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Partial Star Products: A Local Covering Approach
for the Recognition of Approximate Cartesian Product
Graphs

Marc Hellmuth, Wilfried Imrich and Tomas Kupka

Abstract. This paper is concerned with the recognition of approximategraph products with re-
spect to the Cartesian product. Most graphs are prime, although they can have a rich product-like
structure. The proposed algorithms are based on a local approach that covers a graph by small sub-
graphs, so-called partial star products, and then utilizesthis information to derive the global factors
and an embedding of the graph under investigation into Cartesian product graphs.
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1. Introduction

This contribution is concerned with the recognition of approximate products with respect to the
Cartesian product. It is well-known that graphs with a non-trivial product structure can be recog-
nized in linear time in the number of edges for Cartesian product graphs [15]. Unfortunately, the
application of the “classical” factorization algorithms is strictly limited, since almost all graphs are
prime, i.e., they do not have a non-trivial product structure although they can have a product-like
structure. In fact, even a very small perturbation, such as the deletion or insertion of a single edge,
can destroy the product structure completely, modifying a product graph to a prime graph [3, 23].
Hence, an often appearing problem can be formulated as follows: For a given graphG that has a
product-like structure, the task is to find a graphH that is a non-trivial product and a good approxi-
mation ofG, in the sense thatH can be reached fromG by a small number of additions or deletions
of edges and vertices. The graphG is also calledapproximateproduct graph.

The recognition of approximate products has been investigated by several authors, see e.g.
[4, 10, 11, 9, 17, 23, 16, 21, 22, 7, 12]. In [17] and [23] the authors showed that Cartesian and strong
product graphs can be uniquely reconstructed from each of its one-vertex-deleted subgraphs. More-
over, in [19] it is shown thatk-vertex-deleted Cartesian product graphs can be uniquely reconstructed
if they have at leastk+1 factors and each factor has more thank vertices. In [16, 21, 22] algorithms
for the recognition of so-called graph bundles are provided. Graph bundles generalize the notion of
graph products and can also be considered as a special class of approximate products. Equivalence
relations on the edge set of a graphG that satisfy restrictive conditions on chordless squares play a
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crucial role in the theory of Cartesian graph products and graph bundles. In [12] the authors showed
that such relations in a natural way induce equitable partitions on the vertex set ofG, which in turn
give rise to quotient graphs that can have a rich product structure even ifG itself is prime. However,
Feigenbaum and Haddad proved that the following problem is NP-complete

Problem 1.1 ( [4]). To a given connected prime graph G find a connected Cartesian product
G1✷ . . .✷Gk with the same number of vertices as G, such that G can be obtained from G1✷ . . .✷Gk

by adding a minimum number of edges only or deleting a minimumnumber of edges only.

Hence, in order to solve this problem not only for special classes of graphs but also for gen-
eral cases one should provide heuristics that can be used in order to solve the problem of finding
“optimal” approximate products. A systematic investigation into approximate product graphs w.r.t.
the strong product showed that a practically viable approach can be based onlocal factorization
algorithms, that cover a graph by factorizable small patches and attempt to stepwisely extend re-
gions with product structures [10, 11, 9]. In the case of strong product graphs, one benefits from the
fact that the local product structure of induced neighborhoods is a refinement of the global factors
[9]. However, the problem of finding factorizable small patches in Cartesian products becomes a bit
more complicated, since induced neighborhoods are not factorizable in general. In order to develop a
heuristic, based on factorizable subgraphs and local coverings which in turn can be used to factorize
large parts of the possibly disturbed graph we introduce theso-called partial star product (PSP). The
partial star product is, besides trivial cases such as squares, one of the smallest non-trivial subgraphs
that can be isometrically embedded into the product of so-called stars, even if the respective induced
neighborhoods are prime. Considering a subset of all partial star products of a graph, we propose in
this contribution several algorithms to compute so-calledproduct colorings and coordinatizations of
the subgraph induced by the partial star products. This information can then be used to embed large
parts of a (possibly) prime graph into a Cartesian product.

We thus present a heuristic algorithm that computes a product thatdiffers as little as possible
from a given graphG andretains as much as possibleof the inherent product structure ofG. This
approach is markedly different from the approach of Graham and Winkler [6], who present a deter-
ministic algorithm that embeds any given, connected graphG isometrically into a Cartesian product
H. The embedding also has the remarkable property that any automorphism ofG is extends to an
automorphisms ofH. Nonetheless, from our point of view, their approach has thedisadvantage that
H may be exorbitantly large. For example, ifG is a tree onm edges, then the graphH computed by
[6] has 2m vertices.

This contribution is organized as follows. We begin with an introduction into necessary pre-
liminaries and continue to define the partial star product. We proceed to give basic properties of the
partial star product and concepts of product relations based on PSP’s. These results are then used to
develop algorithms and heuristics that compute (partial) factorizations of given (un)disturbed graphs.

2. Preliminaries

2.1. Basic Notation

We consider finite, simple, connected and undirected graphsG=(V,E)with vertex setV(G)=V and
edge setE(G) = E. A mapγ : V(H)→ V(G) such that(x,y) ∈ E(H) implies (γ(x),γ(y)) ∈ E(G)
for all x,y ∈ V(G) is a homomorphism. An injective homomorphismγ : V(H)→ V(G) is called
embedding of H into G. We call two graphsG andH isomorphic, and writeG≃ H, if there exists a
bijective homomorphismγ whose inverse function is also a homomorphism. Such a mapγ is called
an isomorphism.

For two graphsG andH we writeG∪H for the graph(V(G)∪̇V(H),E(G)∪̇E(H)), where∪̇
denotes the disjoint union. Thedistance dG(x,y) in G is defined as the number of edges of a shortest
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path connecting the two verticesx,y ∈ V(G). A graphH is a subgraphof a graphG, in symbols
H ⊆ G, if V(H) ⊆V(G) andE(H) ⊆ E(G). A subgraphH ⊆ G is isometricif dH(x,y) = dG(x,y)
for all x,y ∈ V(H). For given graphsG andH the embeddingγ : V(H)→ V(G) is an isometric
embeddingif dH(u,v) = dG(γ(u),γ(v)) for all u,v∈V(G). For simplicity, in such case we also call
H isometric subgraph ofG. If H ⊆ G and all pairs of adjacent vertices inG are also adjacent inH
thenH is called aninducedsubgraph. The subgraph of a graphG that is induced by a vertex set
W ⊆V(G) is denoted by〈W〉. An induced cycle on four vertices is calledchordless square. Let the
edgese= (v,u) and f = (v,w) span a chordless square〈{v,u,x,w}〉. Then f is theoppositeedge
of (x,u). The vertexx is calledtop vertex(w.r.t. the square spanned bye and f ). A top vertexx is
uniqueif |N[x]∩N[v]| = 2. In other words, a top vertexx is not unique if there are further squares
with top vertexx spanned by the edgese or f together with a third distinct edgeg.

We define theopen k-neighborhoodof a vertexv as the setNk(v) = {x∈V(G) | 0< dG(v,x)≤
k}. Theclosed k-neighborhood is defined asNk[v] = Nk(v)∪{v}. Unless there is a risk of confusion,
an open or closedk-neighborhood is just calledk-neighborhood and a 1-neighborhood just neighbor-
hood and we writeN(v), resp.N[v] instead ofN1(v), resp.N1[v]. To avoid ambiguity, we sometimes
write NG

k (v), resp.NG
k [v] to indicate thatNk(v), resp.Nk[v] is taken with respect toG.

Thedegreeof a vertexv is defined as the cardinality|N(v)|. A star G= (V,E) is a connected
acyclic graph such that there is a vertexx that has degree|V|−1 and the other|V|−1 vertices have
degree 1. We callx thestar-centerof G.

2.2. Product and Approximate Product Graphs

The Cartesian productG✷H has vertex setV(G✷H) =V(G)×V(H); two vertices(g1,h1), (g2,h2)
are adjacent inG✷H if (g1,g2)∈E(G) andh1 = h2, or (h1,h2)∈E(G2) andg1 = g2. The one-vertex
complete graphK1 serves as a unit, asK1✷H ≃ H for all graphsH. A Cartesian productG✷H is
called trivial if G ≃ K1 or H ≃ K1. A graphG is prime with respect to the Cartesian product if
it has only a trivial Cartesian product representation. A representation of a graphG as a product
G1✷G2✷ · · ·✷Gk of prime graphs is called aprime factor decomposition (PFD)of G.

Theorem 2.1 ([20, 15]). Any finite connected graph G has a unique PFD with respect to the Carte-
sian product up to the order and isomorphisms of the factors.The PFD can be computed in linear
time in the number of edges of G.

The Cartesian product is commutative and associative. It iswell-known that a vertexx of a
Cartesian product✷n

i=1Gi is properly “coordinatized” by the vectorc(x) := (c1(x), . . . ,cn(x)) whose
entries are the verticesci(x) of its factor graphsGi [8]. Two adjacent vertices in a Cartesian product
graph therefore differ in exactly one coordinate. Note, thecoordinatization of a product is equivalent
to an edge coloring ofG in which edges(x,y) share the same colorck if x and y differ in the
coordinatek. This colors the edges ofG (with respect to thegivenproduct representation). It follows
that for each colorc the setEc = {e∈E(G) | c(e) = c} of edges with colorc spansG. The connected
components of〈Ec〉, usually called thelayersorfibersof G, are isomorphic subgraphs ofG. A partial
product H⊆ G is an isometric subgraph of a (not necessarily non-trivial)Cartesian product graph
G.

For later reference, we state the next two well-known lemmas.

Lemma 2.2 (Distance Lemma,[13]). Let x= (xG,xH) and y= (yG,yH) be arbitrary vertices of the
Cartesian product of G✷H. Then

dG✷H(x,y) = dG(xG,yG)+dH(xH ,yH) .

Lemma 2.3 (Square Property,[13]). Let G= ✷
n
i=1Gi be a Cartesian product graph and e=

(u,v), f = (u,w) ∈ E(G) be two incident edges that are in different fibers. Then thereis exactly
one square in G containing both e and f and this square is chordless.
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For more detailed information about product graphs we referthe interested reader also to [8,
13] or [14].

For the definition of approximate graph products we defined in[10] the distance d(G,H) be-
tween two graphsG andH as the smallest integerk such thatG andH have representationsG′, H ′,
that is vertices inV(G) are identified with vertices inV(H), for which the sum of the symmetric
differences between the vertex sets of the two graphs and between their edge sets is at mostk. That
is, if

|V(G′)△V(H ′)|+ |E(G′)△E(H ′)| ≤ k.

A graphG is ak-approximate graph productif there is a non-trivial productH such that

d(G,H)≤ k.

Herek need not be constant, it can be a slowly growing function of|E(G)|. Moreover, the next
results illustrate the complexity of recognizing approximate graph products.

Lemma 2.4 ([10]). For fixed k all Cartesian k-approximate graph products can berecognized in
polynomial time in n.

Without the restriction onk the problem of finding a product of closest distance to a given
graphG is NP-complete for the Cartesian product [4]; see Problem1.1.

2.3. Relations

We will consider equivalence relationsR on edge setsE, i.e., R⊆ E×E such that (i)(e,e) ∈ R
(reflexivity), (ii) (e, f ) ∈ R implies( f ,e) ∈ R (symmetry) and (iii) (e, f ) ∈ R and( f ,g) ∈ R implies
(e,g) ∈R (transitivity). We will furthermore writeϕ ⊑ R to indicate thatϕ is an equivalence class of
R. A relationQ is finer than a relationR while the relationR is coarserthanQ if (e, f ) ∈Q implies
(e, f ) ∈ R, i.e,Q⊆ R. In case, a given reflexive and symmetric relationR need not be transitive, we
denote withR∗ its transitive closure, that is the finest equivalence relation onE(G) that containsR.
For a given graphG= (V,E) and an equivalence relationRonE we define theR-coloringof G as a
map of the edges onto its equivalence class, i.e, the edgee∈ E is assigned colork iff e∈ ϕk ⊑ R.

For a given equivalence classϕ ⊑ R and a vertexu∈V(G) we denote the set of neighbors ofu
that are incident tou via an edge inϕ by Nϕ (u), i.e.,

Nϕ (u) := {v∈V(G) | [u,v] ∈ ϕ} .

The closedϕ-neighborhood is thenNϕ [u] = Nϕ (u)∪{u}.
For later reference we need the following simple lemma.

Lemma 2.5. Let R be an equivalence relation defined on the edge set of a given graph G= (V,E)
and H⊆ G be a subgraph of G. Then the restriction R|H = {(e, f ) ∈ R | e, f ∈ E(H)} of R on the
edge set E(H) is an equivalence relation.

Proof. Clear. �

For the recognition of Cartesian products the relationδ is of particular interest.

Definition 2.6. Two edgese, f ∈ E(G) are in therelation δ (G), if one of the following conditions
in G is satisfied:

(i) e and f are adjacent and there is no unique square spanned bye and f which is in particular
chordless.

(ii) e and f are opposite edges of a chordless square.
(iii) e= f .
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If there is no risk of confusion we writeδ instead ofδ (G). Clearly, the relationδ is reflexive
and symmetric but not necessarily transitive. However, thetransitive closureδ ∗ is an equivalence
relation onE(G) that containsδ . Note, that our definition ofδ slightly differs from the usual one,
see e.g. [19, 18], which is defined analogously without forcing the chordless square in Condition
(i) to be unique. However, for our purposes this definition is more convenient and suitable to find
the necessary local information that we use to define those factorizable small patches which are
needed to cover the graphs under investigation and to compute the PFD or approximations of it with
respect to the Cartesian product. Moreover, as stated in [19, 18], any pair of adjacent edges that
belong to differentδ ∗ classes span a unique chordless square, whereδ is defined without claiming
“uniqueness” in Condition(i). Thus, we can easily conclude that the transitive closure ofour relation
δ and the usual one are identical.

Finally, two edgese and f are in relationσ(G) if they have the same Cartesian colors with
respect to the prime factorization ofG. We call σ(G) the product relation. The first polynomial
time algorithm to compute the factorization of a graph explicitly constructsσ starting from the finer
relationδ [5]. The product relationσ was later shown to be simply the convex hullC(δ ) of the
relationδ (G) [18]. Notice thatδ (G) ⊆ δ (G)∗ ⊆ σ(G) [18].

3. The Partial Star Product

3.1. Basics

In order to computeδ from local coverings of the graphG = (V,E) we need some new notions.
Clearly, δ is still defined in a local manner since only the (non-)existence of squares are consid-
ered and thus, only the induced 2-neighborhoods are of central role. However, although the 2-
neighborhood can be prime, we define subgraphs of 2-neighborhoods, that are factorizable or at
least graphs that can be isometrically embedded into Cartesian products and have therefore a rich
product structure. For this purpose we define for a vertexv∈ V(G) the relationdv, that is a subset
of δ and provides the desired information of the local product structure of the subgraph〈N2[v]〉.
Based on the transitive closured∗v we then define the so-called partial star productSv, a subgraph
of 〈N2[v]〉, which provides the details which parts of the induced 2-neighborhood are factorizable or
can be isometrically embedded into a Cartesian product.

Let G = (V,E) be a given graph,v ∈ V andEv be the set of edges incident tov. The local
relationdv is then defined as

dv = d({v}) = ((Ev×E)∪ (E×Ev))∩δ (G)⊆ δ (〈NG
2 [v]〉).

In other words,dv is the subset ofδ (G) that contains all pairs(e, f ) ∈ δ (G), where at least one of
the edgeseand f is incident tov. Note,d∗v is not necessarily a subset ofδ but it is contained inδ ∗.

For a subsetW ⊆V we writed(W) for the union of local relationsdv, v∈W:

d(W) = ∪v∈Wdv.

We now define the so-called partial star productSv, that is, a subgraph containing all edges
incident tov and all squares spanned by edgese,e′ ∈ Ev wheree ande′ are not in relationd∗v. To be
more precise:

Definition 3.1 (Partial Star Product (PSP)). Let Fv⊆E\Ev be the set of edges which are opposite
edges of (chordless) squares spanned bye,e′ ∈ Ev that are in differentd∗v classes, i.e.,(e,e′) 6∈ d

∗
v.

The partial star productis the subgraphSv ⊆ G with edge setE′ = Ev∪Fv and vertex set
∪e∈E′e. We callv thecenterof Sv, edges inEv primal edges, edges inFv non-primal edges, and the
vertices adjacent tov primal verticeswith respect toSv.

The reason why we callSv a partial star product is thatSv is an isometric subgraph or even
isomorphic to a Cartesian product graphH of stars, as we shall see later (Theorem3.9). Hence,Sv
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FIGURE 1. Examples of various PSP’sSv highlighted by thick edges. Note, in all
cases except in case( f ) the setFv is empty and hence, the PSP’sSv in the other
cases just contain the edges incident tov.
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FIGURE 2. Left: A hypercubeQ3 is shown. The three equivalence classes of
δ ∗(Q3) are highlighted by solid, dashed and double lined edges, respectively.
Right: The PSPSv is shown. Again,d∗v|Sv

has three equivalence classes. How-
ever, since the edges(0,1) and(1,2) as well as the edges(2,3) and(3,4) span
no square we can conclude thatδ ∗(Sv) just contains one equivalence class. Hence,
d
∗
v|Sv
6= δ ∗(Sv) .

is a partial product ofH. For the construction of this graphH we introduce the so-called star factors
Si , see also Figures1 and3.

Definition 3.2 (Star Factor). Let G= (V,E) be an arbitrary given graph andSv be a PSP for some
vertexv∈V. Assumed∗v has equivalence classesϕ1, . . . ,ϕn. We define the star factorSi as the graph
with vertex setNϕi [v] that contains all primal edges ofEv that are also in the induced closedϕi-
neighborhood, i.e.,E(Si) = E(〈Nϕi [v]〉)∩Ev.

Note, this definition forbids triangles inSi , and hence, eachSi is indeed a star. We denote the
restriction ofd∗v to the subgraphSv with

d|Sv := d
∗
v|Sv

= {(e, f ) ∈ d
∗
v | e, f ∈ E(Sv)}.

In other words,d|Sv is the subset ofd∗v that contains all pairs of edges(e, f ) ∈ d
∗
v where both edges

e and f are contained inSv. We want to emphasize thatd∗v|Sv
6= δ ∗(Sv); see Figure2. In addition, by

Lemma2.5we can conclude thatd|Sv is an equivalence relation. For a given subsetW⊆V we define

d|Sv(W) = ∪v∈Wd|Sv
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FIGURE 3. Shown is a graphG≃ 〈NG
2 [v]〉. Note,δ (G)∗ has one equivalence class

and thus,G is prime. However, the partial star product (PSP)Sv, that is the sub-
graph that consists of thick and dashed edges is not prime. The subgraphSv is
isomorphic to the Cartesian Product of a star with four and a star with three ver-
tices. The two equivalence classes ofd|Sv are highlighted by thick, resp. dashed
edges.

as the union of relationsd|Sv, v∈W. As it will turn out, for a given graphG= (V,E) the transitive
closured|Sv(V)∗ is the equivalence relationδ (G)∗, see Theorem3.11.

3.2. Properties of the Partial Star Product

We now establish basic properties of the graphSv, its edge setsEv andFv, as well as of the relation
d
∗
v and its restrictiond|Sv to Sv.

Lemma 3.3. Given a graph G= (V,E) and a vertex v∈V. Then Fv = /0 if and only if for all edges
e,e′ ∈ Ev holds(e,e′) ∈ d

∗
v. Moreover, if Fv 6= /0 then|Fv| ≥ 2.

Proof. Clearly, if for all edgese,e′ ∈ Ev holds(e,e′) ∈ d
∗
v then by definitionFv = /0.

Let Fv = /0 and assume there are edgese,e′ ∈ Ev that are not in relationd∗v. In particular, these
edges are not in relationdv, and therefore not in relationδ (G). By Condition(i) of Def.2.6and since
eande′ are adjacent, there is a chordless square containingeande′ and therefore, respective opposite
edgesf and f ′. Condition(ii) of Def. 2.6 implies (e, f ),(e′, f ′) ∈ δ (G). Therefore,f , f ′ ∈ Fv, a
contradiction.

Furthermore, sinceFv contains all opposite edges of squares spanned bye,e′ ∈Ev we can easily
conclude that|Fv| ≥ 2, if Fv 6= /0. �

Lemma 3.4. Let G=(V,E) be a given graph and let Sv be a PSP for some vertex v∈V. If e, f ∈ Ev

are primal edges that are not in relationd∗v, then e and f span a unique chordless square with a
unique top vertex in G.

Conversely, suppose that x is a non-primal vertex of Sv, then there is a unique chordless square
in Sv that contains vertex x and that is spanned by edges e, f ∈ Ev with (e, f ) 6∈ d

∗
v.

Proof. First, we show thate and f span a unique chordless square inG. By contraposition, assume
e and f span no unique chordless square inG. Sincee and f are adjacent, Condition(i) of Def.
2.6 implies that(e, f ) ∈ δ (G) and hence,(e, f ) ∈ dv ⊆ d

∗
v. Therefore, if(e, f ) /∈ d

∗
v, then they must

span a unique chordless square. Lete= (v,u) and f = (v,w), (e, f ) /∈ d
∗
v, span the unique chordless

squareSQ1 = 〈{v,u,x,w}〉 and assume for contradiction that the top vertexx is not unique. Hence,
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there must be at least three squares: the squareSQ1, the squareSQ2 = 〈{v,u,x,y}〉 spanned bye
andg, and the squareSQ3 = 〈{v,w,x,y}〉 spanned byf andg= (v,y). We denote edges as follows:
a= (x,y) andb= (x,w). Assume both squaresSQ2 andSQ3 are chordless. Then Def.2.6(ii) implies
( f ,a),(a,e) ∈ δ (G) and therefore,(e, f ) ∈ d

∗
v, a contradiction. If both squares have a chord then

Def. 2.6(i) implies that(e,g),( f ,g) ∈ δ (G) and thus,(e, f ) ∈ d
∗
v, again a contradiction. If only one

square, saySQ2, has a chord(u,y), then(e,g) ∈ δ (G) and( f ,a),(g,a) ∈ δ (G) and again we have
(e, f ) ∈ d

∗
v.

Assumex is a non-primal vertex inSv. By definition, there are non-primal edgesf ′=(x,u),e′=
(x,w) ∈ Fv that are contained in a square spanned bye= (v,u), f = (v,w) ∈ Ev, whereas(e, f ) 6∈ d

∗
v.

As shown above, the square spanned bye and f is unique with unique top vertex inG and therefore
in Sv. Hence, if there is another square inSv containingx then it must be spanned bye′, f ′ and this
square contains additional edgesf ′′=(y,u),e′′=(y,w). However, then there is a square〈{v,u,y,w}〉,
which contradicts the fact that the square spanned byeand f is unique. If the unique square spanned
by e and f is not chordless inG, then Def.2.6 (i) implies (e, f ) ∈ δ (G) and thus(e, f ) ∈ d

∗
v, a

contradiction. �

By means of Lemma3.3and3.4and the definition of partial star products we can directly infer
the next corollary.

Corollary 3.5. Let G=(V,E) be a given graph and let Sv be a PSP for some vertex v∈V.

1. If (e, f ) ∈ d
∗
v then there is no square in Sv spanned by e and f .

2. Every square in Sv contains two edges e,e′ ∈Ev and two edges f, f ′ ∈Fv, and every edge f∈ Fv

is opposite to some primal edge e∈ Ev.
3. Every non-primal vertex in Sv is a unique top vertex of some square spanned by edges e,e′ ∈Ev.

Lemma 3.6. Let G=(V,E) be a given graph and let f∈ Fv be a non-primal edge of a PSP Sv for
some vertex v∈V. Then f is opposite to exactly one primal edge e∈ Ev in Sv and(e, f ) ∈ d|Sv.

Proof. By Corollary3.5, construction ofSv and sincef ∈ Fv, there is at least one edgee∈ Ev such
that f is opposite toe and therefore at least one squareSQ1 = 〈{v,w,x,u}〉 in Sv spanned by primal
edgese= (v,u) ande′ = (v,w) that contains the edgef = (w,x). Note, by construction(e,e′) 6∈ d

∗
v

ande is opposite tof . Assume for contradiction thatf is opposite to another edgeg= (v,y). Then
there is another squareSQ2 = 〈{v,y,x,w}〉. Hence,e ande′ do not span a square with unique top
vertex inG. By Definition 2.6 and Lemma3.4 we can conclude that(e,e′) ∈ d

∗
v, a contradiction.

Henceeande′ span a unique chordless square containing the edgef . By Condition (i) of Definition
2.6 it holds(e, f ) ∈ δ . Sincee∈ Ev we claim(e, f ) ∈ dv and consequently(e, f ) ∈ d|Sv

. �

Lemma 3.7. Let G=(V,E) be a given graph with maximum degree∆ and W⊆ V such that〈W〉 is
connected. Then each vertex x∈W meets every equivalence class ofd|Sv(W)∗ in ∪v∈WSv, i.e., for
each equivalence classϕ ⊑ d|Sv(W)∗ and for each vertex x∈W there is an edge(x,y) ∈ ϕ with
(x,y) ∈ E(∪v∈WSv). Moreover,d|Sv(W)∗ has at most∆ equivalence classes.

Proof. Let v∈W be an arbitrary vertex andSv be its PSP. We show first thatv meets every equiv-
alence class ofd|Sv in Sv. Assume for contradiction that there is an equivalence class ϕ ⊑ d|Sv that
is not met byv and hence for all edgese∈ Ev we havee 6∈ ϕ . Hence, there must be a non-primal
f ∈ Fv with f ∈ ϕ . By construction ofSv and by Lemma3.6 this edgef is opposite to exactly one
edgee∈ Ev with (e, f ) ∈ d|Sv, but thene∈ ϕ , a contradiction. We show now that every primal ver-
tex w in Sv meets every equivalence class ofd|Sv. Let ϕ ⊑ d|Sv be an arbitrary equivalence class. If
e= (v,w) ∈ ϕ we are done. Therefore assumee 6∈ ϕ . Hence, there must be at least a second equiv-
alence classϕ ′ ⊑ d|Sv with e∈ ϕ ′. Since vertexv meets every equivalence class there is an edge
e′ = (v,u) ∈ ϕ . Moreover, since(e,e′) 6∈ d

∗
v it follows that (e,e′) 6∈ dv ⊆ δ . Sincee ande′ are adja-

cent and by Condition(i) of Definition2.6the edgeseande′ span a unique chordless square. Hence,
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there is an opposite edgef = (w,x) of e′. By construction ofSv we havef ∈ Fv and hence, Lemma
3.6 implies(e′, f ) ∈ d|Sv. Therefore, the primal vertexw meets equivalence classϕ in Sv. Note, not
every equivalence class ofd|Sv must be met by non-primal vertices inSv in general, as one can easily
verify by the example in Figure4.

It remains to show that every vertexx ∈W meets every equivalence class ofd|Sv(W)∗ in
∪v∈WSv. Assume we have chosen an arbitrary vertexx∈W, computedSx andd|Sx. As shown, vertex
x and all its primal neighborsy in Sx meet every equivalence class ofd|Sx. AssumeW contains more
than one vertex. Since〈W〉 is connected there is a primal vertexy of x that is also contained inW.
Hence, vertexx is a primal neighbor ofy in Sy and every equivalence class ofd|Sy is met byy as
well as byx. Let ϕ ⊑ (d|Sx∪d|Sy)

∗ be an arbitrary equivalence class. Assume neitherx nory meetsϕ .
Then each edgef ∈ ϕ must be inFx or Fy. Assumef ∈ Fy then, by construction ofSy and Lemma
3.6, this edgef is opposite to exactly one edgee∈ Ey with (e, f ) ∈ d|Sy, and hencee∈ ϕ , a contra-
diction. Assume now all edgese∈ ϕ are only met byy but not byx, and therefore,e′ = (x,y) 6∈ ϕ .
However, sincee ande′ are in different equivalence classes of(d|Sx ∪ d|Sy)

∗ they must be in dif-
ferent equivalence classes ofd|Sy. Hence,(e,e′) 6∈ d

∗
y and thus,(e,e′) 6∈ dy ⊆ δ . Sincee ande′ are

adjacent and, by Condition(i) of Definition 2.6, the edgese ande′ span a unique chordless square.
Hence, there is an opposite edgef = (x,w) of e in Sy and, by Lemma3.6we conclude(e, f ) ∈ d|Sy

and therefore,f ∈ ϕ , which implies thatx meetsϕ , a contradiction. Hence, every equivalence class
ϕ ⊑ (d|Sx ∪d|Sy)

∗ must be met byx andy. By the same arguments one shows that each primal vertex
of Sx andSy meets every equivalence class of(d|Sx ∪d|Sy)

∗. If W\{x,y} 6= /0 we can choose a primal
neighborz∈W of x or y, since〈W〉 is connected. By the same arguments as before, one shows that
each vertexx,y, resp.z and each of its primal vertices inSx,Sy, resp.Sz meets every equivalence
class of((d|Sx∪d|Sy)

∗∪d|Sz)
∗ = (d|Sx∪d|Sy∪d|Sz)

∗ in Sx∪Sy∪Sz. Therefore, we can traverse〈W〉 in
breadth-first search order and inductively conclude that every vertexx∈W meets every equivalence
class ofd|Sv(W)∗ in ∪v∈WSv.

Finally, we observe that each edge inEv might define one equivalence class ofd|Sv for each
vertexv∈W. Thus,d|Sv can have at most∆ equivalence classes. Since this holds for all vertices and
since equivalence classes ind|Sv(W)∗ are combined equivalence classes of the respectived|Sv classes,
the number of equivalence classes ind|Sv(W)∗ can not exceed∆. �

In order to prove that each PSP can be isometrically embeddedinto a Cartesian product of
stars, which is shown in the next theorem, we first need the following lemma.

Lemma 3.8. Let G=✷
l
i=1Gi be the Cartesian product of stars. Assume the vertices in each V(Gi)

are labeled from0, . . . , |V(Gi)|−1, where the vertex with label0 always denotes the star-center of
each Gi . Let vG be the vertex with coordinates c(vG) = (0, . . . ,0) Then for any integer k≥ 0, the
induced closed k-neighborhood〈NG

k [vG]〉 is an isometric subgraph of G.

Proof. Let 〈NG
k [vG]〉 be the induced closedk-neighborhood ofvG in G. Letx,y∈NG

k [vG] be arbitrary
vertices and letI ⊆ {1, . . . , l} be the set of positions wherex andy differ in their coordinate. More-
over, letI0⊆ I be the set of positions where eitherx or y has coordinate 0. By the Distance Lemma
we havedG(x,y) = ∑i∈IO 1+∑i∈I\IO 2.

We now construct a path fromx to y that is entirely contained inNG
k [vG] and show that this

path is a shortest path. SetP(x,y) = /0. Let i ∈ I0 and w.l.o.g. assumeci(x) = 0, otherwise we would
interchange the role ofx andy. By definition of the Cartesian product there is a vertexy′ that is
adjacent to vertexy with c j(y′) = c j(y) for all j 6= i andci(y′) = 0. By the Distance Lemma, we
havedGj (c j(vG),c j (y)) = dGj (c j(vG),c j(y′)) for all j 6= i anddGi (ci(vG),ci(y)) = dGi (0,ci(y)) = 1
anddGi (ci(vG),ci(y′)) = 0 and thus,dG(vG,y′)< dG(vG,y)≤ k, which implies thaty′ ∈ NG

k [vG]. We
assign(y,y′) to be an edge of the (so far empty) pathP(x,y) from x to y and repeat to construct
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FIGURE 4. Shown is a graphG≃〈NG
2 [v]〉. Note,δ (G)∗ has one equivalence class.

The partial star product (PSP)Sv is the subgraph that consists of thick, double-
lined and dashed edges. Moreover,Sv can be isometrically embedded into the
Cartesian product of a star with two and two stars with three vertices. The three
equivalence classes ofd|Sv are highlighted by thick, double-lined, resp. dashed
edges.

parts of the path fromx to y′ in the same way until alli ∈ I0 are processed. In this way, we con-
structed subpathsP(x,v) andP(w,y) of P(x,y), both of which are entirely contained in〈NG

k [vG]〉 and
|P(x,v)|+ |P(w,y)| = |I0|. We are left to construct a path fromv to w that is entirely contained in
NG

k [v]. Note that by constructionv andw differ only in thei-th position of their coordinates where
i ∈ I \ I0 andc j(v) = c j(x) = c j(y) = c j(w) for all j 6∈ I \ I0. By the definition of the Cartesian product
for eachi ∈ I \ I0 there are edges(v,v′), resp.(v′,v′′) such thatv,v′ andv′′ differ only in thei-th posi-
tion of their coordinates. Since 06= ci(x) = ci(v) and by definition of the Cartesian product it follows
thatci(v′) = 0 andv′′ can be chosen such thatci(v′′) = ci(y) = ci(w) 6= 0. By the Distance Lemma
and the same arguments as used before it holdsdG(vG,v′) = dG(vG,v′′)− 1 = dG(vG,v)− 1 ≤ k
and hence,v′,v′′ ∈ NG

k [vG]. Therefore we add the edges(v,v′), resp.(v′,v′′) to the path fromx to y,
removei from I \ I0 and repeat this construction for a path fromv′′ to w until I \ I0 is empty.

Hence we constructed a path of length|I0|+2|I \ I0|=∑i∈IO 1+∑i∈I\IO 2= dG(x,y). Thus, this
path is a shortest path fromx to y. Since this construction can be done for anyx,y∈ NG

k [vG] we can
conclude that〈NG

k [vG]〉 is an isometric subgraph ofG. �

Theorem 3.9. Let G= (V,E) be an arbitrary given graph and Sv be a PSP for some vertex v∈V.
Let H=✷

k
i=1Si be the Cartesian product of the star factors as in Definition3.2. Then it holds:

(1) Sv is an isometric subgraph of H and in particular, Sv ≃ 〈NH
2 [(v1, . . . ,vk)]〉 where vi denotes

the star-center ofSi , i = 1, . . . ,k.
(2) d|Sv ⊆ δ (H)∗ ⊆ σ(H).
(3) The product relationσ(H) has the same number of equivalence classes asd|Sv.

Proof. Assertion (1):
If d∗v has only one equivalence class, then there is nothing to show, sinceSv ≃ S1 ≃ H. Therefore,
assumed∗v hask≥ 2 equivalence classes.

In the following we define a mappingγ : V(Sv)→V(H) and show thatγ is an isometric em-
bedding. In particular we show thatγ is an isomorphism fromSv to the 2-neighborhood〈NH

2 [vH ]〉
for a distinguished vertexvH ∈V(H). Lemma3.8implies then that this embedding is isometric.

For a given equivalence classϕi ⊑ d
∗
v let Nϕi (v) = {v1, . . . ,vl} be theϕi -neighborhood of the

centervandSi be the corresponding star factor with vertex setV(Si) = {0,1, . . . , l} and edges(0,x)∈
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E(Si) for all (v,vx) ∈ Sv. Let H =✷
k
i=1Si be the Cartesian product of the star factors. The centerv of

Sv is mapped to the vertexvH ∈V(H) with coordinatesc(vH) = (0, . . . ,0), the verticesv j ∈ Nϕi (v)
are mapped to the unique vertexu with coordinatescr(u) = 0 for all r 6= i andci(u) = j. Clearly,
these vertices exist, due to the construction ofS1, . . . ,Sk and sinceV(H) = ×k

i=1V(Si). Note, that
these vertices we mapped onto are entirely contained in the 1-neighborhoodNH [vH ] of vH . Now let
x be a non-primal vertex inSv. Hence, by Lemma3.4and Corollary3.5, there is a unique chordless
square〈{v,vi ,x,v j}〉 in Sv with unique top vertexx. Thus,vi andv j are the only common neighbors
of x in Sv. Moreover, by definition and Lemma3.4, the edges(v,vi) ∈ ϕr and (v,v j) ∈ ϕs are in
different equivalence classes, i.e.,r 6= s. Thus, we mapx to the unique vertexu with coordinates
cl (u) = 0 for all l 6= r,sandcr(u) = i andcs(u) = j. Again, this vertex exists, due to the construction
of S1, . . . ,Sk and sinceV(H) =×k

i=1V(Si). This completes the construction of our mappingγ.

We continue to show that the mappingγ : V(Sv)→NH
2 [vH ] is bijective. It is easy to see that by

construction and the definition of the Cartesian product, each primal vertexx has a unique part-
ner γ(x) in NH

1 [vH ] and vice versa. We show that this holds also for non-primal vertices in Sv

and vertices inNH
2 [vH ] \NH

1 [vH ]. First assume there are two non-primal verticesx and x′ in Sv

that are mapped to the same vertexu in H. Thus, by construction of our mappingγ, the vertex
x′ must have the same primal neighborsvi and v j as x in Sv. However, by Lemma3.4 this con-
tradicts that(v,vi) ∈ ϕr and (v,v j) ∈ ϕs span a unique square. Therefore,γ is injective. Now, let
u ∈ NH

2 [vH ] \NH
1 [vH ] be an arbitrary vertex inH. By the Distance Lemma we can conclude that

dH(vH ,u) =∑k
i=1dSi (0,ci(u)). Moreover, sincedH(vH ,u) = 2 anddSi (0,ci(u))≤ 1 for all i = 1, . . . ,k

we can conclude thatdH(vH ,u) = dSr (0,cr(u))+dSs(0,cs(u)) for some distinct indicesr ands. As-
sume thatcr(u) = i andcs(u) = j. By construction, the star factorSr contains the edge(0, i) and
Ss the edge(0, j). Hence, there are edgese= (v,vi) ∈ ϕr and f = (v,v j) ∈ ϕs in Sv. Lemma3.4
implies that there is a unique chordless square spanned bye and f with unique top vertexy that is
also contained inSv. By construction ofγ the vertexy is the unique vertex that is mapped to vertexu
in H. Since this holds for all verticesu∈NH

2 [vH ]\NH
1 [vH ], and by the preceding arguments, we can

conclude that the mappingγ : Sv→ NH
2 [vH ] we defined is bijective.

It remains to show thatγ is an isomorphism fromSv to NH
2 [vH ]. By construction, every primal

edge(v,v j) ∈ ϕr is mapped to the edge(vH ,x), wherex has coordinatesci(x) = 0 for i 6= r and
cr(x)= j. Hence,(v,v j)∈Ev if and only if (γ(v),γ(v j ))∈E(〈NH

2 [vH ]〉). Now suppose we have a non-
primal edge(v j ,y) ∈ ϕr . By Lemma3.4, there is a unique chordless square with edges(v,vl ) ∈ ϕr

and(v,v j) ∈ ϕs and hence, by construction ofSr andSs and the definition of the Cartesian product,
there are edgese= (vH ,z) and f = (vH ,z′) in H wherez differs fromvH in the r-th position of its
coordinate andz′ differs fromvH in thes-th position of its coordinate. By the Square Property, there
is unique chordless square inH spanned byeand f with top vertexy′ that has coordinatesci(y′) = 0
for i 6= r,s, cr(y′) = l 6= 0 andcs(y′) = j 6= 0. By the construction ofγ we see that(v j ,y) ∈ Fv

implies(γ(v j ),γ(y)) = (z′,y′) ∈ E(〈NH
2 [vH ]〉). Using the same arguments, but starting from squares

spanned bye= (vH ,z) and f =(vH ,z′) in H, one can easily derive that(z′,y′)∈E(〈NH
2 [vH ]〉) implies

(γ−1(z′),γ−1(y′)) = (v j ,y) ∈ Fv.

Finally, Lemma3.8 implies that〈NH
2 [vH ]〉 is an isometric subgraph ofH and therefore,γ :

V(Sv)→V(H) is an isometric embedding.

Assertion (2) and (3):
By Assertion (1), we can treat the graphSv as subgraph ofH; Sv ⊆ H. We continue to show that
d|Sv = d

∗
v|Sv
⊆ δ (H)∗. Let v∈ V(G) be the center of the PSPSv, andH = ✷

k
i=1Si , whereSi are the

corresponding star factors (w.r.t.Sv). Let e, f ∈ E(Sv) such that(e, f ) ∈ d|Sv. There are three cases to
consider; eithere, f ∈ Ev, or e, f ∈ Fv, or e∈ Ev and f ∈ Fv.

If e, f ∈ Ev are both primal edges with(e, f ) ∈ d|Sv theneand f are by construction of the star
factors andH contained in the layerSv

i of some star factorSi . Corollary3.5 and(e, f ) ∈ d|Sv ⊆ d
∗
v
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imply thate and f span no square inSv. SinceH = ✷
k
i=1Si we can conclude thate and f span no

square inH and hence,(e, f ) ∈ δ (H).
Assumee, f ∈ Fv and(e, f ) ∈ d|Sv. By Lemma3.6it holds thate, resp.,f is opposite to exactly

one primal edgee′ ∈ Ev, resp., f ′ ∈ Ev in Sv where(e,e′),( f , f ′) ∈ d|Sv. SinceSv ⊆ H, the edgee
is the opposite edge ofe′ and f is the opposite edge off ′ in a square which is also contained in
H. SinceSv is an isometric subgraph ofH we can conclude that this square is chordless inH and
thus(e,e′),( f , f ′) ∈ δ (H). Sinced|Sv is transitive it holds,(e′, f ′) ∈ d|Sv. By analogous arguments as
before we have(e′, f ′) ∈ δ (H) and therefore,(e, f ) ∈ δ ∗(H).

Finally, supposee∈ Ev is a primal edge,f ∈ Fv is non-primal and(e, f ) ∈ d|Sv. By Lemma3.6,
f is opposite to exactly one primal edgee′ where( f ,e′) ∈ d|Sv. If e= e′, thene and f are opposite
edges in a chordless square inSv. By analogous arguments as before, we can conclude that thissquare
is chordless inH and hence,e, f ∈ δ (H). If e 6= e′, then(e, f ),( f ,e′) ∈ d|Sv implies that(e,e′) ∈ d|Sv

and we can conclude from Corollary3.5 that there is no square spanned bye ande′ in Sv. Again e
ande′ lie in common layerSv

i and do not span any square inH. Thus we have(e,e′) ∈ δ (H). Again,
sincee′ and f are opposite edges in a chordless square inH we can conclude that(e′, f ) ∈ δ (H).
Consequently,d|Sv ⊆ δ ∗(H). Note, by results of Imrich [18] we haveδ (H)∗ ⊆ σ(H). It is easy to
see that the connected components ofδ (H)∗ w.r.t. to a fixed equivalence classi correspond to the
layers of the factorSi . Therefore, we can conclude thatδ (H)∗ = σ(H). Hence, we have

d|Sv = d
∗
v|Sv
⊆ δ (H)∗ = σ(H).

Moreover, by Definition3.2 of the star factors and since stars are prime, the number ofd|Sv

classes equals the number of prime factors ofH. Hence, it holds thatd|Sv andσ(H) have the same
number of equivalence classes. �

By the construction of star factors, the Distance Lemma and Theorem3.9, we can directly infer
the next corollary.

Corollary 3.10. Let G= (V,E) be an arbitrary given graph, Sv be a PSP for some vertex v∈V and
d
∗
v have k= 1 or 2 equivalence classes. Then

Sv≃✷
k
i=1Si .

We conclude this section with a last theorem which shows thatthe transitive closure of the
uniond|Sv(V) over all vertices and its relationsdv, even restricted toSv, is δ (G)∗.

Theorem 3.11. Let G= (V,E) be a given graph andd|Sv(V) = ∪v∈Vd|Sv. Then

d|Sv(V)∗ = δ (G)∗.

Proof. By definitiondv ⊆ δ (G). Moreover, by definition and Lemma2.5 it holds thatd|Sv ⊆ d
∗
v ⊆

δ (G)∗ for all v∈V(G). Thus,d|Sv(V)⊆ δ (G)∗, and henced|Sv(V)∗ ⊆ δ (G)∗.
Let e, f ∈E(G) be edges that are in relationδ (G). By definition,(e, f ) ∈ dv for somev∈V(G).

If e= (u,v) and f = (w,v) are adjacent, theneand f are contained in the setEv of Sv and therefore in
d|Sv ⊆ δ (G)∗. Assume,e= (u,v) and f = (x,y) are opposite edges of a chordless square containing
the edgese, f andg= (v,x). For contradiction, assume(e, f ) 6∈ d|Sv(V)∗ and hence(e, f ) 6∈ d|Sv(V).
Thus, for eachv∈ V we have(e, f ) 6∈ d|Sv and therefore, by definition, there is no square spanned
by edgese,e′ ∈ Ev with (e,e′) 6∈ d

∗
v such thatf is the opposite edge ofe. In particular, this implies

(e,g) ∈ d
∗
v and hence(e,g) ∈ d|Sv. Analogously, one shows that( f ,g) ∈ d|Sx. Sinced|Sv ∪ d|Sx ⊆

d|Sv(V) we can infer that(e, f ) ∈ d|Sv(V)∗, a contradiction. �



Partial Star Products 13

Theorem3.11 allows us to provide covering algorithms for the recognition of δ (G)∗ or of
δ (H)∗ for subgraphsH ⊆ G that are based only on coverings by partial star products. Note, if
σ(G) = δ (G)∗, then the covering ofG by partial star products would also lead to a valid prime
factorization. However, as most graphs are prime we will in the next section provide algorithms,
based on factorizable parts, i.e., of coverings where the PSP’s have more than one equivalence class
d|Sv, which can be used to recognize approximate products.

4. Recognition of Relations, Colorings and Embeddings intoCartesian
Products

In order to compute local colorings based on partial star products and to compute coordinates that
respect this coloring we begin with algorithms for the recognition of d|Sv(W)∗ andδ (G)∗.

Lemma 4.1. Given a graph G= (V,E) with maximum degree∆ and a subset W⊆V such that〈W〉
is connected, then Algorithm1 computesd|Sv(W)∗ and∪v∈WSv in O(|V|∆4) time.

Proof. The Algorithm scans the vertices in an arbitrary order and computes 〈NG
2 [v]〉, δ ′ =

δ (〈NG
2 [v]〉), as well asSv andd|Sv w.r.t. δ ′. In order to compute the transitive closure ofd|Sv(W)

an auxiliary graph, the color graphΓ, is introduced. For each vertexv and to each equivalence class
of d|Sv some unique color is assigned, andΓ keeps track of the “colors” of the equivalence classes.
All vertices of Γ are pairs(e,c). Two vertices(e′,c′) and(e′′,c′′) are connected by an edge if and
only if there is an edgee∈ ϕc′ ∩ϕc′′ with ϕc′

⊑ d|Su and ϕc′′
⊑ d|Sw for someu,w ∈W. In other

words, if there is an edgee that obtained both, colorc′ andc′′. Edges inΓ “connect” edges of local
equivalence classes that belong to the same global equivalence classes ind|Sv(W)∗. The connected
componentsQ of Γ define edge setsEQ =∪(e,c)∈Qϕc. We therefore can identify the transitive closure
of d|Sv(W)∗ by defininge∈ ϕQ ⊑ d|Sv(W)∗ if e∈ EQ. Finally, we observe that this is iteratively done
for all verticesv∈W, that all edges inE(〈W〉) are contained in someEv of Sv and, by Lemma3.7,
that every equivalence class ofd|Sv(W)∗ is met by every vertexv∈W. Therefore, we can conclude
that each edge is uniquely assigned to some classϕQ ⊑ d|Sv(W)∗. Hence, the algorithm is correct.

In order to determine the time complexity we first consider line6. The induced 2-neighborhood
can be computed in∆2 time and has at most∆2 vertices, and hence at most∆4 edges. As shown by
Chiba and Nishizeki [2] all triangles and all squares in a given graphG = (V,E) can be computed
in O(|E|∆) time. Combining these results, we can conclude that all chordless squares can be listed
in O(|E|∆) time. Thus, in this preprocessing step, we are able to determine δ ′,Sv andd|Sv in O(∆4)

time. Since this is done for all verticesv∈W, we end in an overall time complexityO(|E|∆+ |W|∆4)
for the preprocessing step and the while-loop. For the second part, we observe thatΓ has at most
O(|E|) connected components. Since the number of edges is bounded by |V|∆ we conclude that
Algorithm 1 has time complexityO(|V|∆2+ |W|∆4) = O(|V|∆4). �

By means of Theorem3.11and Lemma4.1we can directly infer the next corollary.

Corollary 4.2. Let G= (V,E) be a given graph with maximum degree∆. Thenδ (G)∗ can be com-
puted in O(|V|∆4) time by a call of Algorithm1 with input G and W=V.

As mentioned before, a vertexx of a Cartesian product✷n
i=1Gi is properly “coordinatized”

by the vectorc(x) := (c1(x), . . . ,cn(x)), whose entries are the verticesci(x) of its factor graphsGi .
Two adjacent vertices in a Cartesian product graph differ inexactly one coordinate. Furthermore,
the coordinatization of a product is equivalent to an edge coloring of G in that edges(x,y) share the
same colorck if x andy differ in the coordinatek. This colors the edges ofG (with respect to the
given product representation).
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Algorithm 1 Local d|Sv(W)∗ computation

1: INPUT: A graphG= (V,E), W ⊆V.
2: σ ←W
3: initialize graphΓ = /0; {called “color graph”}
4: while σ 6= /0 do
5: take any vertexv of σ ;
6: compute〈NG

2 [v]〉, δ ′ = δ (〈NG
2 [v]〉), Sv andd∗|Sv

w.r.t. δ ′;
7: color the edges ofSv w.r.t. the equivalence classes ofd|Sv;
8: setnumclass= the number of equivalence classes ofd|Sv;
9: addnumclassnew vertices toΓ;

10: for every edgee in Sv do
11: if e was already colored inG then
12: x = old color ofe; y = new color ofe;
13: add vertices(x,e) and(y,e) to Γ
14: join all vertices of the from(x, f ) and(y, f ′) in Γ;
15: end if
16: end for
17: deletev from σ ;
18: end while
19: {compute the equivalence classϕk ⊑ d|Sv(W)∗.}
20: setnumcomp= number of connected components ofΓ;
21: for k= 1 to numcompdo
22: if color ofe is vertex in componentk of Γ then
23: ϕk← e;
24: end if
25: end for
26: OUTPUT: d|Sv(W)∗ and∪v∈WSv;

Conversely, the idea of Algorithm2 is to compute vertex coordinates of a subgraph of∪v∈WSv

based on itsd|Sv(W)∗-coloring. In particular, we want to compute coordinates that reflect parts of the
d|Sv(W)∗-coloring of∪v∈WSv in a consistent way. Consistent means that all adjacent verticesu and
v with (u,v) ∈ ϕr ⊑ d|Sv(W)∗ differ exactly in theirr-th position of their coordinate vectors, and no
two distinct vertices obtain the same coordinate. This goalcannot always be achieved for all vertices
contained in∪v∈WSv. In [8, p. 280 et seqq.] a way is shown how to avoid those inconsistencies. In
this approach colors of edges with “inconsistent” verticesare merged to one color. However, if the
graph under investigation is only slightly perturbed, but prime, this approach would merge all colors
to one. This is what we want to avoid. Instead of merging colors and hence, in order to preserve a
possibly underlying product structure, we remove those vertices in∪v∈WSv where consistency fails.
This leads to a subgraphH ⊆ ∪v∈WSv where the edges are stilld|Sv(W)∗-colored w.r.t.∪v∈WSv and
have the desired coordinates. In Algorithm4 we finally computeHi based on these coordinates and
the edges ofϕi ⊑ (d|Sv(W)∗)|H , 1≤ i ≤ k. Hence, the connected component ofH induced by the
edges ofϕi ⊑ d|Sv(W)∗ are subgraphs of layersHi of the Cartesian product✷k

i=1Hi and therefore,H
can be embedded into✷k

i=1Hi .

Lemma 4.3. Given a graph G= (V,E) with maximum degree∆ and W⊆ V such that〈W〉 is
connected, then Algorithm2 computes the coordinates of a subgraph H⊆ G with H ⊆ ∪v∈WSv

such that

1. no two vertices of H are assigned identical coordinates and
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Algorithm 2 Compute vertex coordinates of H ⊆ ∪v∈WSv⊆G

1: INPUT: A graphG= (V,E), W ⊆V;
2: computed|Sv(W)∗ and∪v∈WSv with Local d|Sv(W)∗ computation and inputG,W;
3: H←∪v∈WSv; {NoteW ⊆V(H)};
4: GoOn← true
5: while GoOndo
6: numclass← number of equivalence classes ofd|Sv(W)∗;
7: Qi ← subgraph ofH induced by edges ofϕi ⊑ d|Sv(W)∗ for all i = 1 tonumclass;
8: Qi(x)← connected component ofQi containing vertexx for eachx∈ V(H) for all i = 1 to

numclass;
9: if exist i and j with |V(Qi(x))∩V(Q j (x))|> 1 for somex∈V(H) then

10: combineϕi andϕ j , i.e., computeϕi ∪ϕ j in d|Sv(W)∗;
11: else
12: GoOn← f alse;
13: end if
14: end while
15: v0← arbitrary vertex ofW;
16: label each vertexx in eachQi(v0) uniquely withl i(x) ∈ {1, . . . , |Qi(v0)|};
17: set coordinatescr(v0) = 0 for all r = 1, . . . ,numclass
18: for every vertexx∈Qi(v0) and for alli = 1 tonumclassdo
19: set coordinatescr(x) = 0 for all r = 1, . . . ,numclassandr 6= i;
20: set coordinatesci(x) = l i(x);
21: end for
22: dmax←maxx∈V(H)dH(v0,x);
23: Li ←{x∈V(H) | dH(v0,x) = i} for i = 1, . . .dmax

24: for i = 2 toLmax do
25: for all x∈ Li that have not obtained coordinates yetdo
26: if for all u ∈ NH(x) that already obtained coordinates holds(x,u) ∈ ϕr for some fixedr

then
27: set coordinatecr(x) = lr(x) {lr(x) is unique unused label};
28: set coordinatesci(x) = ci(u) for all i = 1, . . . ,numclass, i 6= r;
29: else iffor all u∈ NH(x) holdsu has not obtained coordinatesthen
30: removex and all edges adjacent tox from H;
31: removex from Li ;
32: else
33: {now there are distinct neighborsu,w∈NH(x) and thus, have not been removed fromH,

such that they already obtained coordinates with((x,u),(x,w)) 6∈ d|Sv(W)∗, i.e.,(x,u) ∈
ϕr , (x,w) ∈ ϕs, r 6= s}

34: set coordinatecr(x) = cr(w); set coordinatecs(x) = cs(u);
35: set coordinatesci(x) = ci(u) for all i = 1 tonumclass, i 6= r,s;
36: end if
37: call ConsistencyCheck for x and vertices that already obtained coordinates;
38: end for
39: end for
40: {H has been modified via deleting verticesx that fail the consistency checks.}
41: OUTPUT: H with coordinatized vertices;
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2. adjacent vertices x and y with(x,y) ∈ ϕr ⊑ d|Sv(W)∗ differ exactly in the r-th coordinate.

The time complexity of Algorithm2 is O(|V|∆4+ |V|2∆2).

Proof. The init steps (Line2 - 16) include the computation ofd|Sv(W)∗, H = ∪v∈WSv, and the con-
nected componentsQi(x) that contain vertexx and which are induced by edges ofϕi ⊑ d|Sv(W)∗.
By merging equivalence classes (Line10) we ensure that after the first while-loop connected com-
ponents induced byd|Sv(W)∗ equivalence classes intersect in at most one vertex. Hence,vertices
x in Qi(v0) can be assigned a unique labell i(x) for eachi = 1, . . . ,numclass. In Line 17-21 we
assign coordinates to each vertex contained inQi(v0) for eachi = 1, . . . ,numclass. Since any two
distinct subgraphsQi(v0) andQ j(v0) intersect only in vertexv0 we can ensure that adjacent vertices
in each subgraphQi(v0) differ exactly in thei-th position of their coordinate. We finally compute
the distances fromv0 to all other vertices inH, and distance levelsLi containing all verticesx with
dH(v0,x) = i (Line 22and23). Notice, the preceding procedure assigns coordinates to all vertices of
distance levelL1.

In Line 24we scan all vertices in breadth-first search order w.r.t. to the rootv0, beginning with
vertices inL2, and assign coordinates to them. This is iteratively done for all vertices in levelLi

which either obtain coordinates based on the coordinates ofadjacent vertices or are removed from
graphH and levelLi . In particular, in the subroutineConsistencyCheck (Algorithm3) we might
also delete vertices and therefore we have to consider threecases.
First Case (Line26): We assume thatall neighbors of a chosen vertexx∈ Li that already obtained
coordinates are contained in thesamesubgraphQr(x). Hence, the coordinates ofx should differ from
their neighbor’s coordinates in ther-th position. This is achieved by settingcr(x) to the unique label
lr(x) and the rest of its coordinates identical to its neighbors.
Second Case (Line29): It might happen that vertexx does not have any neighbor with assigned
coordinates, that is, either those neighbors ofx are removed fromH andL j , j ≤ i in some previous
step, or they have not obtained coordinates so far. If this case occurs, then we also remove vertexx
from H andLi , since no information to coordinatize vertexx can be inferred from its neighbors.
Third Case (Line32): Let u,w∈ NH(x) be neighbors ofx such thatu andw have already assigned
coordinates and the edges(x,u) and(x,w) are in different equivalence classes. Assume(x,u) ∈ ϕr

and(x,w) ∈ ϕs, r 6= s. Keep in mind thatx should then differ fromu andw in ther-th and in thes-th
position of its coordinates, respectively. Thus, we set coordinatecr(x) = cr(w) andcs(x) = cs(u).
The remaining coordinates ofx are chosen to be identical to the coordinates ofu. Note, we basically
follow in this case the strategy to coordinatize vertices asproposed in [1].

In order to ensure that no two vertices obtained the same coordinates or that two adjacent
vertices differ in exactly one coordinate we provide a consistency check in Line37 and Algorithm
3. If x has the same coordinate as some previous coordinatized vertex we removex from H andLi .
If x has a neighbory with coordinates that differ in more than one position from the coordinates ofx
we delete the edge(x,y) from H.

To summarize, we end up with a subgraphH ⊆∪v∈WSv, such that the vertices ofH are uniquely
coordinatized and such that adjacent edges(x,y) ∈ ϕr ⊑ d|Sv(W)∗ differ exactly in ther-th position
of their coordinates.

We complete the proof by determining the time complexity of Algorithm2. Lemma4.1implies
that Algorithm1determinesd|Sv(W)∗ and∪v∈WSv in O(|V|∆4) time. Since〈W〉 is connected, Lemma
3.7 implies thatd|Sv(W)∗ has at most∆ equivalence classes and therefore, the while-loop (Line5 -
14) runs at most∆ times. The computation of the graphsQi andQi(x) within this while-loop can be
done via a breadth-first search inO(|E|+ |V|) = O(|V|∆) time, since there are at most|V|∆ edges
and connected components. The intersection and the union ofQi andQ j can be computed inO(|V|2).
Hence, the overall-time complexity of the while-loop isO(∆|V|2). The assignments of coordinates
to verticesx ∈ Qi(v0) can be done inO(∆) time. Since there are at most|V| vertices and at most
∆ equivalence classes we end inO(|V|∆2) time. Computing distances fromv0 to all other vertices
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Algorithm 3 ConsistencyCheck

1: REQUIRE: Call ConsistencyCheck for vertexx from Algorithm2;
2: ENSURE: no two vertices obtain identical coordinates and adjacent vertices differ in exactly

one coordinate;
3: for all y∈V(H), x 6= y that already obtained coordinatesdo
4: {consistency check that no two vertices obtain the same coordinates}
5: if cr(x) = cr(y) for all r = 1 tonumclassthen
6: removex and all edges adjacent tox from H;
7: removex from Li ;
8: break for loop;
9: else

10: {consistency check that two adjacent vertices differ only inoner-th coordinate}
11: if (x,y) is edge contained in someϕr andcr(x) = cr(y) or ci(x) 6= ci(y) for somei = 1 to

numclass, i 6= r then
12: remove edge(x,y) from H;
13: break for loop;
14: end if
15: end if
16: end for

Algorithm 4 Embedding of H into Cartesian product

1: INPUT: A graphG= (V,E) with coordinatized vertices;
2: for each positioni = 1 to r of coordinatesdo
3: initialize graphHi = /0;
4: for each vertexv∈V do
5: if ci(v) /∈V(Hi) then
6: addci(v) to V(Hi);
7: end if
8: end for
9: end for

10: for each positioni = 1 to r of coordinatesdo
11: for each edge(x,y) ∈ E do
12: if ci(x) 6= ci(y) and edge(ci(x),ci(y)) /∈ E(Hi) then
13: add(ci(x),ci(y)) to E(Hi);
14: end if
15: end for
16: end for
17: OUTPUT: FactorsHi and Cartesian product✷r

i=1Hi whereG can be embedded into;

and the computation ofLi can be achieved via breadth-first search inO(|E|+ |V|) = O(|V|∆) time.
Consider now the two for-loops in Line24 and25. Each vertex is traversed exactly once. Hence
these for-loops runO(|V|) times. For each vertex in each distance levels we check whether there
are neighbors in levelLi−1, which are at most∆ for each vertexx, and compute the∆ positions of
the coordinates for each such vertex. The consistency check(Algorithm 3) runs inO(|V|(∆+∆)) =
O(|V|∆) time. Hence, the overall time complexity of the for-loop (Line24- Line 39) is O(|V|2∆2).

Combining these results, one can conclude that the time complexity of Algorithm 2 is
O(|V|∆4+ |V|2∆2). �
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V X

X XX X

(a) A Cartesian prime graphG= (V,E) is shown. For all
verticesx ∈ V (marked with ”X”) the respectived|Sx has
only one equivalence class. Thus, we use only all non-
”X”-marked vertices, pooled in the setW ⊆ V and call
Local d|Sv(W)∗ computation (Alg. 1). The equiva-
lence classes ofd|Sv for vertexv = v0 are highlighted by
dashed and thick edges.

10

01 00 02 03 04 05 06

20

30

40

50

(b) After calling Local d|Sv(W)∗ computation

(Alg. 1) we obtain the equivalence classes ofd|Sv(W)∗

highlighted by dashed and thick edges. After calling
Compute vertex coordinates (Alg. 2, Line 15 -
21) we obtain a graph where the vertices in eachGv

i -layer
obtain unique coordinates.

11 10 12

01 00 02 03 04 05 06

21 20 22 23 24

31 30 32 33 37

41 40

50

42

(c) Shown is the graphG with coordinatized vertices for
all x∈∪4

i=1Li . Note, the vertexx with coordinates(37) ob-
tained a new unused second coordinate 7, since all edges
(u,x) whereu already obtained coordinates are from the
same equivalence class (Alg.2, Line 26). Thus, coordi-
nates cannot be combined.

11 10 12

01 00 02 03 04 05 06

21 20 22 23 24 25

31 30 32 33 34 37 38

41 40

51 50

42

52

47

(d) Shown is the graph G with coordinatized
vertices for all x ∈ ∪5

i=1Li . Note, after running
ConsistencyCheck (Alg. 3, Line 11) the edge
between the vertices with coordinates(37) and (25)
is deleted, since the vertices differ in more than one
coordinate.

FIGURE 5. The basic steps of Algorithm1 and2

Lemma 4.4. Given a graph G= (V,E) with maximum degree∆ obtained from Algorithm2 with
coordinatized vertices. Then Algorithm4 computes factors Hi such that G can be embedded into
✷

r
i=1Hi in O(|E|∆) time.

Proof. After running Algorithm2 we obtain a graphG= (V,E) such that verticesx∈V have con-
sistent coordinatesc(x) = (c1(x), . . . ,cr(x)), i.e, no two vertices ofG have identical coordinates and
adjacent verticesx andy with (x,y) ∈ ϕi differ only in thei-th position of their coordinates.
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FIGURE 6. After running Algorithm1 and2 we obtainH as a subgraph of the
graphG in Figure5, with coordinatized vertices, and edges colored w.r.t.d|Sv(W)∗

equivalence classes. After runningEmbedding of H into Cartesian

product (Alg. 4) we obtain the putative factorsH1 and H2 of H and, hence,
of G. Note, due to the coordinatization ofH the embedding ofH into H1✷H2 can
easily be determined.

We first compute empty graphsH1, . . . ,Hr and add for each vertexx and for eachci(x) of
its coordinatesc(x) = (c1(x), . . .cr(x)) the vertexci(x) to Hi . Different verticesci(x) andci(y) are
connected inHi whenever there is an edge(x,y) ∈ E. We define a mapγ : V(G)→ V(H) with
x 7→ c(x). Since no two vertices ofG have identical coordinatesγ is injective. Furthermore, since
adjacent verticesx andy that differ only in one, say thei-th, position of their coordinates are mapped
to the edge(ci(x),ci(y)) contained in factorHi and by definition of the Cartesian product, we can
conclude that the mapγ is a homomorphism and hence, an embedding ofG into H.

The first two for-loops run|V|∆ times, that isO(|E|). The second two for-loops run|E|∆ times,
hence we end in overall time complexity ofO(|E|∆). �

To complete the paper, we explain how the last algorithms, inparticular, Algorithm1, 2 and
4 can be used as suitable heuristics to find approximate products; see also Figures5 and6. Note,
by Corollary4.2 Algorithm 1 can be used to computeδ (G)∗. However, most graphs are prime and
δ (G)∗ would consist only of one equivalence class. Thus we are interested in subsets ofδ (G)∗ which
provide enough information of large factorizable or “into non-trivial Cartesian product embeddable”
subgraphs. This can be achieved by ignoring regionsSv whered|Sv has only one or less than a
given threshold number of equivalence classes. Hence, onlysubsetsW ⊆ V whered|Sv(W)∗ has a
sufficiently large number of equivalence classes are of interest. For this, we would cover a graph
by starting at some vertexv∈ V, computeSv andd|Sv, and check ifd|Sv has the desired number of
equivalence classes; see Figure5(a). If not, we take another vertexw∈V and repeat this procedure
with w. If d|Sv has the desired number of equivalence classes we would take aneighborw of v,
computeSw andd|Sw and check whether(d|Sw∪d|Sv)

∗ has the desired number of equivalence classes.
If so, then we continue with neighbors ofv andw and to extend the regions that can be embedded
into a Cartesian product. To find such regions one can easily adapt Algorithms2 and4.

Note, after running Algorithm1 one could take out one of largest connected component of
each equivalence class induced by edges with the respective“colors” to obtain putative factors; see
Figure5(b). However, even knowing putative factors does not yield information about which edges
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should be added or deleted to obtain a product graph. For this, coordinates are necessary. They can
be computed by Algorithm2 and used as input for Algorithm4; see Figure6.

Finally, even the most general methods for computing approximate strong products only com-
pute a (partial) product coloring of the graphsG under investigation. They yield putative factors,
but no coordinatization [9]. However, Algorithm4 can be adapted to find the coordinates of the so-
called underlying approximate Cartesian skeleton of such graphs, and can thus be used to find an
embedding of (the approximate strong product)G into a non-trivial strong product graph.
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