADNA_C: A version of CADNA for use with C or C++ programs. Comput. Phys. Commun. 181(11), 1925–1926 (2010)

    Article  Google Scholar 

  32. Chesneaux J.M., Troff B.: Computational stability study using the CADNA software applied to the Navier-Stokes solver PEGASE. In: Alefeld, G., Frommer, A. (eds) Scientific Computing and Validated Numerics, pp. 84–90. Akademie, Berlin (1996)

    Google Scholar 

  33. Alberstein N., Chesneaux J.M., Christiansen S., Wirgin A.: Comparison of four software packages applied to a scattering problem. Math. Comput. Simul. 48, 307–318 (1999)

    Article  Google Scholar 

  34. Jézéquel F., Rico F., Chesneaux J.M., Charikhi M.: Reliable computation of a multiple integral involved in the neutron star theory. Math. Comput. Simul. 71(1), 44–61 (2006)

    Article  MATH  Google Scholar 

  35. Scott N., Jézéquel F., Denis C., Chesneaux J.M.: Numerical ’health check’ for scientific codes: the CADNA approach. Comput. Phys. Commun. 176(8), 507–521 (2007)

    Article  Google Scholar 

  36. Scott N., Faro-Maza V., Scott M., Harmer T., Chesneaux J.M., Denis C., Jézéquel F.: E-collisions using e-science. Phys. Part. Nuclei Lett. 5(3), 150–156 (2008)

    Article  Google Scholar 

  37. Rump S.: Reliability in Computing. The Role of Interval Methods in Scientific Computing. Academic Press, Oakville (1988)

    Google Scholar 

  38. Muller J.M.: Arithmétique des Ordinateurs. Academic Press, Masson (1989)

  39. Chesneaux J.M., Jézéquel F.: Dynamical control of computations using the trapezoidal and Simpson’s rules. J. Univers. Comput. Sci. 4(1), 2–10 (1998)

    MATH  Google Scholar 

  40. Jézéquel F.: Dynamical control of converging sequences computation. Appl. Numer. Math. 50(2), 147–164 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  41. Jézéquel F., Chesneaux J.M.: Computation of an infinite integral using Romberg’s method. Num. Algo. 36(3), 265–283 (2004)

    Article  MATH  Google Scholar 

  42. Jézéquel F.: A dynamical strategy for approximation methods. C. R. Acad. Sci. Paris Mécanique 334, 362–367 (2006)

    MATH  Google Scholar 

  43. Ahmed Z.: Definitely an integral. Am Math. Month. 109(7), 670–671 (2002)

    Article  Google Scholar 

  44. Bailey, D., Li, X.: A comparison of three high-precision quadrature schemes. In: Proceedings of 5th Real Numbers and Computers conference, Lyon, France, pp. 81–95 (2003)

  45. Devaney R.L.: An introduction to chaotic dynamical systems. Second edn. Addison-Wesley Studies in Nonlinearity, Addison-Wesley Publishing Company Advanced Book Program, Redwood City (1989)

    MATH  Google Scholar 

  46. Argyris J., Faust G., Haase M.: An exploration of chaos. Texts on Computational Mechanics, vol. VII. North-Holland Publishing Co., Amsterdam (1994)

    Google Scholar 

  47. Tucker W.: The Lorenz attractor exists. C. R. Acad. Sci. Paris Sér. I Math. 328(12), 1197–1202 (1999)

    MATH  Google Scholar 

  48. Galias, Z., Tucker, W.: Rigorous study of short periodic orbits for the Lorenz system. In: Proceedings of IEEE International Symposium on Circuits and Systems, pp. 764–767. ISCAS’08, Seattle (2008)

  49. Tucker, W.: Fundamentals of chaos. In: Kocarev, L., et al. (eds.) Intelligent computing based on chaos. Studies in Computational Intelligence, vol. 184, pp. 1–23. Springer, Berlin (2009)

  50. Pichat, M., Vignes, J.: The numerical study of chaotic systems—future and past. In: 16th IMACS World Congress on Scientific Computation, Applied Mathematics and Simulation. Lausanne, Switzerland (2000)

  51. Yao L.S.: Computed chaos or numerical errors. Nonlinear Anal. Model. Contr. 15(1), 109–126 (2010)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stef Graillat.

Additional information

This work has partially been carried out during S. Wang’s and Y. Zhu’s training periods at LIP6.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Graillat, S., Jézéquel, F., Wang, S. et al. Stochastic Arithmetic in Multiprecision. Math.Comput.Sci. 5, 359–375 (2011). https://doi.org/10.1007/s11786-011-0103-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11786-011-0103-4

Keywords

Mathematics Subject Classification (2010)

Navigation