
ar
X

iv
:1

70
5.

06
03

7v
1 

 [
cs

.D
M

] 
 1

7 
M

ay
 2

01
7 A Survey on Hypergraph Products

Marc Hellmuth, Lydia Ostermeier and Peter F. Stadler

Erratrum: In the accepted version of this survey [36] it is mistakenly stated that the direct

products
⌢

× and ×̃ and the strong product
⌢

⊠ are associative. In [32], we gave counterexamples

for these cases and proved associativity of the hypergraph products
⌣

× ,

⌣

⊠ .

Abstract. A surprising diversity of different products of hypergraphs have
been discussed in the literature. Most of the hypergraph products can be
viewed as generalizations of one of the four standard graph products. The
most widely studied variant, the so-called square product, does not have this
property, however. Here we survey the literature on hypergraph products with
an emphasis on comparing the alternative generalizations of graph products
and the relationships among them. In this context the so-called 2-sections and
L2-sections are considered. These constructions are closely linked to related
colored graph structures that seem to be a useful tool for the prime factor de-
compositions w.r.t. specific hypergraph products. We summarize the current
knowledge on the propagation of hypergraph invariants under the different
hypergraph multiplications. While the overwhelming majority of the material
concerns finite (undirected) hypergraphs, the survey also covers a summary
of the few results on products of infinite and directed hypergraphs.
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Part 1. Introduction

There are only four “standard graph products” that preserve the salient structure
of their factors and behave in an algebraically reasonable way. Their structural
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features have been studied extensively over the last decades. It is well known how
many of the important graph invariants propagate under product formation, and
efficient algorithms have been devised to decompose graph products into their
prime factors. Several monographs cover the topic in substantial detail and serve
as standard references [40, 41, 31].

In contrast, very little is known about product structures of hypergraphs,
even though hypergraphs have become increasingly important models of network
structures. Here we survey the existing literature, focusing on the basic proper-
ties of the various hypergraph products and their mutual relationships. In this
introductory part we will first investigate in which sense the standard graph prod-
ucts have distinguished properties. After introducing the necessary notation, and
defining the most interesting hypergraph invariants we proceed to discuss a set of
desirable properties of hypergraph products that generalize the situation in graphs.
Much of the published literature is concerned with the so-called square product,
which does not arise as a natural generalization of a graph product. Most of the
other constructions, albeit less well investigated so far, can be described as general-
izations of a corresponding graph product. The link between hypergraph products
is also stressed by constructions such as 2-sections and L2-sections [6, 10]. We
therefore choose to emphasize the generalizations of graph products in our survey.
The following sections are then concerned with a review of the literature on the
individual notions of hypergraph products. The literature is complemented by sev-
eral new results that bridge some of the obvious gaps in particular for the rarely
studied products. Our survey also includes a complementary recursive exposition
of several new constructions and their basic properties [36].

1. Graph Products

Graph products are natural structures in discrete mathematics [30, 50] that arise
in a variety of different contexts, from computer science [3, 33, 34] and computa-
tional engineering [45, 46] to theoretical biology [21, 22, 12, 60, 62]. In this section
we briefly outline the commonly investigated graph products and their most salient
properties to provide a frame of reference for our subsequent discussion of hyper-
graph products.

We consider only finite and undirected graphs G = (V,E) with non-empty
vertex set V and edge set E. A graph is non-trivial if it has at least two vertices.
Graph products can be constructed in many different ways. For example, different
constructions arise depending on whether loops are considered or not. There are,
however, three basic properties that are required for any meaningful definition of
a graph product:

(P1) The vertex set of a product is the Cartesian product of the vertex sets of the
factors.

(P2) Adjacency in the product depends on the adjacency properties of the projec-
tions of pairs of vertices into the factors.
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(P3) The product of a simple graph is a simple graph.

As shown in [39], there are 256 different possibilities to define a graph product
satisfying (P1), (P2), and (P3). Only six of them are commutative, associative
and have a unit. Only four products satisfy the following additional condition:

(P4) At least one of the projections of a product onto its factors is a so-called weak
homomorphism (edges are mapped to edges or to vertices).

These four products are known as the standard graph products [40, 31]: the Carte-
sian product ✷, the direct product ×, the strong product ⊠, and the lexicographic
product ◦.

In all products the vertex set V (G1⊛G2) is defined as the Cartesian product
V (G1)×V (G2), ⊛ ∈ {✷, ×, ⊠, ◦}. Two vertices (x1, x2), (y1, y2) are adjacent in
G1 ⊠G2 if one of the following conditions is satisfied:

(i) (x1, y1) ∈ E(G1) and x2 = y2,
(ii) (x2, y2) ∈ E(G2) and x1 = y1,
(iii) (x1, y1) ∈ E(G1) and (x2, y2) ∈ E(G2).

In the Cartesian product vertices are adjacent if and only if they satisfy (i) or
(ii). Consequently, the edges of a strong product that satisfy (i) or (ii) are called
Cartesian edge, the others are the non-Cartesian edges. In the direct product
vertices are only adjacent if they satisfy (iii). Thus, the edge set of the strong
product is the union of edges in the Cartesian and the direct product. In the
lexicographic product vertices are adjacent if and only if (x1, y1) ∈ E(G1) or they
satisfy (ii).

Three of these products, the Cartesian, the direct and the strong product are
commutative, associative, and distributive with respect to the disjoint union. The
lexicographic product is associative, not commutative, and only left-distributive
with respect to the disjoint union. All products have a unit element, that is the
single vertex graphK1 for the Cartesian, the strong and the lexicographic product,
and the single vertex graph with a loop LK1 for the direct product.

Connectedness of the products depends on the connectedness of the factors.
The Cartesian and the strong product is connected if and only if all of its factors
are connected. The direct product of non-trivial connected factors is connected
if and only if at most one factor is bipartite. The lexicographic product ◦ni=1Gi

is connected if and only if G1 is connected. The costrong product G1 ∗ G2, with
edge set E(G1 ◦ G2) ∪ E(G2 ◦ G1), can be seen as a symmetrized version of the
lexicographic product. It is also closely related to the strong produce by virtue of

the identity G1 ∗G2 = G1 ⊠G2 [25].

Connected graphs have a unique Prime Factor Decomposition (PFD) w.r.t.
the strong and the Cartesian product and connected non-bipartite graphs have a
unique PFD w.r.t. the direct product. The PFD w.r.t. the lexicographic product
is unique only under strict conditions w.r.t. connectivity properties based on the
prime factors [31].
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2. Hypergraphs

2.1. Basic Definitions

Hypergraphs are a natural generalization of undirected graphs in which “edges”
may consist of more than 2 vertices. More precisely, a (finite) hypergraph H =
(V,E) consists of a (finite) set V and a collection E of non-empty subsets of V .

The elements of V are called vertices and the elements of E are called hyper-
edges, or simply edges of the hypergraph. Throughout this survey, we only consider
hypergraphs without multiple edges and thus, being E a usual set. If there is a
risk of confusion we will denote the vertex set and the edge set of a hypergraph H
explicitly by V (H) and E(H), respectively.

A hypergraph H = (V,E) is simple if no edge is contained in any other
edge and |e| ≥ 2 for all e ∈ E. The dual H∗ of a hypergraph H = (V,E) is the
hypergraph whose vertices and edges are interchanged, so that V (H∗) = {e∗i | ei ∈
E} and edge set E(H∗) = {v∗i | vi ∈ V } with v∗i = {e∗j | vi ∈ ej}.

For a (simple) hypergraph H = (V,E) let LH := (V,E ∪ {{x} | x ∈ V }) de-
note the hypergraph which is formed from H by adding a loop to each vertex of H .
Conversely, for a hypergraph H ′ = (V ′, E′) let NH ′ := (V ′, E′ \ {{x} | x ∈ V ′})
denote the hypergraph which emerges from H ′ by deleting all loops.

Two vertices u and v are adjacent in H = (V,E) if there is an edge e ∈ E
such that u, v ∈ e. If for two edges e, f ∈ E holds e ∩ f 6= ∅, we say that e and
f are adjacent. A vertex v and an edge e of H are incident if v ∈ e. The degree
deg(v) of a vertex v ∈ V is the number of edges incident to v. The maximum
degree maxv∈V deg(v) is denoted by ∆(H).

The rank of a hypergraph H = (V,E) is r(H) = maxe∈E |e|, the anti-
rank is s(H) = mine∈E |e|. A uniform hypergraph H is a hypergraph such that
r(H) = s(H). A simple uniform hypergraph of rank r will be called r-uniform. A
hypergraph with r(H) ≤ 2 is a graph. A 2-uniform hypergraph is usually known
as a simple graph.

A partial hypergraph H ′ = (V ′, E′) of a hypergraph H = (V,E), denoted by
H ′ ⊆ H , is a hypergraph such that V ′ ⊆ V and E′ ⊆ E. In the class of graphs
partial hypergraphs are called subgraphs. The partial hypergraph H ′ = (V ′, E′) is
induced if E′ = {e ∈ E | e ⊆ V ′}. Induced hypergraphs will be denoted by 〈V ′〉.
A partial hypergraph of a simple hypergraph is always simple.

A walk in a hypergraph H = (V,E) is a sequence Pv0,vk =
(v0, e1, v1, e2, . . . , ek, vk), where e1, . . . , ek ∈ E and v0, . . . , vk ∈ V , such that each
vi−1 6= vi and vi−1, vi ∈ ei for all i = 1, . . . , k. The walk Pv0,vk is said to join the
vertices v0 and vk. A p-path is a walk where the vertices v0, . . . , vk are all distinct
and for all r, s ∈ {1, . . . , k}, r ≤ s with er = es follows that s − r ≤ p − 1 and
er = er+1 = · · · = es. A path between two edges ei and ej is any path Pvivj joining
vertices vi ∈ ei and vj ∈ ej . A 1-path is just called a path, i.e., all vertices and
all edges are different. The minimum number of pairwise vertex and edge disjoint
paths of a hypergraph H whose union contains all vertices of H is called vertex
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path partition number and will be denoted by ℘(H). Note, the path partion num-
ber satisfies ℘(H) ≤ |V (H)|, since there is always a partition of a hypergraph into
paths of length 0. A cycle is a sequence (v0, e1, v1, e2, . . . , vk−1, ek, v0), such that
Pv0,vk−1

is a path. A p-path or a cycle is Hamiltonian in H if it contains all vertices
of H . The length of a path or a cycle is the number of edges contained in the path
or cycle, resp.

The distance dH(v, v′) between two vertices v0, vk of H is the length of a
shortest path joining them. We set dH(v, v′) = ∞ if there is no such path. A
hypergraph H = (V,E) is called connected, if any two vertices are joined by a
path. A partial hypergraph H ′ ⊆ H is called convex, if all shortest paths in H
between two vertices in H ′ are also contained in H ′.

2.2. Homomorphisms and Covering Constructions

For two hypergraphs H1 = (V1, E1) and H2 = (V2, E2) a homomorphism from H1

into H2 is a mapping ϕ : V1 → V2 such that ϕ(e) = {ϕ(v1), . . . , ϕ(vr)} is an edge
in H2, if e = {v1, . . . , vr} is an edge in H1. Note, a homomorphism from H1 into
H2 implies also a mapping ϕE : E1 → E2. A mapping ϕ : V1 → V2 is a weak
homomorphism if edges are mapped either on edges or on vertices.

A homomorphism ϕ that is bijective is called an isomorphism if holds ϕ(e) ∈
E2 if and only if e ∈ E1. We say, H1 and H2 are isomorphic, in symbols H1

∼= H2

if there exists an isomorphism between them. An isomorphism from a hypergraph
H onto itself is an automorphism.

The hypergraph H ′ = (V ′, E′) is a k-fold covering of a hypergraph H =
(V,E) if there is a surjective homomorphism π : H ′ → H for which

1. |π−1(v)| = |π−1
E (e)| = k for all v ∈ V , e ∈ E and

2. e′ ∩ f ′ = ∅ for all distinct e′, f ′ in π−1
E (e), e ∈ E.

H is then called the quotient hypergraph of H ′ and π is called the covering projec-
tion [17]. If k = 2, H ′ is called double cover [16].

2.3. L2-sections

The notion of so-called L2-sections has proved to be an extremely useful tool for
hypergraph product recognition algorithms. In the following we therefore consider
the 2-section and L2-section of hypergraphs [6, 10] in some detail. In the context
of 2-sections and L2-sections we will consider only hypergraphs without loops
throughout this survey.

The 2-section [H ]2 of a hypergraph H = (V,E) is the graph (V,E′) with
E′ = {{x, y} ⊆ V | x 6= y, ∃ e ∈ E : {x, y} ⊆ e}, that is, two vertices are adjacent
in [H ]2 if they belong to the same hyperedge in H . Thus, every hyperedge of H
is a clique in [H ]2. Note, the 2-section [H ]2 of a hypergraph H = (V,E) is only
uniquely determined if H is conformal, that is, for every subset W ⊆ V holds that
if 〈W 〉 is a clique in [H ]2 then W ∈ E.

Let P(X) denotes the power set of the set X . The L2-section [H ]L2 of a
hypergraph H = (V,E) is its 2-section together with a mapping L : E′ → P(E)
with L({x, y}) = {e ∈ E | {x, y} ⊆ e}. Usually, the L2-section [H ]L2 is written
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as the triple Γ = (V,E([H ]2),L). In addition to 2-sections, the L2-section also
provides the possibility to trace back the information which of the edges of [H ]2
is associated to which of the hyperedges in H . Thus, the original hypergraph can
be reconstructed from its L2-section. The inverse [Γ]−1

L2 = (V,E) of an L2-section

Γ = (V,E′,L) is the hypergraph with E =
⋃

e∈E′ L(e). Hence, the inverse [Γ]−1
L2 of

an L2-section is the hypergraph H = (V,E) that has L2-section Γ.
Two L2-sections Γ1 = (V1, E1,L1) and Γ2 = (V2, E2,L2) are isomorphic, in

symbols Γ1
∼= Γ2, if there is an isomorphism ϕ between the graphs (V1, E1) and

(V2, E2) such that e ∈ L1({x, y}) if and only if {ϕ(z) | z ∈ e} ∈ L2({ϕ(x), ϕ(y)})
for all x, y ∈ V1 and e ⊆ V1. Every hypergraph is uniquely (up to isomorphism)
determined by its L2-section and vice versa [11, 10], i.e., H ∼= H ′ if and only if
[H ]L2

∼= [H ′]L2.
A very useful property of the 2-section is the following:

Lemma 2.1 (Distance Formula). Let H = (V,E) be a hypergraph and x, y ∈ V .
Then the distances between x and y in H and in [H ]2 are the same.

Proof. Note, x and y are in different connected components of H if and only if
x and y are in different connected components of [H ]2 and hence, dH(x, y) =
d[H]2(x, y) = ∞. Thus, w.l.o.g. assume H (and hence [H ]2) to be connected. Let
P = (x, e1, v1, . . . , vk−1, ek, y) denote a shortest path between x and y in H . By
construction of [H ]2 there is a walk P ′ = (x, e′1, v1, . . . , vk−1, e

′
k, y) in [H ]2. Thus,

k = dH(x, y) ≥ d[H]2(x, y) = l. Assume, k > l. Then there is a path Q′ =
(x, f ′

1, v1, . . . , vk−1, f
′
l , y) in [H ]2. Thus, for all f

′
i there is an edge fi ∈ E(H) such

that f ′
i ⊆ fi and hence, a walk of length l in H , a contradiction. �

2.4. Invariants

In the following paragraphs we briefly introduce the hypergraph invariants that
are most commonly studied in the context of hypergraph products. We will assume
throughout that H = (V,E) is a given hypergraph.

2.4.1. Independence, Matching and Cover. A set S ⊆ V is independent if it con-
tains no edge of E; the maximum cardinality of an independent set is denoted by
β(H) and is called the independence number of H . Some of the older literature,
e.g. [7, 61] use the term stable and stability number for this concept.

A set T ⊆ V is called a cover of H if it intersects every edge of H, i.e.,
T ∩ e 6= ∅ for all e ∈ E. The minimum cardinality of the covers is denoted by
τ(H), and called the covering number of H. Cover and covering number are also
known as transversal or transversal number [7].

A fractional cover of H is a mapping t : V → R+
0 such that

∑
v∈e t(v) ≥ 1 for

all e ∈ E. The value mint
∑

v∈V t(v) over all fractional covers t is called fractional
covering number and denoted by τ∗(H). Note that every cover induces a fractional
cover by defining t(v) = 1 if v ∈ T and t(v) = 0 else [6].

A subset M ⊆ E is a matching if every pair of edges from M has an empty
intersection. The maximum cardinality of a matching M is called the matching
number, denoted by ν(H) [6].
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The partition number ρ(H) of H denotes the minimal number of pairwise
disjoint edges of E which together cover V if such a partition exists, else we set
ρ(H) = ∞ [2, 1].

2.4.2. Coloring. A coloring of a hypergraph H is mapping c from either V or E
into a set of colors C = {1, . . . , k}. We refer to c : E → C as an edge-coloring and
to c : V → C as a vertex-coloring or simply coloring.

A proper coloring of a hypergraph H is a coloring c : V → C such that
{v | c(v) = i} is an independent set for all i ∈ C. The chromatic number χ(H)
is the minimal number of colors that admit a proper coloring of H . Hence, the
chromatic number χ(H) is the minimum number of independent sets V1, · · · , Vχ(H)

into which V can be partitioned. A proper strong coloring of a hypergraph H is a
proper coloring such that for all edges e ∈ E holds that c(v) 6= c(w) for all distinct
vertices v, w ∈ e. The strong chromatic number χs(H) is the minimal number k
of colors that admit a strong k-coloring of H .

The (k-color) discrepancy of a hypergraph measures the deviation of a color-
ing c from a so-called balanced coloring, that is a coloring in which each hyperedge
contains same number of vertices of each color. More formally, the discrepancy of
a coloring c and the k-color discrepancy of H = (V,E) are defined as follows:

disc (H, c) = max
e∈E

max
1≤i≤k

∣∣∣∣|c−1(i) ∩ e| − 1

k
|e|

∣∣∣∣

and

disc (H, k) = min
c:V→{1,...,k}

disc (H, c) .

A proper edge-coloring of a hypergraph H is a coloring c : E → C such that
c(e) 6= c(f) for all distinct incident edges e, f ∈ E. The chromatic index q(H) of
H is the minimum number of colors that admit a proper edge-coloring. Clearly,
q(H) ≥ ∆(H). A hypergraph has the colored hyperedge property if q(H) = ∆(H).

2.4.3. Helly Property. For v ∈ V , a star H(v) of H with center v is the set of
all edges e ∈ E such that v ∈ e. For a given simple hypergraph H a subset E′

of E is an intersecting family if every pair of hyperedges of E′ have a non-empty
intersection. A hypergraph has the Helly property if each intersecting family is a
star. An interesting characterization of Helly hypergraphs can be found in [5]: A
hypergraph has the Helly property if and only if its dual is conformal.

3. Basic Properties of Hypergraph Products

Definitions of hypergraph products, to our knowledge, have never been compared
systematically in a way similar to graph products. Most of the hypergraph products
can be viewed as a generalization of respective graph products. However, one
of the most studied hypergraph product, the so-called square product, does not
provide this property. Therefore, it appears useful to make explicit the desirable
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properties of hypergraph products. We begin with the direct generalization of the
requirements for graph products:

(P1) The vertex set of a product is the Cartesian product of the vertex sets of the
factors.

(P2) Adjacency in the product depends only on the adjacency properties of the
projections of pairs of vertices into the factors.

(P3) The product of simple hypergraphs is again a simple hypergraph.
(P4) At least one of the projections of a product onto its factors is a weak homo-

morphism.

Since graphs can be interpreted as the special hypergraphs with |e| ≤ 2 for all
e ∈ E, we would like to consider hypergraph products that specialize to graph
products:

(P5) The hypergraph product of two graphs is again a graph.

For hypergraphs, these requirements appear to give more freedom than for graphs.
Property (P2) posits that the presence of an edge (x1, x2) ∼ (y1, y2) must be
determined by the presence or absence of the adjacencies x1 ∼ y1 and x2 ∼ y2
and a rule deciding whether x1 = y1 and x2 = y2 is to be treated like an edge
or its absence, leading to 28 = 256 distinct operations, see [39]. For hypergraphs,
however, this leads only to a restriction on edges but does not provide a complete
recipe for the construction of the edge set of the product. As a consequence, it
is possible to find several non-equivalent generalizations of the standard graph
products as we shall see throughout this survey.

As in the case of usual graph products at least associativity is desirable. All
products that are treated in this survey are associative. We omit the proofs for this,
since they can be done equivalently to the proofs as in [31]. Thus, the hypergraph
products of finitely many factors are well defined and it suffices to prove the results
for two (not necessarily prime) factors only. Furthermore, all products, except the
lexicographic product are commutative.

Before we proceed with our analysis of hypergraph products, we need to
introduce some specific notations:
Let ⊛n

i=1Hi = (V,E) = (×n
i=1 V (Hi), E(⊛n

i=1Hi)) be an arbitrary hypergraph
product. The projection pj : V → V (Hj) is defined by v = (v1, . . . , vn) 7→ vj . We
will call vj the j-th coordinate of the vertex v ∈ V . For a given vertex w ∈ V (H)
the Hj-layer through w is the partial hypergraph of H

Hw
j = 〈{v ∈ V (H) | pk(v) = pk(w) for k 6= j}〉 .

If for a hypergraph product ⊛n
i=1Hi holds Hi

∼= H for all i = 1, . . . , n we will
denote this hypergraph simply by H⊛n.

Let U denote the unit element, if one exists, of an arbitrary product ⊛, i.e.,
H = H ⊛U for all hypergraphs H . Since all hypergraph products considered here
have vertex set V1×V2 the unit must always be a hypergraph with a single vertex.
A hypergraph is said to be prime if the identity H = H1⊛H2 implies that H1

∼= U
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or H2
∼= U . Not all hypergraph products have a unit element. Prime factors and a

prime factor decomposition cannot be meaningfully defined unless there is a unit.

Part 2. Cartesian Product

4. The Cartesian Product

The Cartesian product of hypergraphs has been investigated by several authors
since the 1960s [37, 38, 11, 9, 10, 17, 49, 53]. It is probably the best-studied
construction.

4.1. Definition and Basic Properties

Definition 4.1 (Cartesian Product of Hypergraphs). The Cartesian product H =
H1✷H2 of two hypergraphs H1 and H2 has vertex set V (H) = V (H1) × V (H2)
and the edge set

E(H) =
{
{x} × f : x ∈ V (H1), f ∈ E(H2)

}

∪
{
e× {y} : e ∈ E(H1), y ∈ V (H2)

}
.

The Cartesian product is associative, commutative, distributive with respect
to the disjoint union and has the single vertex graphK1 as a unit element [37]. The
Cartesian product of two simple hypergraphs is a simple hypergraph. A Cartesian
product hypergraph, furthermore, is connected if and only if all of its factors are
connected [37]. For the rank and anti-rank, respectively, of a Cartesian product
hypergraph H1✷H2 holds:

r(H1✷H2) = max{r(H1), r(H2)}
s(H1✷H2) = min{s(H1), s(H2)}.

The projections onto the factors are weak homomorphisms. According to [52]
the Cartesian product of hypergraphs can be described in terms of projections as
follows: For H = H1✷H2, with Hi = (Vi, Ei), i = 1, 2 and e ⊆ V (H) we have
e ∈ E(H) if and only if there is an i ∈ {1, 2}, s.t.
(i) pi(e) ∈ Ei and
(ii) |pj(e)| = 1 for j 6= i.

Furthermore, |pi(e)| = |e|.
The Hj-layer through w of a Cartesian product H is induced by all vertices of

H that differ from w ∈ V (H) exactly in the j-th coordinate. Moreover, Hw
j
∼= Hj .

4.2. Relationships with Graph Products

The restriction of the Cartesian product to graphs coincides with the usual Carte-
sian graph product. The 2-sections of hypergraphs are also well-behaved:
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Proposition 4.2 ([11]). The 2-section of H = H ′
✷H ′′ is the Cartesian product of

the 2-section of H ′ and the 2-section of H ′′, more formally:

[H ′
✷H ′′]2 = [H ′]2✷[H

′′]2.

This observation suggested the definition of the Cartesian product of L2-
sections by constructing an appropriate labeling function for the product:

Definition 4.3 (The Cartesian Product of L2-sections [11, 10]). Let Γi = (Vi, E
′
i,Li)

be the L2-section of the hypergraphs Hi = (Vi, Ei), i = 1, 2. The Cartesian
product of the L2-sections Γ1✷Γ2 = (V,E′,L) consists of the graph (V,E′) =
(V1, E

′
1)✷(V2, E

′
2) and a labeling function

L = L1✷L2 : E′ → P(E(H1✷H2))

with

L ({(x1, y1), (x2, y2)}) =
{
{{x1} × e | e ∈ L2 ({y1, y2})} , if x1 = x2

{e× {y1} | e ∈ L1 ({x1, x2})} , if y1 = y2

Lemma 4.4 ([11, 10]). For all hypergraphs H,H ′ we have:

1. [H✷H ′]L2
= [H ]L2✷[H

′]L2

2. [[H ]L2✷[H
′]L2]

−1
L2 = [[H ]L2]

−1
L2✷[[H

′]L2]
−1
L2

Lemma 4.5 (Distance Formula). For all hypergraphs H,H ′ we have:

dH✷H′ ((x, a), (y, b)) = dH(x, y) + dH′(a, b)

Proof. Combining the results of Lemma 2.1, Lemma 4.2 and the well-known Dis-
tance Formula for the Cartesian graph product (Corollary 5.2 in [31]) yields to the
result. �

4.3. Prime Factor Decomposition

Theorem 4.6 (UPFD [37]). Every connected hypergraph has a unique prime factor
decomposition w.r.t. the Cartesian product.

The PFD of disconnected hypergraphs is in general not unique [40, 31]. The-
orem 4.6 was also obtained in [49] using a different approach that generalizes this
result to infinite and directed hypergraphs, see Part 7.

Imrich and Peterin devised an algorithm for computing the PFD of connected
graphs (V,E) in O(|E|) time and space [42]. Bretto and Silvestre adapted this
algorithm for the recognition of Cartesian products of hypergraphs [10]. To this
end, the L2-sections of hypergraphs are used. We give here a short outline of this
algorithm. For a given a connected hypergraphH its L2-section [H ]L2 is computed.
Using the algorithm of Imrich and Peterin one gets the PFD of [H ]2. This results
in an edge coloring of [H ]2, i.e., edges are colored with respect to the copies of the
corresponding prime factors. After this, on has to check if the factors of [H ]2 are
the labeled prime factors of [H ]L2 and has to merge factors if necessary. Finally,
using the inverse L2-sections the prime factors of H are built back. Although the
PFD of the 2-section [H ]2 = (V,E′) can be computed in O(r(H)2 · |E|) = O(|E′|)
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time, the check-and-merging-process together with the build back part for the
PFD of H is more time-consuming and one ends in an overall time complexity of
O((log2 |V |)2 ·r(H)3 ·|E|·∆(H)2) for a given hypergraphH . The PFD of connected
simple hypergraphs H = (V,E) with fixed maximum degree and fixed rank can
then be computed in O(|V ||E|) time [10]. The currently fastest algorithm is due
to Hellmuth and Lehner [35]. In distinction from the method of Bretto et al. this
algorithm is in a sense conceptually simpler, as (1) it is not needed to transform
the hypergraph H into its so-called L2-section and back and (2) the test which
(collections) of the putative factors are prime factors of H follows a complete new
idea based on increments of fixed vertex-coordinate positions, that allows an easy
and efficient check to determine the PFD of H .

Theorem 4.7 ([35]). The PFD w.r.t. the Cartesian product of a hypergraph H =
(V,E) with rank r can be computed in O(r2|V ||E|) time. If we assume that H has

bounded rank, then this time-complexity can be reduced to O(|E| log2(|V |)).

4.4. Invariants

Much of the literature on Cartesian hypergraph products is concerned with rela-
tionships of invariants of the factors with those of the product. In this section we
compile the most salient results.

Theorem 4.8 (Automorphism Group [37]). The automorphism group of the Carte-
sian product of connected prime hypergraphs is isomorphic to the automorphism
group of the disjoint union of the factors.

Theorem 4.9 (k-fold Covering [17]). Let H ′
i = (V ′

i , E
′
i) be a ki-fold covering of the

hypergraph Hi = (Vi, Ei) via a covering projection πi, i = 1, 2. Then H ′
1✷H

′
2 is a

k1k2-fold cover of H1✷H2 via a covering projection π induced naturally by π1 and
π2, i.e, define π by:

π((x, y)) = (π1(x), π2(y)), for (x, y) ∈ V ′
1 × V ′

2 ,
π({x} × e2) = {π1(x)} × π2(e2), for x ∈ V ′

1 , e2 ∈ E′
2,

π(e1 × {y}) = π1(e1)× {π2(y)}, for e1 ∈ E′
1, y ∈ V ′

2 .

Theorem 4.10 (Conformal Hypergraphs [9]). H = H1✷H2 is conformal if and
only if H1 and H2 are conformal.

Theorem 4.11 (Helly Property [9]). H = H1✷H2 has the Helly property if and
only if H1 and H2 have the Helly property.

Theorem 4.12 (Colored Hyperedge Property [11]). If H1 and H2 have the colored
hyperedge property then H = H1✷H2 has the colored hyperedge property.

Theorem 4.13 ((Strong) Chromatic Number [11]). Let χi and χ (respectively γi
and γ) be the chromatic (resp. strong chromatic number) of Hi and H = ✷

n
i=1.

Then χ = maxi{χi} and γ = maxi{γi}.
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Theorem 4.14 (Hamiltonicity I [53]). Let H1 = (V1, E1) and H2 = (V2, E2) be two
hypergraphs that contain a Hamiltonian path. Then H1✷H2 contains an Hamil-
tonian cycle if and only if |V1||V2| is even or at least one of H1 or H2 is not a
bipartite graph.

Theorem 4.15 (Hamiltonicity II [53]). Let H1 be a hypergraph with n1 ≥ 4 vertices
containing an Hamiltonian cycle and H2) be a hypergraph with that contains a
Hamiltonian p-path with p ≤ 2⌊n1/4⌋. Then H1✷H2 contains a Hamiltonian cycle.

Part 3. Direct Products

In contrast to the Cartesian product, there are several different possibilities to
construct a direct product. We will consider four constructions in detail: The
direct product r , which is closed under the restriction on r-uniform hypergraphs,

the direct product
⌣×, which preserves the minimal rank of the factors, the direct

product
⌢×, which preserves the maximal rank of the factors and the direct product

×̃, which does not preserve any rank of its factors.

An alternative product, which we prefer to call the square product following
the work of Nešetřil and Rödl [44], is also often called “direct product” in the
literature. It will be discussed in detail in section 14.

5. The Direct Product for r-uniform Hypergraphs

An early construction of a direct hypergraph product [20] was motivated by the
investigation of a category of hypergraphs. The following product is categorical in
the category of r-uniform hypergraphs and is only defined for r-uniform hyper-
graphs.

5.1. Definition and Basic Properties

Definition 5.1 (r-uniform direct product). For two r-uniform hypergraphs H1 =
(V1, E1) and H2 = (V2, E2) their direct product H1 r H2 has vertex set V1 × V2
and the edge set

E(H1 r H2) :=

{
e ∈

(
e1 × e2
r

)
| ei ∈ Ei and pi(e) ∈ Ei, i = 1, 2

}
. (5.1)

This product is the restriction of minimal and maximal rank preserving prod-
ucts to r-uniform hypergraphs, defined in the following two sections. Most of the
properties of the two products can indeed be inferred from the corresponding re-
sults for the r -product.
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5.2. Relationships with Graph Products

For r = 2, r is the direct graph product in the simple graph. However, since it
is only defined on r-uniform hypergraphs, it cannot be generalized on the class of
graphs with loops. Since r coincides with the minimal rank preserving product
⌣× on r-uniform hypergraphs all results concerning 2-sections and L2-sections can

be inferred from the respective results of
⌣×. In general there is no unit element for

r-uniform hypergraphs, hence the term prime cannot be defined for this product.
As far as we know, nothing is known about the behavior of hypergraph invariants
under this product.

6. The Minimal Rank Preserving Direct Product

If one considers the direct product H1 r H2 of two r-uniform hypergraphs H1 and
H2, one observes that an edge in E(H1 r H2) satisfies the following two properties:

(E1) All vertices of an edge differ in each coordinate.
(E2) The projection of an edge is an edge in the respective factor.

If one tries to generalize the product r to arbitrary non-uniform hypergraphs,
one always encounters edges in the corresponding hypergraph product that cannot
satisfy both (E1) and (E2). Hence, a natural question is how to extend the direct
product r to a product of two arbitrary, non-uniform hypergraphs in such a way
that it satisfies at least one the properties.

If we insist on Property (E1) we enforce an additional constraint, that is, the
projections of an edge of the product hypergraph into the factors is an edge in at
least one factor and subsets of edges in the other factors. ¿From that point, we
observe that the rank of the hypergraph product equals the minimal rank of the
factors.

6.1. Definition and Basic Properties

This product was first defined by Sonntag in [57] using the term “Cartesian Prod-
uct”.

Definition 6.1 (Minimal Rank Preserving Direct Product [57]). For two hyper-

graphs H1 = (V1, E1) and H2 = (V2, E2) their direct product H1
⌣×H2 has vertex

set V1 × V2. For two edges e1 ∈ E1 and e2 ∈ E2 let r−e1,e2 = min{|e1|, |e2|}. The
edge set is the defined as:

E(H1
⌣×H2) :=

{
e ∈

(
e1 × e2
r−e1,e2

)
| ei ∈ Ei and |pi(e)| = r−e1,e2 , i = 1, 2

}
. (6.1)

In other words, a subset e = {(x1, y1), . . . , (xr , yr)} of V1 × V2 is an edge in

H1
⌣×H2 if and only if

(i) {x1, . . . , xr} is an edge in H1 and {y1, . . . , yr} is the subset of an edge in H2,
or

(ii) {x1, . . . , xr} is the subset of an edge in H1 and {y1, . . . , yr} is an edge in H2
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We have p1(e) = e1 and p2(e) = e2 provided |e1| = |e2|. If |ei| < |ej |, then
pi(e) = ei and pj(e) ⊂ ej , i, j ∈ {1, 2}. Thus, the projections need not to be
(weak) homomorphisms in general, but they preserve adjacency, i.e., two vertices

in a direct product
⌣× hypergraph are adjacent, whenever they are adjacent in both

of the factors.

The direct product
⌣× is associative, it is commutative as an immediate conse-

quence of the symmetry of the definition. Simple set-theoretic considerations show

that direct product
⌣× is left and right distributive with respect to the disjoint

union. The direct product
⌣× of two connected hypergraphs is not necessarily con-

nected, as one can observe for the simple caseK2
⌣×K2. For the rank and anti-rank,

respectively, of the hypergraph H = H1
⌣×H2 holds:

r(H1
⌣×H2) = min{r(H1), r(H2)}

s(H1
⌣×H2) = min{s(H1), s(H2)}.

Lemma 6.2. The direct product H1
⌣×H2 of simple hypergraphs is simple.

Proof. Let H1 = (V1, E1) and H2 = (V2, E2) be two simple hypergraphs. Hence

s(Hi) ≥ 2 for i = 1, 2, and therefore s(H1
⌣×H2) = min{s(H1), s(H2)} ≥ 2,

which implies that E(H1
⌣×H2) contains no loops. Assume that there is an edge

e contained in an edge e′, where e ∈
(
e1×e2
r
−

e1,e2

)
and e′ ∈

(e′1×e′2
r
−

e′
1
,e′

2

)
ei, e

′
i ∈ Ei. Notice,

that pi(e) ⊆ pi(e
′), i = 1, 2 must hold. W.l.o.g. suppose |e1| ≤ |e2|, which implies

p1(e) = e1. It follows e1 = p1(e) ⊆ p1(e
′) ⊆ e′1, and since H1 is simple, e1 = e′1

must hold and hence p1(e
′) = e′1. From this we can conclude |e| = |e1| = |e′1| =

|p1(e′)| = |e′| and therefore e = e′. �

The direct product
⌣× does not have a unit, both in the class of simple and

non-simple hypergraphs, i.e., neither the one vertex hypergraphK1, nor the vertex

with a loop, LK1, is a unit for the direct product
⌣×.

6.2. Relationships with Graph Products

The restriction of the direct product
⌣× to r-uniform hypergraphs is the product

r defined in Equation (5.1), hence the restriction of
⌣× simple graphs coincides

with the direct graph product. But since the direct product
⌣× has no unit, we can

conclude that it does not coincide with the direct graph product in the class of
graphs with loops.

Lemma 6.3. The 2-section of the direct product H = H ′ ⌣×H ′′ is the direct product
of the 2-section of H ′ and the 2-section of H ′′, more formally:

[H ′ ⌣×H ′′]2 = [H ′]2 × [H ′′]2.
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Proof. Let p1 and p2 denote pH′ and pH′′ , respectively. By definition of the 2-
section and the direct product, [H ]2 and [H ′]2 × [H ′′]2 have the same vertex set.
Thus we need to show that the identity mapping V ([H ]2) → V ([H ′]2 × [H ′′]2)
is an isomorphism. We have: {x, y} ∈ E([H ]2) ⇔ ∃ e ∈ E(H) : {x, y} ⊆
e, x 6= y ⇔ ∃e′ ∈ E(H ′), e′′ ∈ E(H ′′) : {p1(x), p1(y)} ⊆ p1(e) ⊆ e′, p1(x) 6=
p1(y) and {p2(x), p2(y)} ⊆ p2(e) ⊆ e′′, p2(x) 6= p2(y) ⇔ {p1(x), p1(y)} ∈
E([H ′]2), {p2(x), p2(y)} ∈ E([H ′′]2) ⇔ {x, y} ∈ E([H ′]2 × [H ′′]2). �

Definition 6.4 (The Direct Product of L2-sections). Let Γi = (Vi, E
′
i,Li) be the

L2-section of the hypergraphs Hi = (Vi, Ei), i = 1, 2. The direct product of the

L2-sections Γ1
⌣×Γ2 = (V,E′,L) consists of the graph (V,E′) = (V1, E

′
1)× (V2, E

′
2)

and a labeling function

L = L1
⌣×L2 : E′ → P(E(H1

⌣×H2))

assigning to each edge e′ = {(x1, y1), (x2, y2)} ∈ E′ a label

L (e′) = {e′ ∪ A | A ∈ A(e′, e1, e2), ei ∈ Li(e
′
i), |pi(A)| = r−e1,e2 − 2, i = 1, 2}

with e′1 = {x1, x2}, e′2 = {y1, y2} and

A(e′, e1, e2) =

(
(e1 \ e′1)× (e2 \ e′2)

r−e1,e2 − 2

)
.

A short direct computation shows that

[H
⌣×H ′]L2

= [H ]L2
⌣×[H ′]L2

holds for all simple hypergraphs H,H ′.

Lemma 6.5 (Distance Formula). Let (x1, x2) and (y1, y2) be two vertices of the

direct product H = H1
⌣×H2. Then

dH((x1, x2), (y1, y2)) = min{n ∈ N | each factor Hi has a walk Pxi,yi
of length n},

where it is understood that dH((x1, x2), (y1, y2)) = ∞ if no such n exists.

Proof. Combining the results of Lemma 2.1, Lemma 6.3 and the Distance Formula
for the direct graph product (Proposition 5.8 in [31]) yields to the result. �

Corollary 6.6. Let (x1, x2) and (y1, y2) be two vertices of the direct product H =
H1 r H2. Then

dH((x1, x2), (y1, y2)) = min{n ∈ N | each factor Hi has a walk Pxi,yi
of length n},

where it is understood that dH((x1, x2), (y1, y2)) = ∞ if no such n exists.

The absence of a unit implies that there is no meaningful PFD. To the au-
thors’ knowledge, hypergraphs invariants have not been studied for the product
⌣×.
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7. The Maximal Rank Preserving Direct Product

As discussed in Section 6, if one tries to generalize the product r to arbitrary
non-uniform hypergraphs, one always encounters edges in the corresponding hy-
pergraph product that cannot satisfy both (E1) and (E2):

(E1) All vertices of an edge differ in each coordinate.
(E2) The projection of an edge is an edge in the respective factor.

In order to extend the direct product r to a product of two arbitrary, non-
uniform hypergraphs in such a way that it satisfies at least one of the properties,
we insist now on condition (E2) and claim that the size of an edge in the product
hypergraph coincides with the size of at least one of its projections and thus, the
rank of the product hypergraph is exactly the maximal rank of one of its factors.

7.1. Definition and Basic Properties

Definition 7.1 (Maximal Rank Preserving Direct Product). For two hypergraphs

H1 = (V1, E1) and H2 = (V2, E2) their direct product H1
⌢×H2 has vertex set

V1 × V2. For two edges e1 ∈ E1 and e2 ∈ E2 let r+e1,e2 = max{|e1|, |e2|}. The edge
set is the defined as:

E(H1
⌢×H2) :=

{
e ∈

(
e1 × e2
r+e1,e2

)
| ei ∈ Ei and pi(e) = ei, i = 1, 2

}
. (7.1)

In other words, a subset e = {(x1, y1), . . . , (xr , yr)} of V1 × V2 is an edge in

H1
⌢×H2 if and only if

(i) {x1, . . . , xr} is an edge in H1 and there is an edge f ∈ E2 of H2 such that
{y1, . . . yr} is a multiset of elements of f , and f ⊆ {y1, . . . , yr}, or

(ii) {y1, . . . , yr} is an edge in H2 and there is an edge e ∈ E1 of H1 such that
{x1, . . . xr} is a multiset of elements of e, and e ⊆ {x1, . . . , xr}.

For e ∈ E(H1
⌢×H2) holds: if |e| = |pi(e)|, i ∈ {1, 2}, then pi(x) 6= pi(y) for all

x, y ∈ e with x 6= y.

The direct product
⌢× is associative, commutative, and distributive with re-

spect to the disjoint union. Contrary to the direct product
⌣×, projections of a

product hypergraph into the factors are, by definition, homomorphisms, i.e., pro-
jections of hyperedges are hyperedges in the respective factors.

The one vertex hypergraph with a loop LK1 is a unit for the direct product
⌢× in the class of hypergraphs with loops. In the class of simple hypergraphs, this

product has no unit. The direct product
⌢× of two connected hypergraphs is not

necessarily connected, since it need not to be connected in the class of graphs. For

the rank and anti-rank, respectively, of the hypergraph H1
⌢×H2 holds:

r(H1
⌢×H2) = max{r(H1), r(H2)}

s(H1
⌢×H2) = max{s(H1), s(H2)}.
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Lemma 7.2. The direct product H1
⌢×H2 of simple hypergraphs is simple.

Proof. Therefore, let H1 = (V1, E1) and H2 = (V2, E2) be two simple hyper-

graphs. Hence s(Hi) ≥ 2 for i = 1, 2, and therefore it holds s(H1
⌢×H2) =

max{s(H1), s(H2)} ≥ 2, which implies that E(H1
⌢×H2) contains no loops. As-

sume that there is an edge e contained in an edge e′, where e ∈
(e1×e2
r
+
e1,e2

)
and

e′ ∈
(e′1×e′2
r+
e′
1
,e′

2

)
, ei, e

′
i ∈ Ei. Notice, that pi(e) ⊆ pi(e

′), i = 1, 2 must hold. Hence,

ei = pi(e) ⊆ pi(e
′) = e′i, which implies ei = e′i, since H1 and H2 are simple. It

follows |e| = |e′| and therefore e = e′. Thus, H1
⌢×H2 is simple. �

7.2. Relationships with Graph Products

If we restrict the direct product
⌢× to r-uniform hypergraphs, we recover the prod-

uct r defined by Equation (5.1). In particular, this product coincides with the
direct graph product in the class of simple graphs. Moreover, the restriction of this
product to graphs coincides with the direct graph product in general, also in the
class of not necessarily simple graphs with loops.

In contrast to the direct product
⌣×, however, the 2-section of the direct

product of two arbitrary hypergraphs is not the direct graph product of the 2-
sections of the hypergraphs, except in the special case of r-uniform hypergraphs.

To see this, consider as an example the product K2
⌢×(V, {V }) with |V | = 3.

Despite its appealing properties, the product
⌢× has not been studied in the

literature. It is unknown, in particular, under which conditions it admits a unique
PFD. The prime factor theorems for the direct product need non-trivial precon-
ditions even in the class of graphs. We do not expect that it will be a particularly
simple problem to establish a general UPFD theorem.

8. A Direct Product that does not preserve Rank

For the sake of completeness, and as an example for the degrees of freedom inher-
ent in the definition of hypergraph products that generalize graph products, we
consider the product ×̃. Its restriction to 2-uniform hypergraphs coincides with
the direct graph product. However, it does not preserve r-uniformity in general.
For brevity we omit proofs, which can be found in [27], throughout this section.

8.1. Definition and Basic Properties

Definition 8.1 (non-rank-preserving Direct Product). For two hypergraphs H1 =
(V1, E1) and H2 = (V2, E2), we define their direct product ×̃ by the edge set

E(H1×̃H2) :=
{
{(x, y)} ∪

(
(e \ {x})× (f \ {y})

)
| x ∈ e ∈ E1; y ∈ f ∈ E2

}

The projections p1 and p2 of a product hypergraph H = H1×̃H2 into its
factors H1 and H2, respectively, are homomorphisms.
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It is not hard to verify that the direct product ×̃ is associative, commutative,
and both left and right distributive together with the disjoint union as addition.
The direct product H1×̃H2 of simple hypergraphs H1, H2 is simple. The direct
product ×̃ does not have a unit, neither in the class of simple hypergraphs, nor in
the class of non-simple hypergraphs. The direct product ×̃ of two connected hyper-
graphs is not necessarily connected, as one can observe for the simple caseK2×̃K2.
For the rank and anti-rank, respectively, of the hypergraph product H1×̃H2 holds:

r(H1×̃H2) = (r(H1)− 1)(r(H2)− 1) + 1

s(H1×̃H2) = (s(H1)− 1)(s(H2)− 1) + 1

In general, therefore, the (anti-)rank of a product will not be the (anti-)rank of
one of its factors.

8.2. Relationships with Graph Products

If we restrict the definition of this product to 2-uniform hypergraphs, i.e., simple
graphs, we have: e ⊆ V (G1×̃G2) is an edge in G1×̃G2 iff E = {(x, y)(x′, y′)} and
{x, x′} is an edge in G1 and {y, y′} is an edge in G2. This is exactly the definition
of the direct graph product.

Similar to the direct product
⌢×, the 2-section of the direct product of two

arbitrary hypergraphs is not the direct graph product of the 2-sections of the
hypergraphs. This can be easily verified on the product K2×̃(V, {V }) with |V | = 3.

Since the direct product ×̃ has no unit, we can conclude that it does not
coincide with the direct graph product in the class of graphs with loops. The
absence of a unit implies that there is no meaningful PFD. To our knowledge, no
further results are available on this product.

Part 4. Strong Products

The strong product of graphs can be interpreted as a superposition of the edges of
the Cartesian and the direct graph products. Here we explore the corresponding

constructions for hypergraphs: Let the edge set of a strong product H = H1

∗

⊠H2,
∗ = ⌢, ⌣ of two hypergraphs H1 and H2 be

E(H1

∗

⊠H2) = E(H1✷H2) ∪ E(H1

∗
×H2),

where E(H1

∗
×H2) is the edge set of one of the respective direct products discussed

in the previous section.
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9. The Normal Product

This particular strong product was first introduced by Sonntag [54, 55, 58]. Fol-

lowing the terminology of Sonntag we call this product normal product
⌣

⊠.

9.1. Definition and Basic Properties

A subset e = {(x1, y1), . . . , (xr, yr)} of V1 ×V2 is an edge in H1

⌣

⊠H2 if and only if

(i) {x1, . . . , xr} is an edge in H1 and y1 = . . . = yr ∈ V (H2), or
(ii) {y1, . . . , yr} is an edge in H2 and x1 = . . . = xr ∈ V (H1), or
(iii) {x1, . . . , xr} is an edge in H1 and {y1, . . . , yr} is the subset of an edge in H2,

or
(iv) {y1, . . . , yr} is an edge in H2 and {x1, . . . , xr} is the subset of an edge in H1.

An edge e that is of type (i) or (ii) is called Cartesian edge and it holds e ∈
E(H1✷H2), an edge e of type (iii) or (iv) is called non-Cartesian edge and it

holds e ∈ E(H1
⌣×H2). Notice that |e ∩ e′| ≤ 1 holds for all e ∈ E(H1✷H2) and

e′ ∈ E(H1
⌣×H2), hence E(H1✷H2) ∩E(H1

⌣×H2) = ∅ if H1, H2 contain no loops.

For the same reasons as for the direct product
⌣×, the projections need not

to be (weak) homomorphisms in general, but they preserve adjacency or adjacent

vertices are mapped into the same vertex. The normal product
⌣

⊠ is associative,
commutative, and distributive w.r.t the disjoint union and has K1 as unit ele-

ment. Since E(H1✷H2) is a spanning partial hypergraph of E(H1

⌣

⊠H2), we can

conclude that the normal product H1

⌣

⊠H2 is connected if and only if H1 and H2

are connected hypergraphs. For the rank and anti-rank, respectively, of a normal

product hypergraph H1

⌣

⊠H2 holds:

r(H1

⌣

⊠H2) = max{r(H1), r(H2)}

s(H1

⌣

⊠H2) = min{s(H1), s(H2)}.

Lemma 9.1. The normal product H1

⌣

⊠H2 of simple hypergraphs H1, H2 is simple.

Proof. This follows immediately from Lemma 6.2, the fact that the Cartesian
product of simple hypergraphs is simple and that the intersection of a Cartesian
and a non-Cartesian edge contains at most one vertex. �

9.2. Relationships with Graph Products

The restriction of the normal product
⌣

⊠ to 2-uniform hypergraphs coincides with
the strong graph product. But it does not coincide with the strong graph product

in the class of graphs with loops since the direct product
⌣× does not coincide with

the direct graph product within this class.
In the class of graphs there is a well known relation between the direct and

the strong graph product. The strong product can be considered as a special case
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of the direct product [40]: for a graph G ∈ Γ let LG denote the graph in Γ0, which
is formed from G by adding a loop to each vertex of G. On the other hand, for a
graph G′ ∈ Γ0 let NG′ denote the graph in Γ which emerges from G′ by deleting
all loops. Then we have for G1, G2 ∈ Γ:

G1 ⊠G2 = N(LG1 × LG2) (9.1)

This relationship, however, does not exist between the direct product
⌣× and the

normal product
⌣

⊠.

The next statement follows immediately from Proposition 4.2, Lemma 6.3

and the definition of the normal product
⌣

⊠:

Lemma 9.2. The 2-section of the normal product H = H ′
⌣

⊠H ′′ is the strong
product of the 2-section of H ′ and the 2-section of H ′′, more formally:

[H ′
⌣

⊠H ′′]2 = [H ′]2 ⊠ [H ′′]2.

One can therefore define a meaningful normal product of L2-sections:

Definition 9.3 (The Normal Product of L2-sections). Let Γi = (Vi, E
′
i,Li) be the

L2-section of the hypergraphs Hi = (Vi, Ei), i = 1, 2. The normal product of the

L2-sections Γ1

⌣

⊠Γ2 = (V,E′,L) consists of the graph (V,E′) = (V1, E
′
1)⊠ (V2, E

′
2)

and a labeling function assigning to each edge e′ = {(x1, y1), (x2, y2)} ∈ E′ a label

L = L1

⌣

⊠L2 : E′ → P(E(H1

⌣

⊠H2))

with

L ({(x1, y1), (x2, y2)}) =





{{x1} × e | e ∈ L2 ({y1, y2})} , if x1 = x2

{e× {y1} | e ∈ L1 ({x1, x2})} , if y1 = y2

L1
⌣×L2 ({(x1, y1), (x2, y2)}) , otherwise.

A straightforward but tedious computation shows [H
⌣

⊠H ′]L2
=

[H ]L2

⌣

⊠[H ′]L2 for all simple hypergraphs H,H ′.

Lemma 9.4 (Distance Formula). For all hypergraphs H,H ′ we have:

d
H

⌣

⊠H′

((x, a), (y, b)) = max{dH(x, y), dH′ (a, b)}

Proof. Combining the results of Lemma 2.1, Lemma 9.2 and the well-known Dis-
tance Formula for the strong graph product (Corollary 5.5 in [31]) yields to the
result. �
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9.3. Invariants

The normal product has not received much attention since its introduction by
Sonntag [54]. In particular, it has not yet been investigated regarding PFDs.

Theorem 9.5 (Hamiltonicity I [54]). Let H1 = (V1, E1) and H2 = (V2, E2) be
two non-trivial hypergraphs s.t. H1 contains a Hamiltonian p-path, p ∈ N+, H2

contains a Hamiltonian 2-path. Suppose that one of the following conditions is
satisfied

(1) |V2| is even or |V1| = 2.
(2) |V1| = 3 and Hi is not isomorphic to P3 or Hj contains no Hamiltonian

2-path or |Ej | 6=
⌊
|Vj|
2

⌋
, i, j ∈ {1, 2}, i 6= j.

(3) |V1| ≥ 4 and there exists a Hamiltonian 2-path P =
(v0, e1, v1, es, . . . , e|V2|−1, v|V2|−1) in H2, s.t. there is an edge e ∈ E2,
and even indices i, i′, 0 ≤ i < i′ ≤ |V2| − 1 with {vi, vi′} ⊆ e.

(4) |V1| ≥ 4 and |V2| ≥ 2
⌈
r/

(⌊
|V1|−2

p
+ 1

⌋)⌉
− 1.

Then H1

⌣

⊠H2 contains a Hamiltonian cycle.

Theorem 9.6 (Hamiltonicity II [54]). Let H1 = (V1, E1) and H2 = (V2, E2) be
two non-trivial hypergraphs s.t. H1 contains a Hamiltonian p-path, p ∈ N+, H2

contains a Hamiltonian 2-path and |E1| =
⌊
|V1|−2

p

⌋
+1. Then H1

⌣

⊠H2 contains a

Hamiltonian cycle if and only if at least one of the conditions (1) − (4) of Theo-
rem 9.5 is satisfied.

10. The Strong Product

Given the “nice” properties of the direct product
⌢×, the best candidate for a stan-

dard strong product of hypergraphs is
⌢

⊠ with edge set E(H1✷H2) ∪E(H1
⌢×H2).

10.1. Definition and Basic Properties

A subset e = {(x1, y1), . . . , (xr, yr)} of V1 ×V2 is an edge in H1

⌢

⊠H2 if and only if

(i) {x1, . . . , xr} ∈ E(H1) and y1 = . . . = yr ∈ V (H2), or
(ii) {y1, . . . , yr} ∈ E(H2) and x1 = . . . = xr ∈ V (H1), or
(iii) {x1, . . . , xr} ∈ E(H1) and there is an edge f ∈ E(H2) such that {y1, . . . , yr}

is a multiset of elements of f , and f ⊆ {y1, . . . , yr}, or
(iv) {y1, . . . , yr} ∈ E(H2) and there is an edge f ∈ E(H1) such that {x1, . . . , xr}

is a multiset of elements of f , and f ⊆ {x1, . . . , xr}.
An edge e that is of type (i) or (ii) is called Cartesian edge and it holds

e ∈ E(H1✷H2), an edge e of type (iii) or (iv) is called non-Cartesian edge and it

holds e ∈ E(H1
⌢×H2).

The strong product
⌢

⊠ is associative, commutative, and distributive w.r.t.
the disjoint union and has K1 as unit element. The projections into the factors
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are weak homomorphisms. Since E(H1✷H2) is a spanning partial hypergraph of

E(H1

⌢

⊠H2), we can conclude that strong productH1

⌢

⊠H2 is connected if and only
if H1 and H2 are connected hypergraphs. For the rank and anti-rank, respectively,

of a strong product hypergraph H1

⌢

⊠H2 holds:

r(H1

⌢

⊠H2) = max{r(H1), r(H2)}

s(H1

⌢

⊠H2) = min{s(H1), s(H2)}.

Lemma 10.1. The strong product H1

⌢

⊠H2 of simple hypergraphs H1 and H2 is
simple.

Proof. Due to the fact that the Cartesian product and the direct product
⌢× of

simple hypergraphs is simple, it remains to show, that no Cartesian edge is con-
tained in any non-Cartesian edge or vice versa. Therefore, let e be a Cartesian
edge and e′ a non-Cartesian edge with pi(e

′) = e′i for some e′i ∈ Ei, i = 1, 2.
Suppose first, e′ ⊆ e. Thus |pi(e)| = 1 for an i ∈ {1, 2} and therefore |pi(e′)| = 1,
but pi(e

′) must be an edge in Hi. Hence, one of the factors would not be simple.
Now let e ⊆ e′. W.l.o.g. suppose |p1(e)| = 1, hence p2(e) = e2 for some e2 ∈ E2.
Since p2(e) ⊆ p2(e

′) = e′2 and H2 is simple, we can conclude e2 = e′2. If |e′| = |e′1|,
then p1(x) 6= p1(y) must hold for all x, y ∈ e′ with x 6= y′, and therefore |e| = 1
and hence |e2| = 1, which contradicts the fact that H2 is simple. If conversely
|e′| = |e′2|, we can conclude that |e′| = |e|, hence e = e′ and |e′1| = |p1(e′)| = 1
which implies that H1 is not simple, a contradiction. �

¿From the arguments in the proof we can conclude that E(H1✷H2) ∩
E(H1

⌢×H2) = ∅ holds if H1 and H2 are simple. Moreover, one can show that

E(H1✷H2) ∩E(H1
⌢×H2) = ∅ provided that H1 and H2 are loopless.

10.2. Relationships with Graph Products

The restriction of the strong product
⌢

⊠ to (not necessarily simple) graphs (with or
without loops) coincides with the strong graph product. For simple hypergraphs
H1 and H2 without loops, furthermore, we have

H1

⌢

⊠H2 = N(LH1
⌢×LH2) (10.1)

Thus, the strong product can be considered as a special case of the direct product,
generalizing the well-known results about the direct and strong graph product, see
Equ.(9.1).

In contrast to the direct product
⌢×, the 2-section of the strong product

⌢

⊠

coincides with the strong graph product of the 2-sections of its factors.

Lemma 10.2. The 2-section of the strong product H = H ′
⌢

⊠H ′′ is the strong
product of the 2-section of H ′ and the 2-section of H ′′, more formally:

[H ′
⌢

⊠H ′′]2 = [H ′]2 ⊠ [H ′′]2.
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Proof. Let p1 and p2 denote pH′ and pH′′ , respectively. By definition of the 2-
section and the strong product, [H ]2 and [H ′]2 ⊠ [H ′′]2 have the same vertex set.
Thus we need to show that the identity mapping V ([H ]2) → V ([H ′]2 × [H ′′]2) is
an isomorphism. We have: {x, y} ∈ E([H ]2) ⇔ ∃ e ∈ E(H) : {x, y} ⊆ e, x 6= y ⇔
1. p1(x) = p1(y) and (p2(x), p2(y)) ⊆ p2(e) ∈ E(H ′′), p2(x) 6= p2(y) or
2. p2(x) = p2(y) and (p1(x), p1(y)) ⊆ p1(e) ∈ E(H ′), p1(x) 6= p1(y) or
3. (p1(x), p1(y)) ⊆ p1(e) ∈ E(H ′) and (p2(x), p2(y)) ⊆ p2(e) ∈ E(H ′′), pi(x) 6=
pi(y), i = 1, 2.

⇔
1. p1(x) = p1(y) and (p2(x), p2(y)) ∈ E([H ′′]2) or
2. p2(x) = p2(y) and (p1(x), p1(y)) ∈ E([H ′]2) or
3. (p1(x), p1(y)) ∈ E([H ′]2) and (p2(x), p2(y)) ∈ E([H ′′]2).

⇔ {x, y} ∈ E([H ′]2 ⊠ [H ′′]2). �

Definition 10.3 (The Strong Product of L2-sections). Let Γi = (Vi, E
′
i,Li) be the

L2-section of the hypergraphs Hi = (Vi, Ei), i = 1, 2. The strong product of the

L2-sections Γ1

⌢

⊠Γ2 = (V,E′,L) consists of the graph (V,E′) = (V1, E
′
1)⊠ (V2, E

′
2)

and a labeling function

L = L1

⌢

⊠L2 : E′ → P(E(H1

⌢

⊠H2))

assigning to each edge e′ = {(x1, y1), (x2, y2)} ∈ E′ a label

L (e′) = (L1✷L2)(e
′) ∪

⌢

L(e′)
where (L1✷L2)(e

′) = ∅ if x1 6= x2 and y1 6= y2 and

⌢

L(e′) =





{e′ ∪B | B ∈ B(x1, e′2, e2), e2 ∈ L2(e
′
2)}, if x1 = x2

{e′ ∪ C | C ∈ C(y1, e′1, e1), e1 ∈ L1(e
′
1)}, if y1 = y2

{e′ ∪D | D ∈ D(e′, e1, e2), e1 ∈ L1(e
′
1), e2 ∈ L2(e

′
2)}, else

with e′1 = {x1, x2}, e′2 = {y1, y2} and

B(x1, e′2, e2) =
{
B ∈

(
e1 × (e2 \ e′2)

|e2| − 2

)
| x1 ∈ e1 ∈ E1, |e1| < |e2|, pi(B ∪ e′) = ei, i = 1, 2

}

and

C(y1, e′1, e1) =
{
C ∈

(
(e1 \ e′1)× e2

|e1| − 2

)
| y1 ∈ e2 ∈ E2, |e2| < |e1|, pi(C ∪ e′) = ei, i = 1, 2

}

and

D(e′, e1, e2) =

{
D ∈

(
(e1 × e2) \ (e′1 × e′2)

r+e1,e2 − 2

)
| pi(D ∪ e′) = ei, i = 1, 2

}

Again, one can show that [H
⌢

⊠H ′]L2
= [H ]L2

⌢

⊠[H ′]L2 holds for all simple
hypergraphs H,H ′.



24 Marc Hellmuth, Lydia Ostermeier and Peter F. Stadler

Lemma 10.4 (Distance Formula). For all hypergraphs H,H ′ without loops we have:

d
H

⌢

⊠H′

((x, a), (y, b)) = max{dH(x, y), dH′ (a, b)}

Proof. Combining the results of Lemma 2.1, Lemma 10.2 and the well-known
Distance Formula for the strong graph product (Corollary 5.5 in [31]) yields to the
result. �

Although
⌢

⊠ appears to be the most promising strong product of hypergraphs,
it has not been investigated in any detail so far.

11. Alternative Constructions Generalizing the Strong Graph
Product

In order to generalize the strong graph product one can draw on an abundance of
ways to define strong hypergraph products. To complete this part, we suggest a
few of possibilities that have not been considered in the literature so far but might
warrant further attention.

1. E(H1⊠̃H2) = E(H1✷H2) ∪ E(H1×̃H2)

2. E(H1 ⊠H2) =

{(
e×e′

r
−

e,e′

)
| e ∈ E1, e

′ ∈ E2

}

3. E(H1 ⊠H2) =

{(
e×e′

r
+

e,e′

)
| e ∈ E1, e

′ ∈ E2

}

4. E(H1 ⊠H2) =
{(

e×e′

|e|

)
| e ∈ E1, e

′ ∈ E2

}
∪
{(

e×e′

|e′|

)
| e ∈ E1, e

′ ∈ E2

}

5. E(H1 ⊠H2) =
{(

e×e′

k

)
| e ∈ E1, e

′ ∈ E2, r
−
e,e′ ≤ k ≤ r+e,e′

}

Part 5. Lexicographic and Costrong Products

12. The Lexicographic Product

The lexicographic product is the only non-commutative product treated in this
survey. The lexicographic product of hypergraphs has received considerable atten-
tion in the literature [56, 58, 26, 19, 29, 28, 8, 16].

12.1. Definition and Basic Properties

Definition 12.1 (The Lexicographic Product [19]). Let H1 = (V1, E1) and H2 =
(V2, E2) be two hypergraphs. The lexicographic product H = H1 ◦H2 has vertex
set V (H) = V1 × V2 and edge set

E(H) = {e ⊆ V (H) : p1(e) ∈ E1, |p1(e)| = |e|} ∪ {{x} × e2 | x ∈ V1, e2 ∈ E2} .
Since |p1(e)| = |e| there are |e| vertices of e that have pairwise different first

coordinates. A related construction was also explored in [19]:
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Definition 12.2 (X-join of hypergraphs). Let X = (V (X), E(X)) be a hypergraph
and let {H(x) | x ∈ V (X)} be a set of arbitrary pairwise disjoint hypergraphs, each
of them associated with a vertex x ∈ V (X). The X-join of {H(x) | x ∈ V (X)} is
the hypergraph Z = (V (Z), E(Z)) with

V (Z) =
⋃

x∈V (X)

V (H(x)) and

e ∈ E(Z) ⇔e ∈ E(H(x)), or

|e ∩ V (H(x))| ≤ 1 and {x | e ∩ V (H(x)) 6= ∅} ∈ E(X).

If X ∼= K2, then Z is also called join of H1 and H2, Z = H1⊕H2. The X-join
is a generalization of the lexicographic product in the following sense: If Z is an
X-join of hypergraphs {H(x) | x ∈ V (X)} and if H(x) ∼= H for all x ∈ V (X) then
Z is equivalent to the lexicographic product X ◦H .

The lexicographic product of two simple hypergraphs is simple. It is associa-
tive, has the single vertex graph K1 as a unit element, and is right-distributive
with respect to the join and the disjoint union of hypergraphs. Additionally, we
have the following left-distributive properties w.r.t. join and disjoint union:

Kn ◦ (H1 +H2) = Kn ◦H1 +Kn ◦H2

Kn ◦ (H1 ⊕H2) = Kn ◦H1 ⊕Kn ◦H2

for all hypergraphs H1, H2 [19, 26]. The lexicographic product is not commutative
in general.

Theorem 12.3 ([19]). Let H1 and H2 be two non-trivial connected finite hyper-
graphs. Then H1 ◦ H2

∼= H2 ◦ H1 only if H1 and H2 are complete graphs or H1

and H2 are both powers of some hypergraph H.

Connectedness of the lexicographic product depends only on the first factor.
More precisely, H1 ◦H2 is a connected hypergraph if and only if H1 is connected.
For the rank and anti-rank, respectively, of a lexicographic product hypergraph
H1 ◦H2 holds:

r(H1 ◦H2) = max{r(H1), r(H2)}
s(H1 ◦H2) = min{s(H1), s(H2)}.

The projection p1 of a lexicographic product H = H1◦H2 of two hypergraphs
H1, H2 into the first factor H1 is a weak homomorphism. The H2-layer through
w, Hw

2 , is the partial hypergraph of H induced by all vertices of H which differ
from a given vertex w ∈ V (H) exactly in the second coordinate, and it holds:

Hw
2 = 〈{(p1(w), t) | t ∈ V (H2)}〉 ∼= H2.

12.2. Relationships with Graph Products

The restriction of the lexicographic product on graphs coincides with the usual
lexicographic graph product.
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Lemma 12.4. The 2-section of H = H ′ ◦ H ′′ is the lexicographic product of the
2-section of H ′ and the 2-section of H ′′, more formal:

[H ′ ◦H ′′]2 = [H ′]2 ◦ [H ′′]2.

Proof. Let p1 and p2 denote pH′ and pH′′ , respectively. By definition of the 2-
section and the lexicographic product, [H ]2 and [H ′]2⊠[H ′′]2 have the same vertex
set. Thus, we need to show that the identity mapping V ([H ]2) → V ([H ′]2× [H ′′]2)
is an isomorphism. We have: {x, y} ∈ E([H ]2) ⇔ ∃ e ∈ E(H) : {x, y} ⊆ e, x 6= y
⇔
1. (p1(x), p1(y)) ⊆ p1(e) ∈ E(H ′) such that p1(x) 6= p1(y) or
2. p1(x) = p1(y) and (p2(x), p2(y)) ⊆ p2(e) ∈ E(H ′′) such that p2(x) 6= p2(y).

⇔
1. (p1(x), p1(y)) ∈ E([H ′]2) or
2. p1(x) = p1(y) and (p2(x), p2(y)) ∈ E([H ′′]2).

⇔ {x, y} ∈ E([H ′]2 ◦ [H ′′]2). �

Definition 12.5 (The Lexicographic Product of L2-sections). Let Γi = (Vi, E
′
i,Li)

be the L2-section of the hypergraphs Hi = (Vi, Ei), i = 1, 2. The lexicographic
product of the L2-sections Γ1 ◦ Γ2 = (V,E′,L) consists of the graph (V,E′) =
(V1, E

′
1) ◦ (V2, E′

2) and a labeling function

L = L1 ◦ L2 : E′ → P(E(H1 ◦H2))

assigning to each edge e′ = {(x1, y1), (x2, y2)} ∈ E′ a label

L ({(x1, y1), (x2, y2)}) =
{
{(e, f(e)) | e ∈ L1({x1, x2}), f ∈ F (e, e′)} , if x1 6= x2

{{x1} × e | e ∈ L2 ({y1, y2})} , otherwise

where F (e, e′) = {f : e → V2 | f(x1) = y1, f(x2) = y2} and (e, f(e)) denotes the
set {(x1, f(x1)), . . . , (xk, f(xk))} for e = {x1, . . . , xk}.

A straightforward computation shows that [H ◦H ′]L2
= [H ]L2 ◦ [H ′]L2 holds

for all simple hypergraphs H,H ′.

Lemma 12.6 (Distance Formula). Let (x1, x2) and (y1, y2) be two vertices of the
lexicographic product H = H1 ◦H2. Then

dH((x1, x2), (y1, y2)) =





dH1
(x1, y1), if x1 6= y1

dH2
(x2, y2), if x1 = y1 and degH1

(x1) = 0

min{dH2
(x2, y2), 2}, if x1 = y1 and degH1

(x1) 6= 0

Proof. Combining the results of Lemma 2.1, Lemma 12.4 and the Distance Formula
for the lexicographic graph product (Proposition 5.12 in [31]) yields to the result.

�
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12.3. Prime Factor Decomposition

Similar conditions as for graphs are known for the uniqueness of the PFD of a
hypergraph w.r.t. the lexicographic product:

Lemma 12.7 ([26]). Let H be a hypergraph without isolated vertices and m,n natu-
ral numbers. Then Kn ◦H+Km is prime with respect to the lexicographic product
if and only if H ◦Kn +Km is prime.

If H has no trivial join-components, then Kn ◦H⊕Km is prime with respect
to the lexicographic product if and only if H ◦Kn ⊕Km is prime.

Let H = P ◦Kq be a PFD of H with P = Kq ◦A+Km such that A has no

non-trivial components. Then H = Kq ◦R with R = A ◦Kq +Km is also a PFD

of H that arises by transposition of Kq from H = P ◦ Kq. The transposition of
Kq is defined analoguously.

Theorem 12.8 ([26]). Any prime factor decomposition of a graph can be trans-
formed into any other one by transpositions of totally disconnected or complete
factors.

Corollary 12.9 ([26]). All prime factor decompositions of a hypergraph H with
respect to the lexicographic product have the same number of factors.

If there is a prime factorization of H without complete or totally disconnected
graphs as factors, then H has a unique prime factor decomposition.

If there is a prime factorization of H in which only complete graphs as fac-
tors have trivial join-components and only totally disconnected factors have trivial
components, then H has a unique prime factor decomposition.

12.4. Invariants

Definition 12.10 (Wreath Product of Automorphism Groups [19, 26]). Let H =
(V,E) and H ′(V ′, E′) be hypergraphs. The wreath product of their automorphism
groups is defined as

Aut(H) ◦Aut(H ′) :={ϕ ∈ Aut(H ◦H ′) | ∃ψ ∈ Aut(H), ∀ v ∈ V ∃ψ′
v ∈ Aut(H ′),

s.t. ϕ((v, v′)) = (ψ(v), ψ′
v(v

′))∀ (v, v′) ∈ V × V ′}
Hence Aut(H) ◦ Aut(H ′) forms a subgroup of Aut(H ◦ H ′). The elements

of Aut(H) ◦ Aut(H ′) map H ′-layer onto H ′-layer and are therefore often called
natural automorphisms. In [19] and [29] it is shown, under which conditions holds
Aut(H) ◦Aut(H ′) = Aut(H ◦H ′).

Theorem 12.11 (Double Covers [16]). If the hypergraphs H1, H2 are double cover
hypergraphs then so is their lexicographic product H1 ◦H2.

Theorem 12.12 (Hamiltonicity I [56]). Let H1 = (V1, E1) and H2 = (V2, E2),
|V2| ≥ 2 be two hypergraphs. Then their lexicographic product H1 ◦H2 contains a
Hamiltonian path if and only if there exists a walk W = (v0, e1, v1, . . . , ek−1, vk) in
H1 with V (W ) = V1 such that ℘(H2) ≤ minv∈V1

{|j| | vj = v, j ∈ {0, . . . , k}} and
maxv∈V1

{|j| | vj = v, j ∈ {0, . . . , k}} ≤ |V2|.
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Theorem 12.13 (Hamiltonicity II [56]). Let H1 = (V1, E1) and H2 =
(V2, E2) be two non-trivial hypergraphs. Then their lexicographic product
H1 ◦ H2 contains a Hamiltonian cycle if and only if there exists a walk
W = (v0, e1, v1, . . . , ek−1, vk) in H1 with V (W ) = V1 such that ℘(H2) ≤
minv∈V1

{|j| | vj = v, j ∈ {0, . . . , k}}, maxv∈V1
{|j| | vj = v, j ∈ {0, . . . , k}} ≤ |V2|

and maxv∈V1
{|j| | vj = v, j ∈ {0, . . . , k}} = |V2| implies that v0 6= vk and there is

an edge e in E1 containing both v0 and vk.

13. Costrong Product

13.1. Definition and Basic Properties

Since the lexicographic product is not commutative, it appears natural to consider
“symmetrized” variants of the lexicographic product. The costrong product H1∗H2

[26] has the edge set

E(H1 ∗H2) = E(H1 ◦H2) ∪ E(H2 ◦H1).

The costrong product is associative, commutative and has K1 as unit [26]. The
costrong product of two simple hypergraphs is not simple, unless both factors are
r-uniform. The projections into the factors are neither (weak) homomorphisms
nor preserve adjacency. Rank and anti-rank of the costrong hypergraph product
H1 ∗H2 satisfy

r(H1 ∗H2) = max{r(H1), r(H2)}
s(H1 ∗H2) = min{s(H1), s(H2)}.

A hypergraph H = (V,E) is said to be coconnected if for each pair of vertices
u, v ∈ V there exists a sequence of pairwise distinct vertices u = u1, . . . , uk = v
such that consecutive vertices ui, ui+1 are not both contained in any edge of H .
A costrong product of two hypergraphs is coconnected if and only if both of the
factors are.

Theorem 13.1 (UPFD [26]). Every finite coconnected hypergraph has a unique PFD
w.r.t. the costrong product.

In [59] it is shown under which (quite complex) conditions the costrong prod-
uct is Hamiltonian. Automorphism groups of costrong products have been consid-
ered by Gaszt and Imrich, [26].

13.2. Relationships with Graph Products

The restriction of the costrong product to graphs coincides with the respective
costrong graph product. The costrong product of graphs can be obtained from the

strong product by virtue of the identity G1 ∗ G2 = G1 ⊠G2. This construction
is not applicable to hypergraphs because no suitable definition of complements of
hypergraphs has been proposed so far [25, 26].
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The L2-section of costrong products can be derived in a straightforward way
from the definition of the L2-section of the lexicographic product. We omit an
explicitly description here.

Part 6. Other Hypergraph Products

The hypergraph products discussed so far reduce to graph products at least in
the class of simple graphs. In this part of the survey we summarize alternative
constructions that have received considerable attention but do not correspond to
graph products.

14. The Square Product

The literature is by no means consistent in its use of the terms “square product”
and “direct product”. In particular, many authors use the term for “direct prod-
uct” for the square product, see e.g. [7, 48, 51, 14, 13, 1, 61, 2, 9, 17, 23, 44, 18]. We
favor the term “square product” introduced by Nešetřil and Rödl [44], since it does
not reduce to the direct product on graphs. To add to the confusion, some authors
also used the term “strong product”, see e.g. [9]. The square product seems to be
the most widely studied of the hypergraph products.

14.1. Definition and Basic Properties

Definition 14.1 (Square Product of Hypergraphs [7]). Given two hypergraphs
H1 = (V1, E1), H2 = (V2, E2) the square product H = H1 �H2 has vertex set
V (H) = V1 × V2 and edge set

E(H) = {e1 × e2 | ei ∈ Ei} .
The square product is associative, commutative, distributive w.r.t. the dis-

joint union and has the single vertex graph with loop LK1 as unit element. The
square product of two hypergraphs is connected if and only if both of its factors
are connected, and it is a uniform hypergraph if an only if both of the factors are
uniform hypergraphs. The square product of two simple hypergraphs is a simple
hypergraph. The projections into the factors are homomorphisms [18]. For the
rank and anti-rank, respectively, of the square product holds:

r(H1 �H2) = r(H1)r(H2)

s(H1 �H2) = s(H1)s(H2)

Proposition 14.2 ([7]). The dual hypergraph of a square product of two hypergraphs
H1 and H1 is the square product of the dual hypergraphs of H1 and H2. More
formal:

(H1 �H2)
∗ = H∗

1 �H∗
2
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14.2. Relationships with Graph Products

The square product of two graphs is not a graph, but a 4-uniform hypergraph.
Nevertheless, its 2-section has the structure of a graph product.

Lemma 14.3. The 2-section of the square product H = H ′
�H ′′ is the strong

product of the 2-section of H ′ and the 2-section of H ′′, more formally:

[H ′
�H ′′]2 = [H ′]2 ⊠ [H ′′]2.

Proof. Let p1 and p2 denote pH′ and pH′′ , respectively. By definition of the 2-
section and the strong graph product, [H ]2 and [H ′]2⊠ [H ′′]2 have the same vertex
set. Thus, we need to show that the identity mapping V ([H ]2) → V ([H ′]2× [H ′′]2)
is an isomorphism. We have: {x, y} ∈ E([H ]2) ⇔ ∃ e ∈ E(H) : {x, y} ⊆ e =
p1(e)× p2(e), x 6= y ⇔
1. (p1(x), p1(y)) ⊆ p1(e) ∈ E(H ′) and
2. (p2(x), p2(y)) ⊆ p2(e) ∈ E(H ′′).

Note, in contrast to the other proofs we do not need the condition that pi(x) 6=
pi(y), i = 1, 2. However, since x 6= y we can conclude that pi(x) 6= pi(y) implies
pj(x) = pj(y), i 6= j. Thus, {x, y} ∈ E([H ]2) ⇔
1. (p1(x), p1(y)) ∈ E([H ′]2) and p2(x) = p2(y) or
2. (p2(x), p2(y)) ∈ E([H ′′]2) and p1(x) = p1(y) or
3. (p1(x), p1(y)) ∈ E([H ′]2) and (p2(x), p2(y)) ∈ E([H ′′]2).

⇔ {x, y} ∈ E([H ′]2 ⊠ [H ′′]2). �

Definition 14.4 (The Square Product of L2-sections). Let Γi = (Vi, E
′
i,Li) be the

L2-section of the hypergraphs Hi = (Vi, Ei), i = 1, 2. The square product of the
L2-sections Γ1 �Γ2 = (V,E′,L) consists of the graph (V,E′) = (V1, E

′
1)⊠ (V2, E

′
2)

and a labeling function

L = L1 �L2 : E′ → P(E(H1 �H2))

with

L ({(x1, y1), (x2, y2)}) = {e1 × e2 | (A1) or (A2) or (A3)}
where

(A1) x1 = x2 ∈ e1 ∈ E1, e2 ∈ L2({y1, y2})
(A2) y1 = y2 ∈ e2 ∈ E2, e1 ∈ L1({x1, x2})
(A3) e1 ∈ L1({x1, x2}) and e2 ∈ L2({y1, y2})

One can show that [H �H ′]L2
= [H ]L2 �[H ′]L2 holds for all simple hyper-

graphs H,H ′.

Lemma 14.5 (Distance Formula). For all hypergraphs H,H ′ without loops we have:

dH �H′((x, a), (y, b)) = max{dH(x, y), dH′ (a, b)}



A Survey on Hypergraph Products 31

Proof. Combining the results of Lemma 2.1, Lemma 14.3 and the well-known
Distance Formula for the strong graph product (Corollary 5.5 in [31]) yields to the
result. �

14.3. Prime Factor Decomposition

Theorem 14.6 (UPFD [18]). Every finite connected hypergraph (without multiple
edges) has a unique PFD w.r.t. the square product.

14.4. Invariants

Theorem 14.7 (Automorphism Group [18]). Let H = H1 � . . .�Hn be the square
product of prime hypergraphs Hi fulfilling the following condition:

For each pair of distinct vertices there exists an edge containing exactly one
of those vertices.

Furthermore, let ϕ ∈ Aut(H). Then there exists a permutation π of {1, . . . , n}
and isomorphisms ai : Hi → Hπ(i) such that the π(i)-th component of
ϕ ((x1, . . . , xi, . . . , xn)) is ai(xi).

Corollary 14.8. Under the assumptions of Theorem 14.7 the automorphism group
of H = H1 � . . .�Hn is generated by direct products of automorphisms of the Hi

and exchanges of isomorphic factors.

Theorem 14.9 (k-fold Covering [17]). Let H ′
i = (V ′

i , E
′
i) be a ki-fold covering of

hypergraphs Hi = (Vi, Ei) via a covering projection p′i, i = 1, 2. Then the square
product H ′

1 �H ′
2 is a k1k2-fold cover of H1 �H2 via a covering projection π induced

naturally by p′1 and p′2, i.e, define p by:

p((x, y)) = (p′1(x), p
′
2(y)), for (x, y) ∈ V ′

1 × V ′
2 ,

p(e1 × e2) = p′1(e1)× p′2(e2), for e1 ∈ E′
1, e2 ∈ E′

2,

Theorem 14.10 (Conformal Hypergraphs [9]). H = H1 �H2 is conformal if and
only if H1 and H2 are conformal.

Theorem 14.11 (Helly Property [9]). H = H1 �H2 has the Helly property if and
only if H1 and H2 have the Helly property.

Theorem 14.12 (Stability Number [61, 7]). For any two hypergraphs H = (V,E)
and H ′ = (V ′, E′) with stability number β and β′, respectively, holds

ββ′ + |V ′|β + |V |β′ ≤ β(H �H ′) ≤ |V ′|β + |E|β′.

The stability number β(H) of a hypergraphH satisfies β(H) = |V (H)|−τ(H)
and β(H �H ′) = |V (H)||V (H ′)| − τ(H �H ′). Further results for the stability
number can thus be obtained from the properties of the covering number [7].

Theorem 14.13 (Matching and Covering [6]). For two hypergraphs H and H ′ we
have

ν(H)ν(H ′) ≤ ν(H �H ′) ≤ τ∗(H)ν(H ′) ≤ τ∗(H)τ∗(H ′)

= τ∗(H �H ′) ≤ τ∗(H)τ(H ′) ≤ τ(H �H ′) ≤ τ(H)τ(H ′).
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Theorem 14.14 (Fractional Covering Number I [7]). A necessary and sufficient
condition for a hypergraph H to satisfy τ(H �H ′) = τ(H)τ(H ′) for all H ′ is that
τ(H) = τ∗(H).

Theorem 14.15 (Fractional Covering Number II [7]). Let H and H ′ be two hyper-
graphs. Then

τ(H �H ′) ≥ τ(H) + τ(H ′)− 1.

A hypergraph H = (V,E) satisfies τ(H �H ′) = τ(H) + τ(H ′)− 1 for every hyper-
graph H ′ if and only if

⋂
e∈E 6= ∅.

Theorem 14.16 (Fractional Covering Number III [47]). For every hypergraph H
holds:

τ∗(H) = lim
n→∞

n

√
τ(H�n)

Theorem 14.17 (Fractional Covering Number IV [23, 6]). For every hypergraph H
holds:

τ∗(H) = min
H′

τ(H �H ′)

τ(H ′)
,

where H ′ runs over all hypergraphs.

Theorem 14.18 (Fractional Covering and Matching Number [6]). For every hyper-
graph H with Helly property holds:

τ∗(H) = min
H′

τ(H �H ′)

τ(H ′)
,

where H ′ runs over all hypergraphs.

Theorem 14.19 (Partition Number [1]). Let d ∈ N and Hi = (Vi, Ei), i = 1, . . . , n

be hypergraphs such that Ei =
(
Vi

d

)
∪{{v} | v ∈ Vi}. Moreover, let ri = |Vi| mod d.

If d >
∏

i:ri 6=0 ri then

ρ(
n
�
i=1

Hi) =
n∏

i=1

ρ(Hi).

Theorem 14.20 (Chromatic Number I [7]). For two hypergraphs H and H ′ we
have:

χ(H �H ′) ≤ min{χ(H), χ(H ′)}.

In [7] the authors asked whether the chromatic number of the square product
of two hypergraphs goes to infinity if the chromatic numbers of both of the factors
go to infinity. The following theorem, which is due to D. Mubayi and V. Rödl,
refutes this conjecture.

Theorem 14.21 (Chromatic Number II [48]). For every integer n ≥ 2 and k = 2n

there exists a hypergraph Hk satisfying χ(Hk) > k and χ(Hk �Hk) = 2.
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Moreover, in [48] the authors conjectured that for every r ≥ 2 there is a c ≥ 2
such that for every positive integer k there exists r-uniform hypergraphs Gk and
Hk for which χ(Gk) > k, χ(Hk) > k and χ(Gk �Hk) ≤ c, and that this also true
for the special case c = r = 2.

Other results concerning the chromatic number of a special case of square
products, i.e., square products of complete graphs, are due to Sterboul and can be
found in [61].

Theorem 14.22 (Discrepancy [15]). For any k ∈ N and any two hypergraphs H,H ′

it holds:
disc (H �H ′, k) ≤ k · disc (H, k) · disc (H ′, k).

A special partial hypergraph of the square product H� d of a hypergraph
H = (V,E) has found particular attention and is also called the d-fold symmetric
product, defined as the subgraph {V d, {ed, e ∈ E}}, where Md denotes the usual
d-fold Cartesian set product of the set M . In [14, 13] the authors gave several
upper and lower bounds for the discrepancy w.r.t. this product.

15. The Categorial Product

The following hypergraph product was motivated by the investigation of a category
of hypergraphs [20]. It is categorical in the category of hypergraphs. It has rarely
been studied since its introduction, however; to our knowledge, the only systematic
account is a contribution by X. Zhu [64].

15.1. Definition and Basic Properties

Definition 15.1 (Hypergraph Product [20]). Let Hi = (Vi, Ei), i = 1, 2 be two
hypergraphs. Then their product H = H1 ⊚ H2 has edge set V (H) = V1 × V2 and
vertex set

E(H) = {e ⊆ V (H) | pi(e) ∈ Ei, i = 1, 2}
The categorial hypergraph product is associative, commutative, distributive

w.r.t. the disjoint union and has the single vertex graph with loop LK1 as unit
element. The projections into the factors are, by definition, homomorphisms. How-
ever, the product of two simple hypergraphs is not a simple hypergraph and the
product of two non-trivial uniform hypergraphs does not result in a uniform hy-
pergraph. For the rank and anti-rank, respectively, of a hypergraph product holds:

r(H1 ⊚ H2) = r(H1)r(H2)

s(H1 ⊚ H2) = max{s(H1), s(H2)}
We have the following relations with other hypergraph products:

• E(H1
⌢×H2) = E′ ⊆ E(H1 ⊚ H2) with

E′ := {e ∈ E(H1 ⊚ H2) | ∄e′ ∈ E(H1 ⊚ H2) s.t. e
′ ⊂ e} for simple hyper-

graphs H1 and H2 [64].
• E(H1 �H2) ⊆ E(H1 ⊚ H2)
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15.2. Relationships with Graph Products

The restriction of this product to graphs does not coincide with any known graph
product. Moreover, the product G1 ⊚ G2 of two graphs G1 and G2 is no graph
anymore, but a hypergraph of rank 4.

Lemma 15.2. The 2-section of the product H = H ′ ⊚ H ′′ is the strong product of
the 2-section of H ′ and the 2-section of H ′′, more formally:

[H ′
⊚ H ′′]2 = [H ′]2 ⊠ [H ′′]2.

This result can be proved analogously to the proof of Lemma 14.3.

Definition 15.3 (The Categorial Product of L2-sections). Let Γi = (Vi, E
′
i,Li) be

the L2-section of the hypergraphs Hi = (Vi, Ei), i = 1, 2. The categorial product
of the L2-sections Γ1 ⊚ Γ2 = (V,E′,L) consists of the graph (V,E′) = (V1, E

′
1)⊠

(V2, E
′
2) and a labeling function

L = L1 ⊚ L2 : E′ → P(E(H1 ⊚ H2))

assigning to each edge e′ = {(x1, y1), (x2, y2)} ∈ E′ a label with

L (e′) =





⋃
e1∈L(e′

1
),e2∈E2:y1∈e2

E(e′, e1, e2), if y1 = y2⋃
e2∈L(e′

2
),e1∈E1:x1∈e1

E(e′, e1, e2), if x1 = x2⋃
e1∈L(e′

1
),e2∈L(e′

2
) E(e′, e1, e2), else, i.e., x1 6= x2, y1 6= y2

where

E(e′, e1, e2) = {f ⊆ e1 × e2 | e′ ⊆ f, pi(f) = ei, i = 1, 2} .
The identity [H ⊚ H ′]L2

= [H ]L2 ⊚ [H ′]L2 holds for all simple hypergraphs
H,H ′.

Lemma 15.4 (Distance Formula). For all hypergraphs H,H ′ without loops we have:

dH⊚H′((x, a), (y, b)) = max{dH(x, y), dH′ (a, b)}
Proof. Combining the results of Lemma 2.1, Lemma 15.2 and the well-known
Distance Formula for the strong graph product (Corollary 5.5 in [31]) yields to the
result. �

15.3. Invariants

Only the chromatic number of the categorial product H1 ⊚ H2 has been investi-
gated in some detail [64].

Theorem 15.5 (Chromatic Number I [64]). Let H1 and H2 be two hypergraphs
such that χ(Hi) = n + 1. Moreover, let Hi, i = 1, 2 contain a partial hypergraph
H ′

i = {V ′
i , {e ⊆ V ′

i | |e| ≥ 2}} with |V ′
i | = n and a vertex-critical n+ 1 chromatic

partial hypergraph H ′′
i = (V ′′

i , E
′′
i ), i.e., for any vertex x ∈ V ′′

i the hypergraph
induced by V ′′

i − {x} is n-colorable. Furthermore, let V ′
i ∩ V ′′

i 6= ∅, i = 1, 2. Then
χ(H1 ⊚ H2) = n+ 1.
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Theorem 15.6 (Chromatic Number II [64]). Let H = (V,E) be a hypergraph with
χ(H) = n + 1 such that any v ∈ V is contained in a partial hypergraph H ′ =
(V ′, E′) of H with |V ′| = n and E′ = {e ⊆ V ′ | |e| ≥ 2}. Then for any hypergraph
G with χ(G) = n+ 1 holds χ(H ⊚ G) = n+ 1.

Part 7. Beyond Finite and Undirected Hypergraphs

16. Infinite Hypergraphs

Only finite hypergraphs and products of finitely many factors have been treated so
far. It is possible to extend the definitions of the products to infinitely many finite
and to infinite hypergraphs. For this purpose we need the following definition.
For an arbitrary family of (vertex) sets Vi, i ∈ I, their Cartesian set product
V = ×i∈I Vi consists of the set of all functions x : i 7→ xi, xi ∈ Vi of I into⋃

i∈I Vi. Notice, that the Cartesian set product of an arbitrary family of sets is
usually denoted by

∏
i∈I Vi, but to emphasize the relation to the finite case, we

use the term ×i∈I Vi instead. In this case, the projection pj : V → Vj is defined
by v 7→ vj whenever v : j 7→ vj . As before, we will call vj the j-th coordinate of
the vertex v ∈ V .

Several of the hypergraph products discussed in the previous section are
connected provided each of the the finitely many finite factors are connected.
A corresponding result can be established for finitely many connected factors of
infinite size using the Distance Formula for the respective product. In contrast,
connectedness results do not necessarily carry over to products of infinitely many
hypergraphs. As an example consider the Cartesian product of infinitely many
factors. There are vertices that differ in infinitely many coordinates and thus,
by the Distance Formula cannot be connected by a path of finite length, [49,
38]. This in turn leads to difficulties concerning the prime factor decomposition.
Again, consider the Cartesian product. An infinite connected hypergraph can have
infinitely many prime factors. In this case it cannot be the Cartesian product of
these factors, since the product is not connected, but a connected component of
this product. For this purpose, the weak Cartesian product is presented which was
first introduced by Sabidussi [52] for graphs and later generalized by Imrich [38].

Let {Hi | i ∈ I} be a family of hypergraphs and let ai ∈ V (Hi) for i ∈ I.
The weak Cartesian product H = ✷i∈I(Hi, ai) of the rooted hypergraphs (Hi, ai)
is defined by

V (H) = {v ∈ ×
i∈I

V (Hi) | pi(v) 6= ai for at most finitely many i ∈ I}

E(H) = {e ⊆ V (H) | pj(e) ∈ E(Hj) for exactly one j ∈ I, |pi(e)| = 1 for i 6= j}.
Note the weak Cartesian product does not depend on the “reference coor-

dinates” ai; furthermore, it reduced to the ordinary Cartesian product if I is
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finite. The weak Cartesian product is associative, commutative, distributive w.r.t.
the disjoint union and has trivially K1 as unit. Furthermore, the weak Cartesian
product of connected hypergraphs is connected [38].

Theorem 16.1 (UPFD [49]). Every simple connected finite or infinite hypergraph
with finitely or infinitely many factors has a unique PFD w.r.t. the weak Cartesian
product.

We suspect that similar constructions can be used to define infinite versions
of the other hypergraph products treated in this contribution.

Other results for infinite hypergraphs are known e.g. about the chromatic
number of square products:

Theorem 16.2 ([48]). Let H and H ′ be two hypergraph whose edges have finite size.
Suppose that χ(H) = χ(H ′) = ∞. Then χ(H �H ′) = ∞.

Surprisingly, Theorem 16.2 does not hold if both hypergraphs have edges that
are all of infinite size. Let V (H) = {1, 2, . . .} and E(H) comprising all infinite
subsets of V (H). Clearly, χ(H) = ∞, since any coloring with finitely many colors
results in an edge colored with only one color. As mentioned in [48], in H �H
there exists a proper 2-coloring assigning each vertex (i, j) ∈ V (H �H) one color
if i ≤ j and the other color else.

Theorem 16.3 ([48]). Let H and H ′ be two hypergraph whose edges are all of infinite
size. Suppose that χ(H) = χ(H ′) = ∞. Then χ(H �H ′) = 2.

17. Directed Hypergraphs

Directed hypergraphs play a role e.g. as models of chemical reaction networks
and in transit and satisfiability problems, see [24, 63, 4] for reviews. Directed
hypergraphs can be defined in various ways. Here, we refer to the most general

definition. A directed hypergraph
−→
H = (V,

−→
E ) consists of a vertex set V and a

set of hyperarcs
−→
E , where each hyperarc −→e ∈ −→

E is an ordered pair of nonempty,
not necessarily disjoint subsets of V , −→e = (t(e), h(e)), the tail and head of −→e ,
respectively. We call a directed hypergraph simple, if t(e) ⊆ t(e′) and h(e) ⊆ h(e′)
implies −→e = −→e ′. The 2-section is then a directed graph with arc (x, y) if there is
an edge (t(e), h(e)) with x ∈ t(e) and y ∈ h(e).

Product structures have not been studied extensively in a directed setting,
even though there are some exceptions. The lexicographic product of directed
graphs, for instance, appears in a general technique to amplify lower bounds for
index coding problems [8].

The directed version of the Cartesian product was first introduced in [49].

The Cartesian product
−→
H =

−→
H 1✷

−→
H 2 of two directed hypergraphs

−→
H 1 =
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(V1,
−→
E 1),

−→
H 2 = (V2,

−→
E 2) has edge set

−→
E (

−→
H ) =

{
({x} × t(f), {x} × h(f)) | x ∈ V1,

−→
f ∈ −→

E 2

}

∪
{
(t(e)× {y}, h(e)× {y}) | −→e ∈ −→

E 1, y ∈ V2

}
.

Basic properties of the Cartesian product of undirected hypergraphs can immedi-
ately be transferred to the directed case. Moreover, uniqueness of the PFD was
shown in [49].

Theorem 17.1 (UPFD [49]). Every connected (finite or infinite) directed hypergraph
has a unique PFD w.r.t. the (weak) Cartesian product.

The definition of the square product might be transferred to hypergraphs as

follows: The square product
−→
H =

−→
H 1 �

−→
H 2 of two directed hypergraphs

−→
H 1 =

(V1,
−→
E 1),

−→
H 2 = (V2,

−→
E 2) has edge set

−→
E (

−→
H ) =

{
(t(e)× t(f), h(e)× h(f)) | −→e ∈ −→

E 1,
−→
f ∈ −→

E 2

}

In [43] the authors introduce the square product of so-called N -systems, that

is a special class of directed hypergraphs. More precisely,
−→
N = (V,

−→
E ) is an N -

system if |t(e)| = 1 and t(e) ⊆ h(e) holds for all −→e ∈ −→
E and

⋃
−→e ∈

−→
E
t(e) = V . It is

shown that the square product is closed in the class of N -systems, i.e., the square
product of two N -systems is again an N -system.

Theorem 17.2 ([43]). Let
−→
N be an N -system. If [

−→
N ]2 is thin, i.e., there are no

two vertices u, v ∈ V (
−→
N ) with (u, x) ∈ −→

E ([
−→
N ]2) ⇔ (v, x) ∈ −→

E ([
−→
N ]2) and (x, u) ∈−→

E ([
−→
N ]2) ⇔ (x, v) ∈ −→

E ([
−→
N ]2), and connected, then

−→
N has a unique PFD with

unique coordinatization.

The authors conjectured, furthermore, that the condition of thinness can be
omitted as long as one is satisfied with a unique PFD without insisting on a unique
coordinatization.

18. Summary

Table 1 provides an overview of the properties of the hypergraph products dis-
cussed in this survey. Table 2 shows which hypergraph invariants can be transferred
from factors to products at least under some additional conditions.

We considered the following properties:

(P1) Associativity.
(P2) Commutativity.
(P3) Distributivity with respect to the disjoint union.
(P4) Existence of a unit.
(P5) H1 ⊛H2 is (co-)connected ⇔H1 and H2 are (co-)connected.
(P6) If H1 and H2 are simple then H1 ⊛H2 is simple.
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(P7) The projections pi : V (H1 ⊛H2) → V (Hi) for i ∈ {1, 2} are (at least weak)
homomorphisms.

(P8) The projections preserve adjacency.
(P9) The adjacency properties of a product depends on those of its factors.

(P10) Unique prime factorization in special classes of hypergraphs.
(P11) Preserves uniformity
(P12) Preserves r-uniformity
(P13) The restriction of the product ⊛ on simple graphs coincides with the respec-

tive graph product.
(P14) The restriction of the product ⊛ on not necessarily simple graphs is the

corresponding graph product.
(P15) The 2-section of the product coincides with the graph product of the 2-section

of the factors.

✷
⌣× ⌢× ×̃ ⌣

⊠
⌢

⊠ ◦ ∗ � ⊚

P1
√ √ √ √ √ √ √ √ √ √

P2
√ √ √ √ √ √

−
√ √ √

P3
√ √ √ √ √ √

− −
√ √

P4 K1 − LK1 − K1 K1 K1 K1 LK1 LK1

P5 ⇔ ⇒ ⇒ ⇒ ⇔ ⇔ iff H1

co

⇔ ⇔ ⇔
P6

√ √ √ √ √ √ √
−

√
−

P7 w −
√ √

− w p1, w −
√ √

P8
√ √ √ √ √ √

p1 −
√ √

P9
√ √ √ √ √ √ √ √ √ √

P10 4.6,4.7 ? ? ? ? ? 12.8,12.9 13.1 14.6 ?

P11
√ √ √ √ √ √ √ √ √

−
P12

√ √ √
−

√ √ √ √
− −

P13
√ √ √ √ √ √ √ √

− −
P14

√
−

√
− −

√ √ √
− −

P15 ✷ × − − ⊠ ⊠ ◦ ∗ ⊠ ⊠

Table 1. Properties of the hypergraph products.

We considered the following invariants:

(I1) Automorphism group
(I2) k-fold covering
(I3) Independence, matching and covers
(I4) Coloring properties
(I5) Helly property
(I6) Hamiltonicity
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✷
⌣×,

⌢×,×̃,
⌢

⊠
⌣

⊠ ◦ ∗ � ⊚

I1 4.8 ? ? [19, 29] [26] 14.7, 14.8 ?

I2 4.9 ? ? 12.11 ? 14.9 ?

I3 ? ? ? ? ? 14.12 to 14.19 ?

I4 4.12, 4.13 ? ? ? ? 14.20 to 14.22 15.5, 15.6

I5 4.10, 4.11 ? ? ? ? 14.10, 14.11 ?

I6 4.14, 4.15 ? 9.5, 9.6 12.12, 12.13 [59] ? ?

Table 2. Invariants and Hypergraph Products

The two summary tables use symbol “
√
” to indicate that a condition is

satisfied, while “−” means that the product does not have the property in question.
The question mark “?” implies that it is unknown at present whether a particular
statement is true. Numbers in brackets refer to citations, while numbers without
brackets refer to theorems listed in this survey that establish the property under
certain additional preconditions or provides results on particular invariants. If (P7)
holds only for weak homomorphisms we indicate this with “w”. If (P7) and (P8)
holds only for the projection onto the first factor we indicate this by “p1”.
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[23] Z. Füredi. Matchings and covers in hypergraphs. Graphs Comb., 4(2):115–206, 1988.

[24] G. Gallo and M. Scutellà. Directed hypergraphs as a modelling paradigm. Decisions
in Economics and Finance, 21:97–123, 1998.

[25] G. Gaszt and W. Imrich. On the lexicographic and costrong product of set systems.
Aequationes Mathematicae, 6:319–320, 1971.
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[31] R. Hammack, W. Imrich, and S. Klavžar. Handbook of Product Graphs. Discrete
Mathematics and its Applications. CRC Press, 2nd edition, 2011.

[32] R.H. Hammack, M. Hellmuth, L. Ostermeier, and P.F. Stadler. Associativity and
non-associativity of some hypergraph products. Math. Comp. Sci, 10(3):403–408,
2016.

[33] C. Heine, S. Jaenicke, M. Hellmuth, P.F. Stadler, and G. Scheuermann. Visualization
of graph products. IEEE Transactions on Visualization and Computer Graphics,
16(6):1082–1089, 2010.

[34] M. Hellmuth. A local prime factor decomposition algorithm. Discrete Mathematics,
311(12):944 – 965, 2011.

[35] M. Hellmuth and F. Lehner. Fast factorization of Cartesian products of (directed)
hypergraphs. J. Theor. Comp. Sci., 615:1–11, 2016.

[36] M. Hellmuth, L. Ostermeier, and P.F. Stadler. A survey on hypergraph products.
Math. Comput. Sci, 6:1–32, 2012.

[37] W. Imrich. Kartesisches Produkt von Mengensystemen und Graphen. Studia Sci.
Math. Hungar., 2:285 – 290, 1967.

[38] W. Imrich. über das schwache Kartesische Produkt von Graphen. Journal of Com-
binatorial Theory, 11(1):1–16, 1971.

[39] W. Imrich and H. Izbicki. Associative products of graphs. Monatshefte für Mathe-
matik, 80(4):277–281, 1975.
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