
HAL Id: hal-00747930
https://inria.hal.science/hal-00747930v2

Submitted on 8 Jul 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the discriminant scheme of homogeneous polynomials
Laurent Busé, Jean-Pierre Jouanolou

To cite this version:
Laurent Busé, Jean-Pierre Jouanolou. On the discriminant scheme of homogeneous polynomials.
Mathematics in Computer Science, 2014, Special Issue in Computational Algebraic Geometry, 8 (2),
pp.175-234. �10.1007/s11786-014-0188-7�. �hal-00747930v2�

https://inria.hal.science/hal-00747930v2
https://hal.archives-ouvertes.fr


On the discriminant scheme of homogeneous polyno-
mials

Laurent Busé and Jean-Pierre Jouanolou

Keywords. Elimination theory; discriminant of homogeneous polynomials; resultant of homoge-
neous polynomials; inertia forms.

Abstract. In this paper, the discriminant scheme of homogeneous polynomials is studied in two
particular cases: the case of a single homogeneous polynomial and the case of a collection of
n− 1 homogeneous polynomials in n > 2 variables. In both situations, a normalized discriminant
polynomial is defined over an arbitrary commutative ring of coefficients by means of the resultant
theory. An extensive formalism for this discriminant is then developed, including many new prop-
erties and computational rules. Finally, it is shown that this discriminant polynomial is faithful to
the geometry: it is a defining equation of the discriminant scheme over a general coefficient ring k,
typically a domain, if 2 6= 0 in k. The case where 2 = 0 in k is also analyzed in detail.

1. Introduction
The discriminant of a collection of polynomials gives information about the nature of the common
roots of these polynomials. Following the example of the very classical discriminant of a single
univariate polynomial, it is a fundamental tool in algebraic geometry which is very useful and has
many applications. Let us recall briefly the usual definition of the discriminant (see [GKZ94]): given
integers 1 6 c 6 n and 1 6 d1, . . . , dc, denote by S the set of all c-uples of homogeneous polyno-
mials f1, . . . , fc in the polynomial ring C[X1, . . . , Xn] (n > 2) of degrees d1, . . . , dc, respectively.
The subset D of S corresponding to the c-uples f1, . . . , fc such that {f1 = f2 = . . . = fc = 0}
is not smooth and of codimension c is called the discriminant locus. It is well-known that D is an
irreducible algebraic variety of codimension one providing di > 2 for some i ∈ {1, . . . , c} or c = n.
The discriminant is then defined as an equation of D (and set to be 1 if D is not of codimension
one).

There are drawbacks to this definition of the discriminant. First, it is not stable under change
of basis. In other words, the discriminant is a polynomial in the coefficients of the polynomials
f1, . . . , fc and a given specialization of these coefficients does not always commute with this con-
struction of the discriminant. Such a property is however a natural request. Notice that it is actually
well satisfied when defining the discriminant of a single univariate polynomial f as the determinant
of the Sylvester matrix associated to f and its first derivative (see [EH00, §V.3] for more details). Sec-
ond, the discriminant is defined up to multiplication by a nonzero constant. This is not satisfactory
when the value of the discriminant is important and not only its vanishing, as this is for instance the
case for some applications in the fields of arithmetic geometry and number theory (see for instance
the recent paper [Sai12]). Another point is that this definition is only valid under the hypothesis that
the ground ring is a field, often assumed to be algebraically closed and of characteristic zero. But
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for many applications, it is very useful to understand the behavior of the discriminant under general
ground rings. These drawbacks are important obstructions that prevent the discriminant from having
a well developed formalism, in particular some properties and formulas that allow to handle it as a
computational tool. In many situations such a formalism is actually more important than the value
of the discriminant itself which is very often unreachable by direct computations. Moreover, the dis-
criminant gives more insights if it is defined without ambiguity (in particular not up to a nonzero
constant multiplicative factor) over a general coefficient ring (see e.g. [BM09]).

The goal of this paper is to develop the formalism of the discriminant over an arbitrary commu-
tative ring k. To work in this setting, it is necessary to give a scheme structure to the above-mentioned
set D ⊂ S. For all i = 1, . . . , c, set

fi(X1, . . . , Xn) :=
∑

|α|=di>1

Ui,αX
α ∈ kA[X1, . . . , Xn]di

where α = (α1, . . . , αn) ∈ Nn is a multi-index, |α| :=
∑n
i=1 αi, X

α := Xα1
1 . . . Xαn

n and where
kA := k[Ui,α | |α| = di, i = 1, . . . , n] is the universal ring of coefficients. Now, let D be the ideal
of kA[X1, . . . , Xn] generated by f1, . . . , fc and all the c-minors of their Jacobian matrix. Then, the
discriminant scheme of f1, . . . , fc can be defined as the scheme-theoretic image of the canonical pro-
jection of the incidence scheme Proj(kA[X1, . . . , Xn]/D) onto Spec(kA). It is a closed subscheme
of Spec(kA) whose defining ideal is the inertia forms ideal

{a ∈ kA | ∃ν ∈ N mνa ⊂ D} ⊂ kA

where m stands for the ideal generated by the variables X1, . . . , Xn. In this paper, we will study this
discriminant scheme in the two cases c = n− 1 and c = 1, in Section 3 and Section 4 respectively.
In geometric terms, the case c = n − 1 corresponds to the discriminant of a finite set of points in
complete intersection in a projective space, whereas the case c = 1 corresponds to the study of the
discriminant of a hypersurface in a projective space.

Our strategy is the same for both cases c = n − 1 and c = 1. We first define a universal dis-
criminant polynomial ZDisc ∈ ZA by means of certain resultants. Taking advantage of the existing
formalism of the resultant that we will briefly overview in Section 2, we then develop a rich formal-
ism for this discriminant polynomial: computation of the partial degrees, multiplicativity, reduction
properties, change of basis formulas, etc. As far as we know, such a formalism did not appear under
this form in the existing literature (see the related works below). Most of the properties we give are
new and for the others, our contribution consists in providing rigorous proofs in our general frame-
work. As a typical byproduct of this formalism, we mention the following interesting result: whereas
it is classical that the discriminant of a univariate polynomial f belongs to the ideal generated by
f itself and its first derivative ∂f , we prove that it actually belongs to the ideal generated by f and
(∂f)

2 (see Theorem 3.25 and Corollary 4.30 for more general statements).
The second step of our strategy is to show that the canonical specialization of the discriminant

polynomial ZDisc in kA, denoted kDisc, is a defining equation of the discriminant scheme under
some suitable assumptions. Our definition of the discriminant polynomial is hence faithful to the
geometry. To be more precise, in the case c = n − 1 we prove that kDisc is a defining equation of
the discriminant scheme if 2 6= 0 in k, and that it is moreover prime if k is a domain (see Theorem
3.23). If 2 = 0 in k and k is a domain, kDisc is shown to be the square of a prime polynomial which
is a defining equation of the discriminant scheme (see Theorem 3.24). In the case c = 1, assuming
that k is a domain we show that kDisc is a prime polynomial defining the discriminant scheme if
2 6= 0 or n is odd, and that it is the square of a prime polynomial defining the discriminant scheme
otherwise, i.e. if 2 = 0 in k and n is even (see Theorem 4.26). At the end of Section 4 we also
provide a detailed study of the birationality of the canonical projection of the incidence scheme onto
the discriminant scheme for the case c = 1 (see Theorem 4.36). This is one of the delicate properties
of the discriminant that is not always treated rigorously in the existing literature.
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The paper ends with an appendix where we give rigorous proofs of two remarkable formulas
that are due to F. Mertens [Mer92, Mer86]. We will use these formulas at some point in text, but they
are definitely interesting on their own.

Related works. As far as we know, the literature on the theory of the discriminant goes back to an
outstanding paper by Sylvester [Syl64b, Syl64a] where among others, an explicit formula for the
degree of the discriminant is given for any integer 1 6 c 6 n. Then, one finds the works by Mertens
[Mer86, Mer92], where the concept of inertia forms is already used, and some other works by König
[Kön03], by Kronecker [Kro82], by Ostrowski [Ost19] and also by Henrici [Hen68]. There is also
an important contribution by Krull [Kru39, Kru42] who studied Jacobian ideals and some properties
of the discriminant, especially in the case c = n − 1. The case c = 1 is by far the most classical
case of study of the discriminant in the literature, mostly because of the so-called “Cayley trick”
(see [GKZ94]). A detailed study can be found in a Bourbaki manuscript by Demazure [Dem69]
that was unfortunately left unpublished until very recently [Dem12]. Another treatment is proposed
in [GKZ94, chapter 12.B] and more recently another one in [Sai12]. For the past twenty years,
one can observe a regain of interest, in particular regarding properties with respect to the shape
(total degree, partial degrees, Newton polyhedron, etc) of the discriminant. Unlike the previously
mentioned works, the techniques are here more advanced and use homological methods. The book by
Gelfand, Kapranov and Zelevinsky [GKZ94] was definitely a turning point in this modern approach.
One can also mention the paper by Scheja and Storch [SS08] and the more recent one by Esterov
[Est10] that deals with more general grading of the polynomials (they correspond to anisotropic
projective spaces and more general toric varieties respectively). It is as well worth mentioning the
recent paper by Benoist [Ben12] where the degree of the discriminant is carefully studied (see also
[Syl64b, Syl64a]).

In the sequel, all rings are assumed to be commutative and with unity.
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2. Preliminaries
We recall here the basic definitions and properties of inertia forms and the resultant that we will use
in the rest of this paper to study the discriminant of homogeneous polynomials. Our main source is
the monograph [Jou91] where a detailed exposition can be found.

Suppose given r > 1 homogeneous polynomials of positive degrees d1, . . . , dr, respectively,
in the variables X1, . . . , Xn, all assumed to have weight 1,

fi(X1, . . . , Xn) =
∑
|α|=di

Ui,αX
α, i = 1, . . . , r.

Let k be a commutative ring and set kA := k[Ui,α | i = 1, . . . , r, |α| = di] the universal coefficient
ring over k. Then fi ∈ kC := kA[X1, . . . , Xn] for all i = 1, . . . , r. We define the ideal I :=
(f1, . . . , fr) ⊂ kC and the graded quotient ring kB := kC/I . The main purpose of elimination
theory is the study of the image of the canonical projection

Proj(kB)→ Spec(kA)

which corresponds to the elimination of the variables X1, . . . , Xn in the polynomial system f1 =
· · · = fr = 0. It turns out that this image is closed (the latter projection is a projective morphism) and
its defining ideal, that we will denote by kA and which is usually called the resultant (or eliminant)
ideal, consists of the elements of kA which are contained in I after multiplication by some power
of the maximal ideal m := (X1, . . . , Xn) ⊂ kC. In other words, kA is the degree 0 part of the 0th
local cohomology module of kB with respect to m, i.e. kA = H0

m(kB)0.

2.1. Inertia forms
First introduced by Hurwitz, inertia forms reveal a powerful tool to study the resultant ideals, notably
in the case r = n corresponding to the theory of the resultant, and more generally elimination theory.

Definition 2.1. The ideal of inertia forms of the ideal I with respect to the ideal m is the ideal of kC

kTFm(I) := π−1(H0
m(kB)) = {f ∈ kC : ∃ν ∈ N mνf ⊂ I} ⊂ kC

where π denotes the canonical projection kC → kB = kC/I .

Observe that the inertia forms ideal is naturally graded and that kA = kTFm(I)0. We recall
two useful other descriptions of this ideal.

Let us distinguish, for all i = 1, . . . , r, the particular coefficient Ei := Ui,(0,...,0,di) of the
polynomial fi which can be rewritten in kC[X−1

n ]

fi = Xdi
n (Ei +

∑
α6=(0,...,0,di)

Ui,αX
αX−din ).

Then we get the isomorphism of k-algebras

kBXn
∼−→ k[Uj,α : Uj,α 6= Ei][X1, . . . , Xn][X−1

n ] (2.1.1)

Ei 7→ Ei −
fi

Xdi
n

= −
∑

α6=(0,...,0,di)

Ui,αX
αX−din

and of course similar isomorphisms for all the kBXi
′s. They show that Xi is a nonzero divisor in

kBXj for all pair (i, j) ∈ {1, . . . , n}2, and by the way that, for all i ∈ {1, . . . , n},

kTFm(I) = {f ∈ kC : ∃ν ∈ N Xν
i f ⊂ I} = Ker(kC → kBXi). (2.1.2)

In particular, if the commutative ring k is a domain, it follows that the kBXi ’s are also domains and
thus that kTFm(I) is a prime ideal of kC, as well as kA. Note also that, as a simple consequence,
we obtain the equality

kA = kTFm(I)0 = kA ∩ (f̃1, . . . , f̃r) (2.1.3)
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where f̃i(X1, . . . , Xn−1) = fi(X1, . . . , Xn−1, 1) ∈ kA[X1, . . . , Xn−1].
The combination of (2.1.2) and (2.1.1) also gives another interesting description of kTFm(I).

Indeed, similarly to (2.1.1), we define the morphism

τ : kC → k[Ui,α |Ui,α 6= Ei][X1, . . . , Xn][X−1
n ] : Ei 7→ Ei −

fi

Xdi
n

which is sometimes called the Kronecker substitution. Then, it follows that

kTFm(I) = {f ∈ kC : τ(f) = 0}. (2.1.4)

In other words, an inertia form is a polynomial in kC that vanishes after the substitution of each Ei
by Ei − fi/Xdi

n for all i = 1, . . . , r. This property yields in particular the following refinement of
(2.1.3):

kA = kTFm(I)0 = kA ∩
r∑
i=1

f̃i.kA[f̃1, . . . , f̃r]. (2.1.5)

2.2. The resultant
We now turn to the particular case r = n, usually called the principal case of elimination. As we
are going to recall, in this situation the resultant ideal kA is principal and the resultant is one of its
generator. We will need the

Notation 2.2. Let k be a commutative ring. Suppose given a k-algebra R and, for all integers
i ∈ {1, . . . , n}, a homogeneous polynomial of degree di in the variables X1, . . . , Xn

gi =
∑
|α|=di

ui,αX
α ∈ R[X1, . . . , Xn]di .

We denote by θ the k-algebra morphism θ : kA → R : Uj,α 7→ uj,α corresponding to the spe-
cialization of the polynomials fi to the polynomials gi. Then, for any element a ∈ kA we set
a(g1, . . . , gn) := θ(a). In particular, if R = kA and θ is the identity (i.e. gi = fi for all i), then
a = a(f1, . . . , fn).

Proposition 2.3 ([Jou91, §2]). The ideal ZA of ZA is principal and has a unique generator, denoted
ZRes, which satisfies

ZRes(Xd1
1 , . . . , Xdn

n ) = 1. (2.2.1)

Moreover, for any commutative ring k, the ideal kA of kA is also principal and generated by kRes :=
λ(ZRes), where λ denotes the canonical morphism

λ : ZA := Z[Ui,α]→ kA = k[Ui,α] : Uj,α 7→ Uj,α.

In addition, kRes is a nonzero divisor in kA.

In view of Notation 2.2, we have defined the resultant of any set of homogeneous polynomials
of positive degrees f1, . . . , fn ∈ k[X1, . . . , Xn], where k denotes any commutative ring; we will
denote it by Res(f1, . . . , fn) without any possible confusion. Indeed, this resultant is by definition
obtained as a specialization of the corresponding resultant in the generic case over Z, that is to say
ZRes (with the corresponding choice of degrees for the input polynomials). Therefore, the resultant
has the property to be stable under specialization whereas this is not the case of the inertia forms
ideal in general. Nevertheless, we have the following property.

Proposition 2.4. The ideal of inertia forms is stable under specialization up to radical. More pre-
cisely, let R be a commutative ring and ρ : ZA→ R be a specialization morphism. Then, the ideals
ρ(ZTFm(I)0).R = (ρ(ZRes)) and TFm(ρ(I).R)0 are two ideals in R that have the same radical.
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Proof. This result corresponds to a general property of proper morphisms under change of basis.
As we already said, the canonical projection Proj(ZB) → Spec(ZA) is a projective, hence proper,
morphism whose image is closed and defined by the ideal ZTFm(I)0 ⊂ ZA. The specialization ρ
corresponds to a change of basis from Spec(R) to Spec(ZA). Since the support of the closed image
of a proper morphism is stable under change of basis, we deduce that, as claimed, the support of the
inverse image of the closed image of Proj(ZB) → Spec(ZA) is equal to the support of the closed
image of

Proj(ZB)×Spec(ZA) Spec(R)→ Spec(R).

We can give another proof, somehow more elementary, of this proposition. Indeed, by special-
ization it is clear that

ρ(ZTFm(I)0).R = (ρ(ZRes)) = (Res(ρ(f1), . . . , ρ(fn))) ⊂ TFm(ρ(I).R)0.

Let a ∈ TFm(ρ(I).R)0, so that there exists an integer N such that for all i = 1, . . . , n

XN
i a ∈ (ρ(f1), . . . , ρ(fn)) ⊂ R[X1, . . . , Xn].

It follows that

(XN
1 a,X

N
2 a, . . . ,X

N
n a) ⊂ (ρ(f1), . . . , ρ(fn)) ⊂ R[X1, . . . , Xn]

and hence that Res(ρ(f1), . . . , ρ(fn)) divides Res(XN
1 a, . . . ,X

N
n a) in R by [Jou91, §5.6]. Now,

using [Jou91, Proposition 2.3(ii)], we obtain that

Res(XN
1 a, . . . ,X

N
n a) = anN

n−1

Res(XN
1 , . . . , X

N
n ) = anN

n−1

∈ R.

Therefore, Res(ρ(f1), . . . , ρ(fn)) divides anN
n−1

in R and hence TFm(ρ(I).R)0 is contained in
the radical of the ideal (Res(ρ(f1), . . . , ρ(fn))) ⊂ R. �

The resultant have a lot of interesting properties that we are going to use all along this paper;
we refer the reader to [Jou91, §5] and each time we will need one of these properties we will quote
a precise reference from this source (as we have just done in the proof of the previous proposition).

We end this paragraph by recalling the old-fashion way, still very useful in some cases, to
define the resultant (see for instance [Zar37]). To do this, let us introduce n new indeterminates
T1, . . . , Tn. From (2.1.5) we deduce easily that

kTFm((f1 − T1X
d1
n , . . . , fn − TnXdn

n ))0 =

{P (T1, . . . , Tn) ∈ kA[T1, . . . , Tn] : P (f̃1, . . . , f̃n) = 0},

equality which can be rephrased by saying that the kernel of the map

φ : kA[T1, . . . , Tn]→ kA[X1, . . . , Xn−1] : Ti 7→ f̃i

is a principal ideal generated by Res(f1 − T1X
d1
n , . . . , fn − TnXdn

n ). Thus, we obtain an explicit
formulation of (2.1.5) under the form

Res(f1 − f̃1X
d1
n , . . . , fn − f̃nXdn

n ) = 0. (2.2.2)

2.3. A generalized weight property
When dealing with the discriminant of n − 1 homogeneous polynomials in n variables, we will
need a property of homogeneity for the resultant that is due to Mertens [Mer86] and that has been
generalized by Zariski about fifty years later [Zar37, Theorem 6]. For the convenience of the reader,
we provide a proof of this result.

Suppose given n integers µ1, . . . , µn such that for all i = 1, . . . , n we have 0 6 µi 6 di and
set fi = Xµi

n gi + hi where all the monomials having a nonzero coefficient in the polynomial hi
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is not divisible by Xµi
n , i.e. is such that αn < µi. Now, define the weight of each coefficient Ui,α,

i = 1, . . . , n, |α| = di by

weight(Ui,α) :=

{
0 if αn < µi

αn − µi if αn > µi
(2.3.1)

(we will refer to this grading as the Zariski grading) and set

Res(f1, . . . , fn) = H(f1, . . . , fn) +N(f1, . . . , fn) ∈ kA

where H is the homogeneous part of minimum degree of the resultant, using the above weights
definition.

Proposition 2.5. With the above notation, there exists an element

H1(f1, . . . , fn) ∈ kA

which is of degree zero and that satisfies

H(f1, . . . , fn) = Res(g1, . . . , gn)H1(f1, . . . , fn) ∈ kA.

In particular, the degree of H is equal to
∏n
i=1(di − µi).

Here is an immediate corollary that is the form under which we will use this property later on.

Corollary 2.6. For all i = 1, . . . , n, define the polynomials hi and rename some coefficients Ui,α of
fi so that fi = Xdi−1

n (
∑n
j=1 Vi,jXj) + hi. Then, we have

Res(f1, . . . , fn)− det((Vi,j)i,j=1,...,n)H1 ∈ (V1,n, . . . , Vn,n)2 ⊂ kA.

Proof. Let φ ∈ TFm(f1, . . . , fn) ∩ A. There exists an integer N such that XN
n φ ∈ (f1, . . . , fn),

and define φ0 ∈ A as the homogeneous part of minimum degree of φ with respect to the weights
given in (2.3.1). We begin by showing that φ0 ∈ TFm(g1, . . . , gn) ∩A.

In addition of the weights (2.3.1), we set weight(Xi) = 1 for all i = 1, . . . , n − 1 and
weight(Xn) = 0. In this way, for all i = 1, . . . , n the terms in the decomposition fi = Xµi

n gi + hi
are such that Xµi

n gi is homogeneous of degree di − µi whereas hi contains monomials that are
homogeneous of degree strictly bigger than di − µi. To emphasize this property, introduce a new
indeterminate t and consider the linear transformation

Xi 7→ tXi, i = 1, . . . , n− 1

Xn 7→ Xn

Ui,α 7→ tweight(Ui,α)Ui,α, i = 1, . . . , n, |α| = di.

Denoting by ν the degree of φ0 and applying the above transformation, we deduce that

XN
n t

ν(φ0 + tω0) ∈

(td1−µ1(Xµ1
n g1 + tω1), td2−µ2(Xµ2

n g2 + tω2), . . . , tdn−µn(Xµn
n gn + tωn)) (2.3.2)

where ωi ∈ A[X1, . . . , Xn, t] for all i = 0, . . . , n. Having in mind to use the characterization (2.1.4)
of inertia forms, for all i = 1, . . . , n we set gi = ηiX

di−µi
n + ϕi, g̃i = gi(X1, . . . , Xn−1, 1) and

ϕ̃i = ϕi(X1, . . . , Xn−1, 1). Now, the specialization of Xn to 1 in (2.3.2) yields

tν(φ0 + tω0) ∈ (g̃1 + tω1, g̃2 + tω2, . . . , g̃n + tωn)

and then the specializations of ηi to −ϕ̃i − tωi for all i = 1, . . . , n give

tν(φ0(−ϕ̃1 − tω1, . . . ,−ϕ̃n − tωn) + tω0(−ϕ̃1 − tω1, . . . ,−ϕ̃n − tωn)) = 0 (2.3.3)

in A[X1, . . . , Xn, t], where the quoted arguments of φ0 and φ1 are those corresponding to the coef-
ficients η1, . . . , ηn respectively. But since t is a nonzero divisor, we can simplify (2.3.3) by tν . Then,
by specializing t to 0 we deduce that φ0(−ϕ̃1, . . . ,−ϕ̃n) = 0 and hence that φ0 ∈ TFm(g1, . . . , gn).
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Now, applying the above property to φ = Res(f1, . . . , fn) we deduce that there exists H1 ∈ A
such that H = Res(g1, . . . , gn)H1. However, to conclude the proof it remains to show that H1 is
of degree zero, or equivalently that H and Res(g1, . . . , gn) have the same degree with respect to the
weights (2.3.1). Notice that we already know that Res(g1, . . . , gn) has degree

∏n
i=1(di− µi) by the

property [Jou91, §5.13.2] and hence, the degree of H is greater or equal to
∏n
i=1(di − µi). In order

to show that it is actually an equality, we consider the following specialization

f1 = Xd1−µ1

1 Xµ1
n

f2 = Xd2
1 +Xd2−µ2

2 Xµ2
n

f3 = Xd3
2 +Xd3−µ3

3 Xµ3
n

...
fn−1 = X

dn−1

n−2 +X
dn−1−µn−1

n−1 X
µn−1
n

fn = X
dn−1

n−1 + tdn−µnXdn
n

where, for all i = 1, . . . , n, the coefficient Ui,α of each monomial Xα1
1 . . . Xαn

n , |α| = di, of fi that
appears in this specialization has been also specialized to tweight(Ui,α). Let us compute the resultant
of f1, . . . , fn. Applying the multiplicativity property of resultants [Jou91, §5.7], we get

Res(f1, . . . , fn) = Res(Xd1−µ1

1 , f2, . . . , fn)Res(Xµ1
n , f2, . . . , fn)

= Res(X1, f2, . . . , fn)d1−µ1Res(Xn, X1, X2, . . . , Xn−1)µ1d2d3...dn−1

= (−1)(n−1)µ1d2d3...dn−1Res(X1, f2, . . . , fn)d1−µ1 ,

then

Res(X1, f2, . . . , fn)

= Res(X1, X
d2−µ2

2 , f3, . . . , fn)Res(X1, X
µ2
n , f3, . . . , fn)

= Res(X1, X2, f3, . . . , fn)d2−µ2Res(X1, Xn, X2, X3, . . . , Xn−1)µ2d3...dn−1

= (−1)(n−2)µ2d3...dn−1Res(X1, X2, f3, . . . , fn)d2−µ2

and continuing this way we arrive at the equality

Res(f1, . . . , fn) = ±Res(X1, . . . , Xn−1, fn)(d1−µ1)...(dn−1−µn−1).

But since fn is specialized to Xdn−1

n−1 + tdn−µnXdn
n , we deduce that

Res(f1, . . . , fn)

= ±Res(X1, . . . , Xn−1, t
dn−µnXdn

n )(d1−µ1)...(dn−1−µn−1)

= ±t(d1−µ1)...(dn−1−µn−1)(dn−µn)Res(X1, . . . , Xn−1, Xn)(d1−µ1)...(dn−1−µn−1)dn

= ±t
∏n
i=1(di−µi).

Therefore, for this particular specialization, we get that Res(f1, . . . , fn) is of degree
∏n
i=1(di−µi),

and hence that, in the generic context, the degree of H can not be greater than
∏n
i=1(di−µi) which

concludes the proof. �

We mention that from an historical point of view, the above result is the beginning of the
theory of the reduced resultant. Indeed, Zariski proved [Zar37] that the factor H1 is a generator of
a principal ideal whose geometric interpretation is that the polynomials h1, . . . , hn have a common
root in addition of the root X1 = . . . = Xn−1 = 0 that they already have in common. It is called the
reduced resultant. We refer the interested reader to [Zar37] and [OM88] for more details.
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2.4. The Dedekind-Mertens Lemma
We end this section of preliminaries by recalling the Dedekind-Mertens Lemma and give an impor-
tant corollary that we will use several times in this text (sometimes even implicitly).

Let A be a commutative ring and X := (X1, . . . , Xn) be a sequence of n > 1 indeterminates.
Given a A-module M and an element

m =
∑
α

cαX
α ∈M [X] := M [X1, . . . , Xn]

we define the support of m as

supp(m) = {α ∈ Nn : cα 6= 0}

and the length of m, denoted l(m), as the cardinal of supp(m). Observe that l(m) = 0 if and only if
m = 0. Moreover, for any subring R of A, we define the R-content of m as the R-submodule of M :

CR(m) :=
∑

α∈supp(m)

cαR.

Lemma 2.7 (Dedekind-Mertens). Let M be a A-module, f be a polynomial in A[X] and m a
polynomial in M [X]. Then, for all subrings R of A we have

CR(f)l(m)CR(m) = CR(f)l(m)−1CR(fm)

where we set, by convention, CR(f)−1 = R.

Corollary 2.8. Let M be a A-module and f ∈ A[X] a polynomial. Then, the following are equiva-
lent:

(i) The polynomial f is a nonzero divisor in the A[X]-module M [X].
(ii) The ideal CA(f) does not divide zero in M (there does not exists m ∈ M such that m 6= 0

and CA(f)m = 0).

Proof. Assume that (i) holds and that there exists m ∈ M such that CA(f)m = 0. Then we have
(m.1A[X])f = 0 in M [X] and hence m = 0, which proves that (i) implies (ii).

Now, assume that (ii) holds and that there exists m ∈ M [X] such that mf = 0. Then, by the
Dedekind-Mertens lemma, we deduce that CA(f)l(m)CA(m) = 0 and from (ii) that CA(m) = 0. It
follows that m = 0 and the corollary is proved. �

Finally, recall that a polynomial f ∈ A[X] is said to be primitive if CA(f) = A.

3. The discriminant of a finite set of points
3.1. Definition and first properties
In this section, we give the definition of the discriminant of n − 1 homogeneous polynomials in n
variables. We begin the section with some properties on Jacobian determinants. Then, we provide
computational rules for handling this discriminant and we show that its definition has the expected
geometric property: its vanishing corresponds to the detection of a singular locus.

Hereafter, we suppose given n − 1, with n > 2, homogeneous polynomials f1, . . . , fn−1 of
positive degree d1, . . . , dn−1, respectively,

fi(X1, . . . , Xn) =
∑
|α|=di

Ui,αX
α, i = 1, . . . , n− 1.

We denote by k an arbitrary commutative ring and set kA := k[Ui,α] the universal coefficient ring
over k. Thus, fi ∈ kA[X1, . . . , Xn]di for all i = 1, . . . , n− 1.
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3.1.1. Jacobian determinants. For all i = 1, . . . , n, consider the Jacobian determinant

Ji(f1, . . . , fn−1) :=

(−1)n−i

∣∣∣∣∣∣∣∣∣
∂X1f1 · · · ∂Xi−1f1 ∂Xi+1f1 · · · ∂Xnf1

∂X1f2 · · · ∂Xi−1f2 ∂Xi+1f2 · · · ∂Xnf2

...
...

...
...

∂X1
fn−1 · · · ∂Xi−1

fn−1 ∂Xi+1
fn−1 · · · ∂Xnfn−1

∣∣∣∣∣∣∣∣∣ (3.1.1)

that is obviously a homogeneous polynomial in the variables X1, . . . , Xn of degree deg(Ji) =∑n−1
j=1 (dj − 1). Notice that this degree is independent of i ∈ {1, . . . , n}.

Lemma 3.1. For all integers i ∈ {1, . . . , n}, we have:
i) the Jacobian determinant Ji := Ji(f1, . . . , fn−1) is irreducible in ZA[X1, . . . , Xn],

ii) the polynomial Ji(X1, . . . , Xi−1, 1, Xi+1, . . . , Xn) is primitive, hence a nonzero divisor, in
kA[X1, . . . , Xi−1, Xi+1, . . . , Xn],

iii) if k is a domain then Ji(X1, . . . , Xi−1, 1, Xi+1, . . . , Xn) is prime in the polynomial ring
kA[X1, . . . , Xi−1, Xi+1, . . . , Xn].

Proof. It is sufficient to prove this result for Jn := Jn(f1, . . . , fn−1). Observe first that Jn is ho-
mogeneous of degree 1 in each set of variables (Ui,α)|α|=di with i ∈ {1, . . . , n− 1}. Now, consider
the specialization ρ that sends each polynomial fi, i = 1, . . . , n− 1, to

fi 7→ Ui,1X1X
di−1
n + Ui,2X2X

di−1
n + · · ·+ Ui,n−1Xn−1X

di−1
n .

We have

ρ(Jn) = Xdeg(Jn)
n

∣∣∣∣∣∣∣
U1,1 · · · U1,n−1

...
...

Un−1,1 · · · Un−1,n−1

∣∣∣∣∣∣∣ . (3.1.2)

Let us assume first that k is a UFD. Then the determinant in (3.1.2) is known to be irreducible
in k[Ui,j |i, j = 1, . . . , n−1]. Since ρ preserves the homogeneity with respect to each set of variables
(Ui,α)|α|=di , i ∈ {1, . . . , n− 1}, we deduce that iii) holds (under the assumption that k is a UFD).

Moreover, assuming that k = Z, (3.1.2) implies that Jn decomposes as a product P.Q where
P is irreducible and depends on the Ui,α’s, Q does not depend on the Ui,α’s. Moreover Q ∈
Z[X1, . . . , Xn] so that it must divide Xdeg(Jn)

n . Now, if we specialize each polynomial fi to Xdi
i ,

then Jn specializes to
∏n−1
i=1 diX

di−1
i . It follows that Q must also divide this latter polynomial and

we deduce that Q is equal to ±1 ∈ Z. This proves i).

Now, we prove that iii) holds under the weaker assumption that k is a domain. For that purpose,
consider the quotient ring

kQ := kA[X1, . . . , Xn−1]/
(Jn(X1, . . . , Xn−1, 1))

and set Q := ZQ for simplicity in the notation. We have already proved that kQ is a domain as soon
as k is a UFD. In particular Q is a domain. Since Q contains Z, Q is a torsion-free abelian group
and hence it is flat. It follows that the canonical inclusion of rings k ⊂ K := Frac(k) gives rise to
an injective map

kQ = k ⊗Z Q→ K ⊗Z Q = KQ.

But we have proved that KQ is a domain, so we deduce that kQ is also a domain and hence that
Jn(X1, . . . , Xn−1, 1) is a prime element in kA[X1, . . . , Xn−1] as claimed.

Finally, from i) we deduce that Jn(X1, . . . , Xn−1, 1) is a primitive polynomial in the polyno-
mial ring ZA[X1, . . . , Xn−1]. It follows that it is also primitive over any commutative ring k, hence
a nonzero-divisor by the Dedekind-Mertens Lemma. �
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Remark 3.2. Notice that the Jacobian determinant Ji ∈ kA[X1, . . . , Xn] is not irreducible in
general. Indeed, take for instance n = 2 and set f1(X1, X2) =

∑d
i=0 UiX

i
1X

d−i
2 . Then

J2 =
∂f1

∂X
= dUdX

d−1
1 + (d− 1)Ud−1X

d−2
1 X2 + · · ·+ U1X

d−1
2

and hence if d = 0 in k then X2 divides J2.
Similarly, the Jacobian determinant of n homogeneous polynomials in n homogeneous vari-

ables is not irreducible in general. For instance, the Jacobian of the polynomials

f1(X1, X2) = aX2
1 + bX1X2 + cX2

2 , f2(X1, X2) = uX2
1 + vX1X2 + wX2

2

is equal to the determinant ∣∣∣∣ bX2 bX1

vX2 vX1

∣∣∣∣
which is identically to zero in k[a, b, c, u, v, w][X1, X2] if 2 = 0 in k.

Now, introduce the generic homogeneous polynomial of degree d > 1 in the set of variables
X1, . . . , Xn

F (X1, . . . , Xn) :=
∑
|α|=d

UαX
α

and set kA′ := kA[Uα : |α| = d]. The Jacobian determinant

J(f1, . . . , fn−1, F ) :=

∣∣∣∣∣∣∣∣∣∣∣

∂X1f1 ∂X2f1 · · · ∂Xnf1

∂X1
f2 ∂X2

f2 · · · ∂Xnf2

...
...

...
∂X1fn−1 ∂X2fn−1 · · · ∂Xnfn−1

∂X1F ∂X2F · · · ∂XnF

∣∣∣∣∣∣∣∣∣∣∣
(3.1.3)

is a homogeneous polynomial of degree deg(J) = (d − 1) +
∑n−1
i=1 (di − 1) in the set of variables

X1, . . . , Xn. By developing the determinant (3.1.3) with respect to its last row, we obtain the equality

J(f1, . . . , fn−1, F ) =

n∑
i=1

∂F

∂Xi
Ji(f1, . . . , fn−1)

that holds in the ring kA
′[X1, . . . , Xn].

Lemma 3.3. With the above notation, we have:

i) for all integers i ∈ {1, . . . , n}

XiJ(f1, . . . , fn−1, F )− dFJi(f1, . . . , fn−1)

∈ (d1f1, . . . , dn−1fn−1) ⊂ kA
′[X1, . . . , Xn].

ii) for all pairs (i, j) of distinct integers in {1, . . . , n}

XiJj(f1, . . . , fn−1)−XjJi(f1, . . . , fn−1)

∈ (d1f1, . . . , dn−1fn−1) ⊂ kA
′[X1, . . . , Xn].

Proof. These properties follow straightforwardly by using Euler’s identities
n∑
j=1

Xj
∂fi
∂Xj

= difi, i = 1, . . . , n

in the determinants (3.1.1) and (3.1.3). �
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3.1.2. Definition of the discriminant. The definition of the discriminant of the homogeneous poly-
nomials f1, . . . , fn−1 is based on the

Proposition 3.4. With the previous notation,

dd1...dn−1Res(f1, . . . , fn−1, F ) divides Res(f1, . . . , fn−1, J(f1, . . . , fn−1, F ))

in kA
′. Moreover, for all i ∈ {1, . . . , n}, we have the equality

Res(f1, . . . , fn−1, J(f1, . . . , fn−1, F ))Res(f1, . . . , fn−1, Xi) =

dd1...dn−1Res(f1, . . . , fn−1, F )Res(f1, . . . , fn−1, Ji)

Proof. By specialization, it is sufficient to prove this proposition over the integers, that is to say by
assuming that k = Z.

By Lemma 3.3 we know that XiJ(f1, . . . , fn−1, F ) and dJi(f1, . . . , fn−1)F are homoge-
neous polynomials of the same degree in the variables X1, . . . , Xn that are equal modulo the ideal
(f1, . . . , fn−1). It follows that, in kA

′,

Res(f1, . . . , fn−1, XiJ(f1, . . . , fn−1, F )) = Res(f1, . . . , fn−1, dJi(f1, . . . , fn−1)F ).

The result then follows from standard properties of resultants [Jou91, §5]. �

We are now ready to state the definition of the discriminant of the polynomials f1, . . . , fn−1.

Definition 3.5. If
∑n−1
i=1 (di−1) > 1 then the discriminant of the polynomials f1, . . . , fn−1, denoted

Disc(f1, . . . , fn−1), is defined as the unique non-zero element in ZA such that

Disc(f1, . . . , fn−1)Res(f1, . . . , fn−1, Xi) = Res(f1, . . . , fn−1, Ji) (3.1.4)

for all i ∈ {1, . . . , n}. If
∑n−1
i=1 (di − 1) = 0, or equivalently if d1 = · · · = dn−1 = 1, we set

Disc(f1, . . . , fn−1) = 1 ∈ ZA.
Let R be a commutative ring and suppose given n− 1 homogeneous polynomials

gi =
∑
|α|=di

ui,αX
α ∈ R[X1, . . . , Xn], i = 1, . . . , n− 1,

of degree d1, . . . , dn−1 respectively. As in §2.2, denote by θ the ring morphism θ : ZA → R :
Uj,α 7→ uj,α corresponding to the specialization of the polynomial fi to the polynomial gi for all
i = 1, . . . , n− 1. Then, the discriminant of g1, . . . , gn−1 is defined as

Disc(g1, . . . , gn−1) := θ(Disc(f1, . . . , fn−1)) ∈ R.

Remark 3.6. We recall that, for all integers i ∈ {1, . . . , n},

Res(f1, . . . , fn−1, Xi) = Res(f
(i)
1 , . . . , f

(i)
n−1) ∈ kA

where f (i)
1 , . . . , f

(i)
n−1 are the polynomials obtained from f1, . . . , fn−1, respectively, by substituting

Xi for 0 (see [Jou91, Lemma 4.8.9]). It is a nonzero divisor in kA (see Proposition 2.3).

A direct consequence of the definition of the discriminant is the following. From Proposition
3.4, it follows immediately that, in kA

′,

Res(f1, . . . , fn−1, J(f1, . . . , fn−1, F )) =

dd1...dn−1Disc(f1, . . . , fn−1)Res(f1, . . . , fn−1, F ). (3.1.5)

Moreover, if deg(F ) = d = 1 then J(f1, . . . , fn−1, F ) can be replaced by F (J1, . . . , Jn) in this
formula and we get

Res(f1, . . . , fn−1, U1J1 + · · ·+ UnJn) =

Disc(f1, . . . , fn−1)Res(f1, . . . , fn−1, U1X1 + · · ·+ UnXn).
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More generally, we have the

Proposition 3.7. For all d > 1 the following equality holds in kA
′:

Res(f1, . . . , fn−1, F (J1, . . . , Jn)) = Disc(f1, . . . , fn−1)d Res(f1, . . . , fn−1, F ).

Proof. Indeed, Lemma 3.3 shows that both polynomials Xd
i F (J1, . . . , Jn) and Jdi F (X1, . . . , Xn)

are homogeneous of the same degree in the variables X1, . . . , Xn and equal up to an element in the
ideal (f1, . . . , fn−1). It follows that

Res(f1, . . . , fn−1, X
d
i F (J1, . . . , Jn)) = Res(f1, . . . , fn−1, J

d
i F (X1, . . . , Xn))

and the claimed formula is obtained using the multiplicativity property of the resultants [Jou91,
§5.7]. �

An important property of the generic discriminant is that, similarly to the generic resultant, it
is universally a nonzero divisor.

Proposition 3.8. The discriminant Disc(f1, . . . , fn−1) ∈ kA is a nonzero divisor.

Proof. By specializing each polynomial fi to a product of generic linear form, the discriminant spe-
cializes to a primitive polynomial (the ideal generated by its coefficients is equal to k) by Corollary
3.17. It follows that Disc(f1, . . . , fn−1) ∈ kA itself a primitive polynomial in kA. Therefore, the
claimed result follows by Dedekind-Mertens Lemma. �

3.1.3. The degree of the discriminant. As inheritance of the resultant, the discriminant is multi-
homogeneous : it is homogeneous with respect to the coefficients of each polynomial f1, . . . , fn−1.
The following result gives the precise multi-degree of the discriminant.

Proposition 3.9. With the notation of §3.1.2, Disc(f1, . . . , fn−1) is a homogeneous polynomial in
kA of total degree

(n− 1)

n−1∏
i=1

di + (d1 + · · ·+ dn−1 − n)

(
n−1∑
i=1

d1 · · · dn−1

di

)
.

Moreover, for all i ∈ {1, . . . , n − 1} it is homogeneous with respect to the coefficients of the poly-
nomial fi of degree

d1 · · · dn−1

di

(di − 1) +

n−1∑
j=1

(dj − 1)

 . (3.1.6)

Proof. Let us fix an integer i ∈ {1, . . . , n − 1} and introduce a new variable t. We know that the
Jacobian polynomial Jn is homogeneous in the variables X1, . . . , Xn of degree

∑n−1
i=1 (di − 1). It

also obviously satisfies

Jn(f1, . . . , tfi, . . . , fn−1) = tJn(f1, . . . , fi, . . . , fn−1). (3.1.7)

Therefore, by multi-homogeneity property of the resultant [Jou91, 2.3(ii)], we deduce that

Res(f1, . . . , tfi, . . . , fn−1, Jn(f1, . . . , tfi, . . . , fn−1))

= t
d1···dn−1

di

∑n−1
j=1 (dj−1)

Res(f1, . . . , fn−1, Jn(f1, . . . , tfi, . . . , fn−1))

= t
d1···dn−1

di

∑n−1
j=1 (dj−1)

Res(f1, . . . , fn−1, tJn(f1, . . . , fn))

= t
d1···dn−1

di

∑n−1
j=1 (dj−1)+

∏n−1
i=1 diRes(f1, . . . , fn−1, Jn(f1, . . . , fn))

and

Res(f1, . . . , tfi, . . . , fn−1, Xn) = t
d1···dn−1

di Res(f1, . . . , fi, . . . , fn−1, Xn).
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From Definition 3.5 of the discriminant, it follows that

Disc(f1, . . . , tfi, . . . , fn−1) = t
d1···dn−1

di
((di−1)+

∑n−1
j=1 (dj−1))Disc(f1, . . . , fn−1)

as claimed. The total degree is obtained by adding all these partial degrees. �

Remark 3.10. Observe that the integers (3.1.6) are always even. This is expected because, as we
will see later on, in characteristic 2 it turns out that the discriminant is the square of an irreducible
polynomial.

3.1.4. The classical case n = 2. Let us show that our definition of the discriminant coincides with
the classical case n = 2.

Let f be a polynomial homogeneous in the variable X,Y of degree d > 2

f := VdX
d + Vd−1X

d−1Y + Vd−2X
d−2Y 2 + · · ·+ V1X

1Y d−1 + V0Y
d.

According to (3.1.4) we have

Res(f, J2(f)) = Disc(f)Res(f, Y ) ∈ k[V0, . . . , Vd].

But it is easy to see that Res(f, Y ) = Vd and that J2(f) = ∂f
∂X . Therefore we recover the usual

definition VdDisc(f) = Res(f, ∂f∂X ). Moreover, from Proposition 3.9 we also obtain that it is a
homogeneous polynomial in the coefficients of f , i.e. V0, . . . , Vd, of degree 2d− 2.

A lot of properties are known for this discriminant (see e.g. [AJ06] or [GKZ94, chapter 12.B])
and we will generalize most of them to the case of n − 1 homogeneous polynomials in n variables
in the sequel.

3.1.5. Vanishing of the discriminant. Assume that k is an algebraically closed field and let f1, . . .,
fn−1 be n− 1 homogeneous polynomials in k[X1, . . . , Xn] such that the variety

Y := V (f1, . . . , fn−1) ⊂ Pn−1
k

is finite. The following proposition says that the discriminant of f1, . . . , fn−1 vanishes if and only if
the polynomial system f1 = · · · = fn−1 = 0 has a multiple root.

Proposition 3.11. With the above notation, Disc(f1, . . . , fn−1) = 0 if and only if there exists a
point ξ ∈ Y such that Y is singular at ξ.

Proof. First, without loss of generality we can assume Y ∩ V (Xn) = ∅, so that the resultant
Res(f1, . . . , fn−1, Xn) is not equal to zero in k and

Disc(f1, . . . , fn−1) =
Res(f1, . . . , fn−1, Jn)

Res(f1, . . . , fn−1, Xn)
∈ k.

By the Poisson’s formula [Jou91, Proposition 2.7], we have the equality

Res(f1, . . . , fn−1, Jn)

Res(f1, . . . , fn−1, Xn)deg(Jn)
=
∏
ξ∈Y

Jn(ξ)µξ

where µξ denotes the multiplicity of ξ ∈ Y . It follows that Disc(f1, . . . , fn−1) = 0 if and only if
there exists a point ξ ∈ Y such that Jn(ξ) = 0.

Now, a classical necessary and sufficient condition for ξ ∈ Y to be a singular point of Y is
that Ji(ξ) = 0 for all i = 1, . . . , n (see e.g. [Har77, Chapter I, Theorem 5.1]). But from Lemma 3.3,
ii), we have Ji(ξ) = ξiJn(ξ) for all ξ ∈ Y and all i = 1, . . . , n − 1, where ξ = (ξ1 : ξ2 : · · · :
ξn−1 : 1) ∈ Y ⊂ Pn−1

k . Therefore, we deduce that ξ ∈ Y is a singular point of Y if and only if
Jn(ξ) = 0. �

This proposition gives a geometric interpretation of the discriminant of n − 1 homogeneous
polynomials in n variables. We will give a more precise description of its geometry in Section 3.3.
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3.2. Formulas and formal properties
In this section we give some properties of the discriminant. Thanks to the definition we gave of the
discriminant in terms of the resultant, it turns out that most of these properties can be derived from
the known ones of the resultant.

Hereafter R will denote an arbitrary commutative ring.

3.2.1. Elementary transformations. The discriminant of n−1 homogeneous polynomials f1, . . .,
fn−1 is invariant under a permutation of the fi’s. It is also invariant if one adds to one of the fi’s an
element in the ideal generated by the others.

Proposition 3.12. for all j = 1, . . . , n − 1, let fj be a homogeneous polynomial of degree dj > 1
in R[X1, . . . , Xn]. Then,

i) for any permutation σ of the set {1, . . . , n− 1} we have

Disc(fσ(1), . . . , fσ(n−1)) = Disc(f1, . . . , fn−1) in R.

ii) for all i ∈ {1, . . . , n− 1} we have

Disc(f1, . . . , fi +
∑
j 6=i

hi,jfj , . . . , fn−1) = Disc(f1, . . . , fn−1) in R,

where the hi,j’s are arbitrary homogeneous polynomials in R[X1, . . . , Xn] of respective de-
grees di − dj (therefore hi,j = 0 if di < dj).

Proof. Of course, it is sufficient to prove these properties in the generic case. The property ii) is an
immediate consequence of [Jou91, §5.9].

To prove i), we first remark that

Jσn := Jn(fσ(1), . . . , fσ(n−1)) = ε(σ)Jn(f1, . . . , fn−1).

Then, using [Jou91, §5.8] we deduce that

Res(fσ(1), . . . , fσ(n−1), J
σ
n ) = ε(σ)d1...dn−1Res(fσ(1), . . . , fσ(n−1), Jn)

= ε(σ)d1...dn−1ε(σ)d1...dn−1 deg(Jn)Res(f1, . . . , fn, Jn),

and

Res(fσ(1), . . . , fσ(n−1), Xn) = ε(σ)d1...dn−1Res(f1, . . . , fn−1, Xn).

From here the claimed result follows from (3.1.4) (with i = n) and the fact that

d1 . . . dn−1 deg(Jn) = d1 . . . dn−1

n−1∑
i=1

(di − 1)

is always an even integer. �

3.2.2. Reduction on the variables. Hereafter, for any polynomial f ∈ R[X1, . . . , Xn] we denote
by f (j) the polynomial obtained by substituting Xj with 0 in f . Notice that

f (j) ∈ R[X1, . . . , Xj−1, Xj+1, . . . , Xn].

Proposition 3.13 (n > 3). For all i = 1, . . . , n− 2, let fi be a homogeneous polynomial of degree
di > 1 in R[X1, . . . , Xn]. The following equality holds in R:

Disc(f1, . . . , fn−2, Xn) = (−1)d1...dn−2Disc(f
(n)
1 , . . . , f

(n)
n−2).
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Proof. It is sufficient to prove this formula in the generic context. From the definition of the discrim-
inant we thus have the equality

Res(f1, . . . , fn−2, Xn, Jn−1(f1, . . . , fn−2, Xn)) =

Disc(f1, . . . , fn−2, Xn)Res(f1, . . . , fn−2, Xn, Xn−1).

But, from (3.1.1) we deduce that

Jn−1(f1, . . . , fn−2, Xn) = −
∣∣∣∣ ∂(f1, . . . , fn−2, Xn)

∂(X1, . . . , Xn−2, Xn)

∣∣∣∣ = (−1)n
∣∣∣∣ ∂(f1, . . . , fn−2)

∂(X1, . . . , Xn−2)

∣∣∣∣ .
And since

Res(f1, . . . , fn−2, Xn, Jn−1(f1, . . . , fn−2, Xn)) = (−1)d1...dn−2
∑n−2
i=1 (di−1)

Res(f1, . . . , fn−2, Jn−1(f1, . . . , fn−2, Xn), Xn)

where d1 . . . dn−2

∑n−2
i=1 (di − 1) is even, it comes

Res(f1, . . . , fn−2, Xn, Jn−1(f1, . . . , fn−2, Xn)) =

Res(f
(n)
1 , . . . , f

(n)
n−2, Jn−1(f

(n)
1 , . . . , f

(n)
n−2)). (3.2.1)

Moreover, we also have

Res(f1, . . . , fn−2, Xn, Xn−1) = (−1)d1...dn−2Res(f1, . . . , fn−2, Xn−1, Xn)

= (−1)d1...dn−2Res(f
(n)
1 , . . . , f

(n)
n−2, Xn−1).

Now taking the ratio of both previous quantities we obtain,

(−1)d1...dn−2Res(f
(n)
1 , . . . , f

(n)
n−2, Jn−1(f

(n)
1 , . . . , f

(n)
n−2)) =

Disc(f1, . . . , fn−2, Xn)Res(f
(n)
1 , . . . , f

(n)
n−2, Xn−1)

so that, as claimed,

Disc(f1, . . . , fn−2, Xn) = (−1)d1...dn−2Disc(f
(n)
1 , . . . , f

(n)
n−2).

�

The following proposition and corollary give reductions of the discriminant in cases where
certain polynomials f1, . . . , fn−1 do not depend on all the variables X1, . . . , Xn.

Proposition 3.14 (n > 3). Let k ∈ {2, . . . , n − 1} and for all i = 1, . . . , n − 1 let fi be a
homogeneous polynomial of degree di > 1 in R[X1, . . . , Xn] such that

∑k−1
i=1 (di − 1) > 1. Assume

moreover that f1, . . . , fk−1 only depend on the variablesX1, . . . , Xk. Then, denoting for all integers
i = k, . . . , n− 1

f̂i = fi(0, . . . , 0, Xk+1, . . . , Xn) ∈ R[Xk+1, . . . , Xn],

we have the equality

Disc(f1, . . . , fn−1) = (−1)(n−k)
∏n−1
i=1 diDisc(f1, . . . , fk−1)

∏n−1
i=k di

Res(f̂k, . . . , f̂n−1)(
∏k−1
i=1 di)(

∑k−1
i=1 di−k)Res

(
f1, . . . , fn−1,

∣∣∣∣ ∂(fk, . . . , fn−1)

∂(Xk+1, . . . , Xn)

∣∣∣∣) .
Proof. As always, it is sufficient to prove this formula in the generic case. By definition we have

Res(f1, . . . , fn−1, X1)Disc(f1, . . . , fn−1) = Res(f1, . . . , fn−1, J1(f1, . . . , fn−1)).
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From the hypothesis, the Jacobian determinant involved in this formula decomposes into four square
blocks and one of them is identically zero. More precisely, one has

J1(f1, . . . , fn−1) =

∣∣∣∣∂(f1, . . . , fk−1)

∂(X2, . . . , Xk)

∣∣∣∣ ∣∣∣∣ ∂(fk, . . . , fn−1)

∂(Xk+1, . . . , Xn)

∣∣∣∣
and by multiplicativity of the resultant [Jou91, §5.7] we deduce

Res(f1, . . . , fn−1, J1(f1, . . . , fn−1)) = Res

(
f1, . . . , fn−1,

∣∣∣∣∂(f1, . . . , fk−1)

∂(X2, . . . , Xk)

∣∣∣∣)
× Res

(
f1, . . . , fn−1,

∣∣∣∣ ∂(fk, . . . , fn−1)

∂(Xk+1, . . . , Xn)

∣∣∣∣) .
Now, permuting polynomials in the resultant [Jou91, §5.8],

Res

(
f1, . . . , fn−1,

∣∣∣∣∂(f1, . . . , fk−1)

∂(X2, . . . , Xk)

∣∣∣∣) =

(−1)νRes

(
f1, . . . , fk−1,

∣∣∣∣∂(f1, . . . , fk−1)

∂(X2, . . . , Xk)

∣∣∣∣ , fk, . . . , fn−1

)
(3.2.2)

where ν := (n−k)(
∏n−1
i=1 di)(

∑k−1
i=1 (di−1)) > 1 and is even, and using Laplace’s formula [Jou91,

§5.10] this latter resultant is equal to

Res

(
f1, . . . , fk−1,

∣∣∣∣∂(f1, . . . , fk−1)

∂(X2, . . . , Xk)

∣∣∣∣)
∏n−1
i=k di

Res(f̂k, . . . , f̂n−1)(
∏k−1
i=1 di)

∑k−1
i=1 (di−1).

Similarly, we have

Res(f1, . . . , fn−1, X1) =

(−1)(n−k)(
∏n−1
i=1 di)Res(f1, . . . , fk−1, X1)

∏n−1
i=k diRes(f̂k, . . . , f̂n−1)(

∏k−1
i=1 di) (3.2.3)

and the claimed formula follows easily by gathering these computations. �

Corollary 3.15. Let k ∈ {1, . . . , n − 1} and for all i = 1, . . . , n − 1, let fi be a homogeneous
polynomial of degree di > 1 in R[X1, . . . , Xn]. Assume moreover that d1 > 2. If the polynomials
f1, . . . , fk only depend on the variables X1, . . . , Xk then Disc(f1, . . . , fn−1) = 0.

Proof. First assume that k > 2; since d1 > 2 we have
∑n−1
i=1 (di − 1) > 1. Since fk only

depends on the variables X1, . . . , Xk we deduce that, according to the notation of the previous
proposition, f̂k = 0. Consequently, using the formula of this proposition we immediately get that
Disc(f1, . . . , fn−1) = 0.

Now assume that k = 1; thus f1 = U1X
d1
1 . One may also assume that the polynomials

f2, . . . , fn−1 are generic in all the variables X1, . . . , Xn. It follows that Res(f1, . . . , fn−1, Xn) is
nonzero and we know that

Res(f1, . . . , fn−1, Xn)Disc(f1, . . . , fn−1) = Res(f1, . . . , fn−1, Jn(f1, . . . , fn−1)).

But since f1 = U1X
d1
1 we deduce that Xd1−1

1 divides Jn and consequently that the resultant
Res(f1, . . . , fn−1, Jn) vanishes. �
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3.2.3. Multiplicativity. We now describe the multiplicativity property of the discriminant, property
that was already known to Sylvester [Syl64b]. Recall that the discriminant of n − 1 homogeneous
polynomials of degree 1 equals 1 (the unit of the ground ring) by convention.

Proposition 3.16. Let f ′1, f ′′1 , f2, . . . , fn−1 be n homogeneous polynomials in R[X1, . . . , Xn] of
positive degree d′1, d

′′
1 , d2, . . ., dn−1 > 1, respectively. Then,

Disc(f ′1f
′′
1 , f2, . . . , fn−1) =

(−1)sDisc(f ′1, f2, . . . , fn−1)Disc(f ′′1 , f2, . . . , fn−1)Res(f ′1, f
′′
1 , f2, . . . , fn−1)2,

where s := d′1d
′′
1d2 . . . dn−1.

Proof. It is sufficient to prove this result in the generic case, so let us assume that f ′1, f
′′
1 , f2, . . . , fn

are generic polynomials. It is easy to see that

Jn(f ′1f
′′
1 , f2, . . . , fn) = f ′1Jn(f ′′1 , f2, . . . , fn) + f ′′1 Jn(f ′1, f2, . . . , fn) =: f ′1J

′′
n + f ′′1 J

′
n.

Assume first that deg(J ′′n) > 1 and deg(J ′n) > 1. Using [Jou91, §5.7 & §5.8] we obtain

Res(f ′1f
′′
1 , f2, . . . , fn−1, Jn)

= Res(f ′1, f2, . . . , fn−1, f
′′
1 J
′
n)Res(f ′′1 , f2, . . . , fn−1, f

′
1J
′′
n)

= (−1)sRes(f ′1, f
′′
1 , f2, . . . , fn−1)2Res(f ′1, f2, . . . , fn−1, J

′
n)Res(f ′′1 , f2, . . . , fn−1, J

′′
n)

where s := d′1d
′′
1d2 . . . dn−1. And since

Res(f ′1f
′′
1 , f2, . . . , fn−1, Xn) = Res(f ′1, f2, . . . , fn−1, Xn)Res(f ′′1 , f2, . . . , fn−1, Xn),

we deduce the expected formula by applying (3.1.4).
Assume now that deg(J ′n) = 0 and deg(J ′′n) > 1. Then, in the previous computations, the re-

sultant Res(f ′1, f2, . . . , fn−1, J
′
n) must be replaced by J ′n (under our hypothesis d′1d2 . . . dn−1 = 1).

But it turns out that, always since deg(J ′n) = 0, J ′n = Res(f ′1, f2, . . . , fn−1, Xn) and conse-
quently the whole formula remains exact. A similar argument shows that this formula is also exact
if deg(J ′n) = 1 and deg(J ′′n) > 0, and if deg(J ′n) = deg(J ′′n) > 0. �

Corollary 3.17. Let d1, . . . , dn−1 be n−1 integers greater or equal to 2 and let li,j , for 1 6 i 6 n−1
and 1 6 j 6 di, be linear forms in R[X1, . . . , Xn]. Then

Disc

 d1∏
j=1

l1,j , . . . ,

dn−1∏
j=1

ln−1,j

 = (−1)s
∏
I

det(l1,j1 , l2,j2 , . . . , ln−1,jn−1
, li,j)

2

where s := 1
2

∏n−1
i=1 di

∑n−1
i=1 (di − 1) and the product runs over the set

I := {(j1, . . . , jn−1, i, j) | 1 6 j1 6 d1, 1 6 j2 6 d2, . . . , 1 6 jn−1 6 dn−1,

1 6 i 6 n− 1 and 1 6 j 6 di such that j 6= ji}.

3.2.4. Covariance. Assume that n > 2 and suppose given a sequence of n − 1 positive integers
d1, . . . , dn−1 such that

∑n−1
i=1 (di − 1) > 1. For all d ∈ N set Id := {i ∈ {1, . . . , n}|di = d} and

define L := {d ∈ N|Id 6= ∅}. In this way, the set {1, . . . , n} is the disjoint union of Id with d ∈ L.
Let ϕ be a square matrix of size n− 1 with coefficients in R

ϕ =

 u1,1 · · · u1,n−1

...
...

un−1,1 · · · un−1,n−1

 .
We will say that ϕ is adapted to the sequence d1, . . . , dn if and only if

ui,j 6= 0⇒ di = dj .
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Equivalently, ϕ is adapted to the sequence d1, . . . , dn if and only if ϕ can be transformed by row and
column permutations into a block diagonal matrix whose diagonal blocs are given by ϕd := ϕ|Id×Id
for all d ∈ L; in particular det(ϕ) =

∏
d∈L det(ϕd) ∈ R.

Proposition 3.18. Assume that n > 2 and suppose given a sequence of n − 1 positive integers
d1, . . . , dn−1 such that

∑n−1
i=1 (di − 1) > 1 and a sequence of n − 1 homogeneous polynomials

f1, . . . , fn−1 in R[X1, . . . , Xn] of degree d1, . . . , dn−1 respectively. Then, for all i = 1, . . . , n − 1
and all matrix ϕ = (ui,j)16i,j6n−1 with coefficients in R adapted to d1, . . . , dn−1, the polynomial∑n−1
j=1 ui,jfj ∈ R is homogeneous of degree di and we have

Disc

n−1∑
j=1

u1,jfj , . . . ,

n−1∑
j=1

un−1,jfj

 =

(∏
d∈L

det(ϕd)
d1...dn−1((d−1)+

∑n−1
i=1

(di−1))
d

)
Disc(f1, . . . , fn−1).

Proof. By specialization, we can assume that the coefficients of the polynomials f1, . . . , fn−1 and
all the ui,j are distinct indeterminates so that R is the polynomial ring of these indeterminates over
the integers.

By definition of the discriminant we have

Res (f1, . . . , fn−1, Jn(f1, . . . , fn−1)) = Disc(f1, . . . , fn−1)Res(f1, . . . , fn−1, Xn) (3.2.4)

and

Res

n−1∑
j=1

u1,jfj , . . . ,

n−1∑
j=1

un−1,jfj , Jn

n−1∑
j=1

u1,jfj , . . . ,

n−1∑
j=1

un−1,jfj


= Disc

n−1∑
j=1

u1,jfj , . . . ,

n−1∑
j=1

un−1,jfj

Res

n−1∑
j=1

u1,jfj , . . . ,

n−1∑
j=1

un−1,jfj , Xn

 . (3.2.5)

Now, it is not hard to check that

Jn

n−1∑
j=1

u1,jfj , . . . ,

n−1∑
j=1

un−1,jfj

 = det(ϕ)Jn(f1, . . . , fn−1)

so that

Res

n−1∑
j=1

u1,jfj , . . . ,

n−1∑
j=1

un−1,jfj , Jn

n−1∑
j=1

u1,jfj , . . . ,

n−1∑
j=1

un−1,jfj


= det(ϕ)d1...dn−1Res

n−1∑
j=1

u1,jfj , . . . ,

n−1∑
j=1

un−1,jfj , Jn(f1, . . . , fn−1)

 .
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But since Jn(f1, . . . , fn−1) is a polynomial of degree
∑n−1
i=1 (di − 1) > 1, the covariance property

of the resultant [Jou91, §5.11] yields

Res

n−1∑
j=1

u1,jfj , . . . ,

n−1∑
j=1

un−1,jfj , Jn(f1, . . . , fn−1)


=

(∏
d∈L

det(ϕd)
d1...dn−1

∑n−1
i=1

(di−1)

d

)
Res(f1, . . . , fn, Jn(f1, . . . , fn−1))

and we deduce that

Res

n−1∑
j=1

u1,jfj , . . . ,

n−1∑
j=1

un−1,jfj , Jn

n−1∑
j=1

u1,jfj , . . . ,

n−1∑
j=1

un−1,jfj


= det(ϕ)d1...dn−1

(∏
d∈L

det(ϕd)
d1...dn−1

∑n−1
i=1

(di−1)

d

)
Res(f1, . . . , fn, Jn). (3.2.6)

Again by the covariance formula for resultants, we have

Res

n−1∑
j=1

u1,jfj , . . . ,

n−1∑
j=1

un−1,jfj , Xn

 =

(∏
d∈L

det(ϕd)
d1...dn−1

d

)
Res(f1, . . . , fn−1, Xn) (3.2.7)

and therefore, since det(ϕ) =
∏
d∈L det(ϕd), the comparison of (3.2.4), (3.2.5), (3.2.6) and (3.2.7)

gives the claimed formula. �

3.2.5. Reduction modulo δ. Recall from Lemma 3.3 that, for all 1 6 i, j 6 n we have

XiJj(f1, . . . , fn−1)−XjJi(f1, . . . , fn−1) ∈ δ.(f1, . . . , fn−1) ⊂ δ.A[X1, . . . , Xn] (3.2.8)

where δ := gcd(d1, . . . , dn−1). Considering the (cohomological) Koszul complex associated to the
sequence X1, . . . , Xn in the ring A/δ.A[X1, . . . , Xn]

0→ A

δ.A
[X1, . . . , Xn]

d1=t[X1,··· ,Xn]−−−−−−−−−−→
n⊕
i=1

A

δ.A
[X1, . . . , Xn]

d2−→ · · · ,

we notice that since n > 2, its cohomology groups H0 and H1 are both equal to 0. In addition,
the equations (3.2.8) imply that (J1, . . . , Jn) belongs to the kernel of d2. Therefore, we deduce that
there exists a polynomial ∆ ∈ A[X1, . . . , Xn] whose residue class in A/δ.A[X1, . . . , Xn] is unique
and such that

Ji(f1, . . . , fn−1) = Xi∆ mod δ.A[X1, . . . , Xn], 1 6 i 6 n. (3.2.9)

From here, we get the following property.

Proposition 3.19. With the above notation, we have the following equality in kA:

Disc(f1, . . . , fn−1) = Res(f1, . . . , fn−1,∆) mod δ.

Proof. From (3.2.9) and the multiplicativity of the resultant, we obtain that

Res(f1, . . . , fn−1, Jn) = Res(f1, . . . , fn−1, Xn)Res(f1, . . . , fn−1,∆) mod δ.
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By definition of the discriminant, it follows that

Res(f1, . . . , fn−1, Xn)Disc(f1, . . . , fn−1) =

Res(f1, . . . , fn−1, Xn)Res(f1, . . . , fn−1,∆) mod δ

from we deduce the claimed equality since Res(f1, . . . , fn−1, Xn) is a nonzero divisor in the ring
A/δ.A[X1, . . . , Xn] by Proposition 2.3. �

Obviously, this result is useless if δ = 1, but as soon as δ > 1 it allows to explicit the discrim-
inant as a single resultant modulo δ. For instance, suppose given the two quadrics

f1 := a0X
2
1 + a1X1X2 + a2X1X3 + a3X

2
2 + a4X2X3 + a5X

2
3 ,

f2 := b0X
2
1 + b1X1X2 + b2X1X3 + b3X

2
2 + b4X2X3 + b5X

2
3 .

We have δ = 2 and it is not hard to see that Ji = Xi∆ mod 2, i = 1, 2, 3, where

∆ = X1

∣∣∣∣ a1 a2

b1 b2

∣∣∣∣+X2

∣∣∣∣ a1 a4

b1 b4

∣∣∣∣+X3

∣∣∣∣ a2 a4

b2 b4

∣∣∣∣ .
It follows that

Disc(f1, f2) = Res(f1, f2,∆) mod 2.Z[a0, . . . , a5, b0, . . . , b5].

3.3. Inertia forms and the discriminant
The discriminant was originally introduced to give a condition for the existence of a singular root in a
polynomial system. The aim of this section is to show that the definition we gave of the discriminant
of n− 1 homogeneous polynomials in n variables (i.e. Definition 3.5) fits this goal.

Hereafter we take again the notation of Section 3.1: k is a commutative ring and for all i =
1, . . . , n− 1, n > 2, we set

fi(X1, . . . , Xn) :=
∑

|α|=di>1

Ui,αX
α ∈ kA[X1, . . . , Xn]di

where kA := k[Ui,α | |α| = di, i = 1, . . . , n − 1]. Notice that we will often omit the subscript k to
not overload the notation, but we will print it whenever there is a confusion or a need to emphasis it.

Now, we define the ideals of C = A[X1, . . . , Xn]

D = (f1, . . . , fn−1, J1, . . . , Jn), m = (X1, . . . , Xn)

and set B := C/D. The ring B is graded (setting weight(Xi) = 1) and we can thus consider the
projective scheme Proj(B) ⊂ Pn−1

A that corresponds set-theoretically to the points ((ui,α)i,α, x) ∈
Spec(A)× Pn−1

k such that the fi’s and the Ji’s vanish simultaneously. The scheme-theoretic image
of the projection

Proj(B)→ Spec(A)

is a closed subscheme of Spec(A) whose defining ideal is exactly

P := H0
m(B)0 = TFm(D)0

where we recall that

TFm(D) = ker

(
C →

n∏
i=1

BXi

)
. (3.3.1)

Proposition 3.20. If k is a domain then for all i = 1, . . . , n the ring BXi is a domain.
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Proof. For simplicity, we prove the claim for i = n; the other cases can be treated exactly in the
same way.

Let h1, h2 be two elements in C such that their product h1h2 vanishes in BXn (recall that
we have the canonical projection C → B = C/D). This means that, up to multiplication by some
power of Xn, this product is in the ideal D. Thus, using Lemma 3.3, ii), we deduce that there exists
ν ∈ N such that

Xν
nh1h2 ∈ (f1, . . . , fn−1, Jn).

Now, taking the additional notation of the subsection 2.1, we substitute each Ei by Ei− f̃i and obtain
that h1h2(Ei − f̃i) ∈ (J̃n) in A[X1, . . . , Xn−1] (since fi(Ei − f̃i) = 0). But by Lemma 3.1 J̃n is
prime in A[X1, . . . , Xn−1] and it follows that it divides h1(Ei− f̃i) or h2(Ei− f̃i), say h1(Ei− f̃i).
Therefore there exists µ ∈ N such that

Xµ
nh1 ∈ (f1, . . . , fn−1, Jn) ⊂ D,

that is to say h1 equals 0 in BXn , and the claim is proved. �

Corollary 3.21. Moreover, for all i = 1, . . . , n we have

TFm(D) = TF(Xi)(D) = ker(C → BXi), H
0
m(B) = H0

(Xi)
(B).

In particular,
P = A ∩ (f̃1, . . . , f̃n−1, J̃n) ⊂ A[X1, . . . , Xn−1].

As a consequence, if k is a domain then TFm(D) and P are prime ideals of kC and kA respectively.

Proof. The only thing to prove in that for all pairs of integers (i, j) ∈ {1, . . . , n}2 the variable Xi

is a nonzero divisor in the ring BXj . Indeed, this property implies immediately the equalities given
in this corollary (similarly to (2.1.2) and (2.1.3) for the case of the resultant). From here, assuming
moreover that k is a domain we deduce that TFm(D) and P are prime ideals by Proposition 3.20.

So let us fix a pair of integers (i, j) ∈ {1, . . . , n}2 and prove that Xi is a nonzero divisor in
kBXj (for any commutative ring k). By Proposition 3.20, this property holds if k is a domain. On the
one hand, this implies that ZBXj is a torsion-free abelian group, hence flat (as a Z-module). On the
other hand, this implies that the multiplications by Xi in ZBXj and Z/pZBXj , p a prime integer, are
all injective maps. Denoting by ZQ the quotient abelian group of the multiplication by Xi in ZBXj ,
we deduce that ZQ is a torsion-free, hence flat, abelian group. Indeed, the exact sequence of abelian
groups

0→ ZBXj
×Xi−−−→ ZBXj → ZQ→ 0 (3.3.2)

is a flat resolution of ZQ and it remains exact after tensorization by Z/pZ over Z for all prime integers
p. Therefore TorZ1 (Z/pZ, ZQ) = 0 and hence ZQ is torsion-free, hence flat. As a consequence, for
any commutative ring k we have TorZ1 (ZQ, k) = 0 and therefore the multiplication by Xi in kBXj
is an injective map, i.e. Xi is a nonzero divisor in kBXj . �

Lemma 3.22. Disc(f1, . . . , fn−1) belongs to the ideal P ⊂ kA.

Proof. By specialization, it is sufficient to prove this property under the assumption that k = Z.
Denote ρ := Res(f1, . . . , fn−1, Xn). From Definition 3.5 and Lemma 3.3, ii) we deduce that there
exists ν such that

Xν
nρDisc(f1, . . . , fn−1) ∈ (f1, . . . , fn−1, Jn).

Now, taking again the notation of subsection 2.1 and substituting each Ei by Ei − f̃i we deduce that
ρDisc(f1, . . . , fn−1)(Ei − f̃i) ∈ (J̃n) in A[X1, . . . , Xn−1]. But J̃n is prime in A[X1, . . . , Xn−1]
by Lemma 3.1, and it is coprime with ρ since ρ does not depend on the variables X1, . . . , Xn and
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is also prime. Therefore J̃n must divide Disc(f1, . . . , fn−1)(Ei − f̃i) and we obtain that there exists
µ ∈ N such that

Xµ
nDisc(f1, . . . , fn−1) ∈ (f1, . . . , fn−1, Jn) ⊂ D. (3.3.3)

In other words, Disc(f1, . . . , fn−1) ∈ TF(Xn)(D) = TFm(D). �

Theorem 3.23. If 2 is a nonzero divisor in k then P is generated by Disc(f1, . . . , fn−1). In par-
ticular, if k is moreover assumed to be a domain then Disc(f1, . . . , fn−1) is a prime polynomial in
kA.

Proof. We first prove this theorem under the assumption that k is a UFD. So assume that k is a UFD
and let a ∈ P = TFm(D) ∩ A. Then there exists ν ∈ N such that Xν

na ∈ (f1, . . . , fn−1, Jn).
Therefore we have the inclusion

(f1, . . . , fn−1, X
ν
na) ⊂ (f1, . . . , fn−1, Jn)

from we deduce, using the divisibility property of the resultant [Jou91, §5.6], that

Res(f1, . . . , fn−1, Jn) divides Res(f1, . . . , fn−1, X
ν
na).

Let us denote by ρ := Res(f1, . . . , fn−1, Xn) = Res(f
(n)
1 , . . . , f

(n)
n−1) (see Remark 3.6). From

Definition 3.5 and the multiplicativity property of the resultant [Jou91, §5.7] we obtain that

Disc(f1, . . . , fn−1) divides ad1...dn−1ρν−1 (3.3.4)

for all a ∈ P. But it turns out that Disc(f1, . . . , fn−1) and ρ are coprime in A. Indeed, since ρ is
irreducible, if D := Disc(f1, . . . , fn−1) and ρ are not coprime then ρ must divide D. Consider the
specialization where each polynomial fi is specialized to a product of generic linear forms. Then,
ρ specializes to a product of determinants where each determinant is a prime polynomial (see for
instance [BV88, Theorem 2.10]) in the coefficients of these linear forms except the ones of the
variablesXn. On the other hand,D specializes to a product of square of determinants (see Corollary
3.17), where each determinant is a prime polynomial in the coefficients of the generic linear form
and does depend on the ones of the variable Xn. We thus obtain a contradiction and deduce that ρ
and D are coprime. [BV88, Theorem 2.10] Therefore, from (3.3.4) and the fact that ρ is prime in A
we deduce that for all a ∈ P the discriminant D divides ad1...dn−1 and hence that

Pd1...dn−1 ⊂ (D) ⊂ P.

Since P is prime, we deduce that D = c.P p where c is an invertible element in k, p is a positive
integer and P is an irreducible element in A such that P is a principal ideal generated by P .

Now, always under the assumption that k is UFD, we will prove that p = 1 if 2 6= 0 in k.
Notice that we can assume d1 > 2 because if d1 = · · · = dn−1 = 1 then P = (D) = A and we
can permute polynomials by Proposition 3.12, i). To begin with, consider the specialization of the
polynomial f1 to a product of a generic linear form l and a generic polynomial f ′1 of degree d1 − 1.
By Proposition 3.16, D specializes, up to sign, to the product

Disc(l, f2, . . . , fn−1)Disc(f ′1, f2, . . . , fn−1)Res(l, f ′1, f2, . . . , fn−1)2. (3.3.5)

Since all the polynomials l, f ′1, f2, . . . , fn−1 are generic of positive degree, this product is nonzero.
Moreover, the factor Res(l, f ′1, f2, . . . , fn−1) is irreducible and is clearly coprime with the two
discriminants appearing in (3.3.5). It follows that necessarily p 6 2, i.e. p = 1 or p = 2.

To prove that p = 1, equivalently that D is irreducible, we proceed by induction on the in-
teger r :=

∑n−1
i=1 di. The intricate point is actually the initialization step. Indeed, assume that

D is irreducible for r = n (observe that D = 1 if r = n − 1). Then, using the specialization
(3.3.5), we deduce immediately by induction that both discriminants in (3.3.5) are irreducible and
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coprime, and consequently that D is also irreducible. Therefore, we have to show that if d1 = 2 and
d2 = · · · = dn−1 = 1 then D is irreducible. For that purpose, we consider the specialization

f1 = U1,1X
2
1 + U1,2X1X2 + U2,2X

2
2 +

∑n
i=3 Ui,iX

2
i

f2 = X3 − V3X1

...
fn−1 = Xn − VnX1

and the matrix

ϕ =


1 0 0 · · · 0
0 1 0 · · · 0

−V3 0 1
. . .

...
...

...
. . . . . . 0

−Vn 0 · · · 0 1


that corresponds to a linear change of coordinates such that fi = Xi+1 ◦ ϕ for all i = 2, . . . , n− 1.
Applying Proposition (3.27) then Proposition 3.13, we get

Disc(f1, f2, . . . , fn−1) = Disc(f1 ◦ ϕ−1, X3, . . . , Xn)

= Disc

(
U1,1X

2
1 + U1,2X1X2 + U2,2X

2
2 +

n∑
i=3

Ui,iV
2
i X

2
1

)

= Disc

((
U1,1 +

n∑
i=3

Ui,iV
2
i

)
X2

1 + U1,2X1X2 + U2,2X
2
2

)

= U2
1,2 − 4U2,2

(
U1,1 +

n∑
i=3

Ui,iV
2
i

)
.

Since 2 6= 0 in k, this is an irreducible polynomial. Therefore, we deduce that necessarily p =
1, i.e. that D = c.P . Since c.P also generates P = (P ), we conclude that D is an irreducible
polynomial that generates P. This concludes the proof of the theorem under the assumptions that k
is a UFD and 2 6= 0 in k.

It remains to show that this theorem holds with the single assumption that 2 is a nonzero divisor
in k, k being an arbitrary commutative ring. For that purpose, consider the exact sequence of abelian
groups

0→ ZA
×D−−→ ZA→ ZBXn → E → 0 (3.3.6)

where the map on the left is the multiplication by D, the map on the middle is the canonical one
and where E is the cokernel of this latter. By what we have just proved above, this sequence is exact
and remains exact after tensorization by Z/pZ over Z for all prime integers p 6= 2 (they are all
UFD). Since ZA and ZBXn are torsion-free, the exact sequence (3.3.6) is a flat resolution of E and
therefore for all integers i > 2 the abelian group TorZi (−, E) is supported on V ((2)). Now, let M
be an abelian group without 2-torsion. The abelian group M(2) is a flat Z(2)-module and hence for
all i > 1 we have

TorZi (M,E)(2) ' Tor
Z(2)

i (Z(2) ⊗M,Z(2) ⊗ E) ' Tor
Z(2)

i (M(2),Z(2) ⊗ E) = 0.

It follows that TorZi (M,E)(p) = 0 for all i > 2 and all prime integers p, so that TorZi (M,E) = 0
for all i > 2. Consequently, since 2 is a nonzero divisor in k, k has no 2-torsion and we deduce that
the sequence obtained by tensorization of (3.3.6) by k over Z

0→ kA
×D−−→ kA→ kBXn → k ⊗ E → 0
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is exact and the theorem is proved. �

It is reasonable to ask what happens if 2 is a zero divisor in k. As shown in [AJ06, §8.5.2], one
can not expect in this case that the discriminant generates P, nor even that P is a principal ideal.
Indeed, in loc. cit. the authors exhibit an example where P is not a principal ideal with the settings
n = 2, d1 = 2 and k = Z/2rZ with r > 2. Nevertheless, we will show in the following theorem
that the situation is not so bad if k is assumed to be a domain.

Theorem 3.24. Assume that k is a domain and that 2 = 0 in k. Then

Disc(f1, . . . , fn−1) = P 2

where P is a prime polynomial that generates P.

Proof. We first prove this theorem under the stronger assumption that k is a UFD such that 2 = 0
in k. To begin with, recall that in the proof of Theorem 3.23 it is shown that there exists a prime
element P ∈ A and an integer p 6 2 such that the discriminant D := Disc(f1, . . . , fn−1) satisfies
D = c.P p, P being a generator of the prime and principal ideal P. We will show that p = 2 under
our assumptions. Our strategy is based on the use of a Mertens’ formula that allows to rely on a
discriminant of a unique bivariate and homogeneous polynomial. Indeed, in this case (i.e. n = 2)
it is known that the claimed result holds [AJ06, Proposition 60] (see also Theorem 4.26 in the case
n = 2 for a self-contained reference).

Introduce some notation related to the Mertens’ formulae given in the appendix at the end of
this paper. Let U1, . . . , Un be new indeterminates and define

θ(U1, . . . , Un) := Res(f1, . . . , fn−1,

n∑
i=1

UiXi) ∈ A[U1, . . . , Un]

and θi(U1, . . . , Un) := ∂θ/∂Ui ∈ A[U1, . . . , Un] for all i = 1, . . . , n. In addition, let V1, . . . , Vn,
W1, . . . ,Wn, X,Y be a collection of some other new indeterminates and consider the ring mor-
phisms

ρ : A[U1, . . . , Un] → A[V1, . . . , Vn,W1, . . . ,Wn][X1, . . . , Xn]

Ui 7→ Vi(

n∑
j=1

WjXj)−Wi(

n∑
j=1

VjXj)

and

ρ : A[U1, . . . , Un] → A[V1, . . . , Vn,W1, . . . ,Wn][X,Y ]

Ui 7→ ViX +WiY.

To not overload the notation, we will sometimes denote a collection of variables with its correspond-
ing letter underlined. For instance, V1, . . . , Vn will be shortcut by V .

Our aim is to show that the multivariate discriminant Disc(f1, . . . , fn) ∈ A divides the bivari-
ate discriminant DiscX,Y (ρ) ∈ A[V ,W ]. To begin with, introduce two collections of new indeter-
minates t1, . . . , tn and Z1, . . . , Zn, and define the matrix

ϕ :=


tn 0 · · · 0 Z1

0 tn
...

... Z2

...
. . . . . . 0

...
0 · · · 0 tn Zn−1

−t1 −t2 · · · −tn−1 Zn

 .
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Applying the base change formula for the resultant [Jou91, §5.12], we get

θZ := Res(f1 ◦ ϕ, . . . , fn−1 ◦ ϕ, (
n∑
i=1

UiXi) ◦ ϕ)

= det(ϕ)d1...dn−1θ(U) = t(n−2)d1...dn−1
n

(
n∑
i=1

tiZi

)d1...dn−1

θ(U) (3.3.7)

in the extended ring A[U, t, Z]. Now, set fn :=
∑n
i=1 UiXi. Having in mind to use Corollary 2.6,

we need to identify for all i, j = 1, . . . , n the coefficient, say Vi,j , of the monomial XjX
di−1
n in

the polynomial fi ◦ ϕ. The coefficients Vi,n are easily seen to be equal to fi(Z1, . . . , Zn) since one
only has to evaluate fi ◦ ϕ at X1 = · · · = Xn−1 = 0 and Xn = 1. Then, to get the coefficients
Vi,j with j 6= n, we have to differentiate fi ◦ ϕ with respect to Xj and finally evaluate the result at
X1 = · · · = Xn−1 = 0 and Xn = 1; we find

Vi,j = tn
∂fi
∂Xj

(Z1, . . . , Zn)− tj
∂fi
∂Xn

(Z1, . . . , Zn), j 6= n.

We claim that

D := det (Vi,j)i,j=1,...n =

(
n∑
i=1

UiZi

)
tn−2
n ∆t mod (f1(Z), . . . , fn−1(Z)) (3.3.8)

in A[U, t, Z], where ∆t stands for the Jacobian matrix

∆t :=
∂(f1, . . . , fn−1,

∑n
i=1 tiXi)

∂(X1, . . . , Xn)
(Z1, . . . , Zn) ∈ A[t, Z].

Indeed, from the definition, it is easy to see that

D = (

n∑
i=1

UiZi)

∣∣∣∣∣∣∣∣
tn

∂f1
∂X1

(Z)− t1 ∂f1
∂Xn

(Z) · · · tn
∂f1

∂Xn−1
(Z)− tn−1

∂f1
∂Xn

(Z)
...

...
tn
∂fn−1

∂X1
(Z)− t1 ∂fn−1

∂Xn
(Z) · · · tn

∂fn−1

∂Xn−1
(Z)− tn−1

∂fn−1

∂Xn
(Z)

∣∣∣∣∣∣∣∣
mod (f1(Z), . . . , fn−1(Z)).

Denote by M the determinant appearing in this equality. Then, it is clear that

tnM =

∣∣∣∣∣∣∣∣∣∣
tn

∂f1
∂X1

(Z) · · · tn
∂f1

∂Xn−1
(Z) ∂f1

∂Xn
(Z)

...
...

...
tn
∂fn−1

∂X1
(Z) · · · tn

∂fn−1

∂Xn−1
(Z) ∂fn−1

∂Xn
(Z)

tnt1 · · · tntn−1 tn

∣∣∣∣∣∣∣∣∣∣
= tn−1∆t

and (3.3.8) is proved. Therefore, by Corollary 2.6 there exists H1 ∈ A[U, t, Z] such that

θZ −DH1 ∈ (f1(Z), . . . , fn−1(Z),

n∑
i=1

UiZi)
2

and hence, using (3.3.7) and (3.3.8), we obtain that

t(n−2)d1...dn−1
n

(
n∑
i=1

tiZi

)d1...dn−1

θ(U) ∈f1(Z), . . . , fn−1(Z),

(
n∑
i=1

UiZi

)
tn−2
n ∆t,

(
n∑
i=1

UiZi

)2
 .
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Applying the operator
∑n
i=1 ti∂(−)/∂Ui, we get

t(n−2)d1...dn−1
n

(
n∑
i=1

tiZi

)d1...dn−1 n∑
i=1

tiθi(U) ∈(
f1(Z), . . . , fn−1(Z),

(
n∑
i=1

tiZi

)
tn−2
n ∆t,

(
n∑
i=1

UiZi

))
.

Now, we send this relation through the morphism ρ and substituteX toZ. It turns out that
∑n
i=1 UiZi

is sent to zero and hence we obtain that

t(n−2)d1...dn−1
n

(
n∑
i=1

tiZi

)d1...dn−1 n∑
i=1

tiρ(θi)(Z) ∈ (f1(Z), . . . , fn−1(Z),∆t) .

By the divisibility property of the resultant [Jou91, §5.6], we deduce that Res(f1, . . . , fn−1,∆t)
divides

Res

f1, . . . , fn−1, t
(n−2)d1...dn−1
n

(
n∑
i=1

tiZi

)d1...dn−1 n∑
i=1

tiρ(θi)(Z)

 .

But by definition,

Res(f1, . . . , fn−1,∆t) = Disc(f1, . . . , fn−1)Res(f1, . . . , fn−1,

n∑
i=1

tiXi)

and by the second Mertens’ formula and the multiplicativity property of the resultant we have

Res

f1, . . . , fn−1, t
(n−2)d1...dn−1
n

(
n∑
i=1

tiZi

)d1...dn−1 n∑
i=1

tiρ(θi)(Z)

 =

(−1)d1...dn−1t
(n−2)d21...d

2
n−1

n DiscX,Y (ρ(θ))Res(f1, . . . , fn−1,

n∑
i=1

tiXi)
d1...dn−1+1.

Since Disc(f1, . . . , fn−1) and Res(f1, . . . , fn−1,
∑n
i=1 tiXi) are coprime (the latter is irreducible

and depends on twhich is not the case of the discriminant) we deduce that there existsH ∈ A[V ,W ]
such that

DiscX,Y (ρ(θ)) = HDisc(f1, . . . , fn).

To finish the proof, we will show that H and Disc(f1, . . . , fn) are coprime, so that p must be
equal to 2 since Disc(ρ(θ)) is a square, as a specialization of a square. For that purpose, we proceed
as in the proof of Lemma A (in the appendix): we specialize each polynomial fi, i = 1, . . . , n − 1
to the product of di generic linear forms

li,j := Ui,j,1X1 + Ui,j,1X2 + · · ·+ Ui,j,nXn =

di∑
r=1

Ui,j,rXr, i = 1, . . . , n, j = 1, . . . , di.

After this specialization, we get (see the proof of Lemma A)

Disc(ρ(θ)) =

±
∏
λ<µ

(∆λ(V1, . . . , Vn)∆µ(W1, . . . ,Wn)−∆λ(W1, . . . ,Wn)∆µ(V1, . . . , Vn))
2
.
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On the other hand, Proposition 3.17 yields

Disc

 d1∏
j=1

l1,j , . . . ,

dn−1∏
j=1

ln−1,j

 = ±
∏
I

det(l1,j1 , l2,j2 , . . . , ln−1,jn−1
, li,j)

2.

Moreover, if λ = (j1, . . . , jn−2, j
′
n−1) and µ = (j1, . . . , jn−2, j

′′
n−1) then we have the equality

∆λ(V1, . . . , Vn)∆µ(W1, . . . ,Wn)−∆λ(W1, . . . ,Wn)∆µ(V1, . . . , Vn) =

det(l1,j1 , l2,j2 , . . . , ln−1,j′n−1
, ln−1,j′′n−1

)× det(l1,j1 , l2,j2 , . . . , V,W )

(it is easy to check this formula in the case n = 2; then the general case can be deduced from this
by developing each determinant in this equality with respect to their two last columns). Therefore,
H and Disc(f1, . . . , fn) are coprime. So we have proved that D = c.P 2 under the assumptions k is
a UFD and 2 = 0 in k.

Now, assume that k is a domain such that 2 = 0, and set F := Z/2Z for simplicity. The
injective map F ↪→ k is flat for k is a torsion-free F -module (k is not the trivial ring). Therefore, the
canonical exact sequence (see Corollary 3.21)

0→ FTFm(D)→ FC → FBXn

remains exact after tensorization by k over F . Since FC ⊗F k ' kC and FBXn ⊗F k ' kBXn we
deduce that

kTFm(D) ' FTFm(D)⊗F k
and hence that kP ' FP ⊗F k. Moreover, F is a UFD and hence we have proved that FD = P 2

where P is a prime element that generates FP (observe that the unit c is necessarily equal to 1
in F ). Considering the specialization ρ : FA → kA, it follows that ρ(P ) generates kP and kD =
ρ(FD) = ρ(P )2 (by definition of the discriminant) and this concludes the proof of this theorem. �

Before closing this section, we give a refined relationship for the discriminant. Let R be a
commutative ring and suppose given f1, . . . , fn−1 homogeneous polynomials in R[X1, . . . , Xn] of
respective positive degree d1, . . . , dn−1. Recall the notation

f̃i(X1, . . . , Xn−1) := fi(X1, . . . , Xn−1, 1) ∈ R[X1, . . . , Xn−1]

(and similarly for J̃n). An immediate consequence of the proof of Lemma 3.22 (see (3.3.3)) is that

Disc(f1, . . . , fn−1) ∈ (f̃1, . . . , f̃n−1, J̃n) ⊂ A[X1, . . . , Xn−1].

The following theorem, which appears in [AJ06] for the case n = 2, improves this result.

Theorem 3.25. With the above notation we have

Disc(f1, . . . , fn−1) ∈ R ∩
(
f̃1, . . . , f̃n−1, J̃n

2
)
⊂ R[X1, . . . , Xn−1].

Proof. As always, it is sufficient to prove this theorem in the generic case of Section 3.1, that is to
say f1, . . . , fn−1 are supposed to be homogeneous polynomials in A[X1, . . . , Xn], where A is the
universal coefficient ring, of respective positive degree d1, . . . , dn−1. We recall that Jn denotes the
Jacobian determinant | ∂(f1,...,fn−1)

∂(X1,...,Xn−1) | and that for any polynomial P in X1, . . . , Xn we denote by P̃

(resp. P ) the polynomial in X1, . . . , Xn−1 obtained by substituting Xn by 1 (resp. 0) in P .
Let us introduce the new indeterminates T1, . . . , Tn. Setting δ := deg(Jn) =

∑n−1
i=1 (di − 1),

we consider both resultants

ρ := Res(f1, . . . , fn−1, Xn) = Res(f1, . . . , fn−1) ∈ A,

R := Res(f1 − T1X
d1
n , . . . , fn−1 − Tn−1X

dn−1
n , Jn − TnXδ

n) ∈ A[T1, . . . , Tn].
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Since the fi’s are generic polynomials, we know that ρ is an irreducible element in A generating the
inertia forms ideal

T := TF(X1,...,Xn−1)(f1, . . . fn−1)0 = TF(X1,...,Xn)(f1, . . . , fn−1, Xn)0 ⊂ A.

From Lemma 3.3, ii) (take i = 1, . . . , n − 1 and j = n), we deduce that Jn ∈ T . Consequently,
polynomials f1 − T1X

d1
n , . . . , fn−1 − Tn−1X

dn−1
n and Jn − TnX

δ
n are in T ⊗A A[T1, . . . , Tn]

and it follows that R itself is in T ⊗A A[T1, . . . , Tn]. This implies that ρ divides R: there exists
H(T1, . . . , Tn) ∈ A[T1, . . . , Tn] such that

R = ρH(T1, . . . , Tn) ∈ A[T1, . . . , Tn].

This polynomial H have the two following important properties:

• H(0, . . . , 0) = Disc(f1, . . . , fn−1) ∈ A (by (3.1.4)),
• H(f̃1, . . . , f̃n−1, J̃n) = 0 ∈ A[X1, . . . , Xn−1] (by (2.2.2)).

Therefore H(T1, . . . , Tn) gives (similarly to (2.2.2) for the resultant) an explicit expression of the
discriminant of f1, . . . fn−1 as a polynomial in f̃1, . . . , f̃n−1, J̃n with coefficients in A and without
constant term, i.e. as an element in J̃nA[f̃1, . . . , f̃n−1, J̃n]+

∑n−1
i=1 f̃iA[f̃1, . . . , f̃n−1, J̃n].We claim

that the coefficient of H (seen as a polynomial in the Ti’s) of the monomial Tn is zero, and this
implies our theorem.

To prove this claim, it is sufficient to prove the same claim for R ∈ A[T1, . . . , Tn], and even,
by performing the specialization (which leaves Jn invariant)

fi 7→ fi + TiX
di
n for all i = 1, . . . , n− 1,

for the resultant
Res(f1, . . . , fn−1, Jn − TnXδ

n) ∈ A[Tn].

Let K be the quotient field of A and K its algebraic closure. Then the fi’s have d1 . . . dn−1 simple
roots, none at infinity, in Pn−1

K
. As in the proof of Proposition 3.11, the Poisson’s formula gives

Res(f1, . . . , fn−1, Jn − TnXδ
n)

Res(f1, . . . , fn−1)δ
=
∏
ξ∈I

(J̃n(ξ)− Tn),

where I := {ξ ∈ An−1

K
: f1(ξ) = · · · = fn−1(ξ) = 0}. But the coefficient of Tn, up to a nonzero

multiplicative constant, equals ∏
ξ∈I

J̃n(ξ)

 .

∑
ξ∈I

1

J̃n(ξ)

 .

This latter quantity vanishes since its second factor is zero by the well known Jacobi formula. �

Remark 3.26. Observe that we actually proved that

Disc(f1, . . . , fn−1) ∈ J̃n
2
A[f̃1, . . . , f̃n−1, J̃n] +

n−1∑
i=1

f̃iA[f̃1, . . . , f̃n−1, J̃n].

3.4. The base change formula
In this section, we investigate the behavior of the discriminant of n−1 homogeneous polynomials in
n variables under polynomial compositions. Although the situation is much more involved compared
to the case of the resultant [Jou91, §5.12], we provide a detailed base change formula. We begin with
the case of a linear change of coordinates.
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Proposition 3.27. Let R be a commutative ring and fi (i = 1, . . . , n − 1) be a homogeneous
polynomial of degree di > 1 in R[X1, . . . , Xn]. Given a matrix ϕ = [ci,j ]16i,j6n with entries in R
and denoting, for all f ∈ R[X1, . . . , Xn],

f ◦ ϕ(X1, . . . , Xn) := f

c1,1X1 + · · ·+ c1,nXn, . . . ,

n∑
j=1

ci,jXj , . . . ,

n∑
j=1

cn,jXn

 ,

we have

Disc(f1 ◦ ϕ, . . . , fn−1 ◦ ϕ) = det(ϕ)d1...dn−1(
∑n−1
i=1 (di−1))Disc(f1, . . . , fn−1).

Proof. We prove this proposition in the generic case. By Definition 3.5, we have

Res(f1 ◦ ϕ, . . . , fn−1 ◦ ϕ,Xn ◦ ϕ)Disc(f1 ◦ ϕ, . . . , fn−1 ◦ ϕ)

= Res(f1 ◦ ϕ, . . . , fn−1 ◦ ϕ, Jn(f ◦ ϕ)).

Now, since Jn(f ◦ ϕ) = Jn(f1, . . . , fn−1) ◦ [ϕ].det(ϕ) (the classical formula for changing vari-
ables), we deduce from [Jou91, §5.12] and the homogeneity of the resultant that the numerator of
the previous display is equal to

det(ϕ)d1...dn−1Res(f1, . . . , fn−1, Jn) det(ϕ)d1...dn−1
∑n−1
i=1 (di−1),

and the denominator is equal to

Res(f1, . . . , fn−1, Xn) det(ϕ)d1,...,dn−1 .

The result follows by simplifying det(ϕ)d1,...,dn−1 in both previous equalities. �

Corollary 3.28. Take again the notation of §3.1.2. Let m be a fixed integer in {1, . . . , n} and define
a grading on the ring kA = k[Ui,α | |α| = di] by

weight(Ui,α1,...,αn) := αm.

Then Disc(f1, . . . , fn−1) ∈ kA is homogeneous of total weight

d1 . . . dn−1

n−1∑
i=1

(di − 1).

Proof. It is an immediate corollary of Proposition 3.27 by taking the diagonal matrix ϕ = [ci,j ]
where cm,m = t, where t be a new indeterminate, and ci,i = 1 if i 6= m. �

We now turn to the general situation.

Proposition 3.29. For all i = 1, . . . , n− 1, let fi be a homogeneous polynomial of degree di > 1 in
R[X1, . . . , Xn], whereR is a commutative ring. If g1, . . . , gn are n homogeneous polynomials of the
same degree d > 2 inR[X1, . . . , Xn] then, denoting fi◦g := fi(g1, . . . , gn) for all i = 1, . . . , n−1,
we have

dd
n−1 ∏n−1

i=1 diDisc(f1 ◦ g, . . . , fn−1 ◦ g) = Disc(f1, . . . , fn−1)d
n−1

Res(g1, . . . , gn)d1...dn−1((
∑n−1
i=1 (di−1))−1)Res(f1 ◦ g, . . . , fn−1 ◦ g, J(g1, . . . , gn)).

Proof. As always, we assume that we are in the generic situation over the integers, which is suffi-
cient to prove this formula. Let us introduce the polynomials F := U1g1 + · · · + Ungn which is
homogeneous of degree d in the variables X1, . . . , Xn. Then by (3.1.5) we get

dd
n−1 ∏n−1

i=1 diDisc(f1 ◦ g, . . . , fn−1 ◦ g) =
Res(f1 ◦ g, . . . , fn−1 ◦ g, J(f ◦ g, F ))

Res(f1 ◦ g, . . . , fn−1 ◦ g, F )
.
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But

J(f1 ◦ g, . . . , fn−1 ◦ g, F ) = J(f1, . . . , fn−1,

n∑
i=1

UiXi) ◦ g × J(g1, . . . , gn)

and deg(J(g1, . . . , gn)) = n(d−1) > 1. By the base change formula for the resultant [Jou91, §5.12]
we deduce that, denoting l :=

∑n
i=1 UiXi and using obvious notation,

Res(f ◦ g, J(f ◦ g, F )) = Res(f ◦ g, J(f1, . . . , fn−1, l) ◦ g)Res(f ◦ g, J(g)) =

Res(f, J(f1, . . . , fn−1, l))
dn−1

Res(g1, . . . , gn)d1...dn−1(
∑n−1
i=1 (di−1))Res(f ◦ g, J(g))

and

Res(f1 ◦ g, . . . , fn−1 ◦ g, F ) = Res(f1, . . . , fn−1, l)
dn−1

Res(g1, . . . , gn)d1,...dn−1 .

Therefore the claimed formula follows. �

This first base change formula is not completely factorized. Indeed, it is not hard to see that
Res(g1, . . . , gn)d1...dn−1 divides Res(f ◦ g, J(g1, . . . , gn)) and this latter must contain other factors
by degree evidence. Let us state this property more precisely.

Lemma 3.30. There exists a polynomial in the coefficients of the fi’s and the gi’s, denoted K(f, g),
such that

Res(f ◦ g, J(g1, . . . , gn)) = dd
n−1 ∏n

i=1 diRes(g1, . . . , gn)
∏n
i=1 diK(f, g).

Proof. As always, we assume that we are in the generic situation over the integers, which is sufficient
to prove this formula. For all i = 1, . . . , n− 1, it is clear that fi ◦ g ∈ (g1, . . . , gn)di . Moreover, we
also have that XnJ(g1, . . . , gn) ∈ (g1, . . . , gn). Therefore, applying the general divisibility lemma
for the resultant [Jou91, Proposition 6.2.1], we deduce that Res(g1, . . . , gn)

∏n
i=1 di divides

Res(f ◦ g,XnJ(g1, . . . , gn)) = Res(f ◦ g, J(g1, . . . , gn))Res(f ◦ g,Xn).

Now, we claim that Res(g1, . . . , gn) and Res(f ◦ g,Xn) are relatively prime, which concludes the
proof. Indeed, Res(g1, . . . , gn) being irreducible, if it divides Res(f ◦ g,Xn), then it must divides
any specialization of this latter resultant where the gi’s are left generic. So, if we specialize each
polynomial fi to Xdi

i then this resultant specialize to Res(g1, . . . , gn−1, Xn) which is irreducible
and independent of the polynomial gn. Therefore, we obtain a contradiction. �

By gathering Proposition 3.29 and Lemma 3.30, we are ready to give a base change formula
which is completely factorized.

Theorem 3.31. With the notation of Proposition 3.29 and Lemma 3.30, we have

Disc(f1 ◦ g, . . . , fn−1 ◦ g) = Disc(f1, . . . , fn−1)d
n−1

Res(g1, . . . , gn)d1...dn−1
∑n−1
i=1 (di−1)K(f1, . . . , fn−1, g1, . . . , gn).

The polynomialK(f, g) is homogeneous with respect to the coefficients of the polynomials g1, . . . , gn
of degree

n(n− 1)(d− 1)dn−2
n∏
i=1

di

and, for all = 1, . . . , n − 1, it is homogeneous with respect to the coefficients of the polynomial fi
of degree

n(d− 1)dn−2

(
d1 . . . dn

di

)
.

Moreover, if k is a domain then K(f1, . . . , fn−1, g1, . . . , gn) ∈ kA satisfies to the following proper-
ties:
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i) K(f, g) is irreducible if 2 6= 0 in k,
ii) K(f, g) is the square of an irreducible polynomial if 2 = 0 in k.

Proof. The first equality follows directly from Proposition 3.29 and Lemma 3.30. The computations
of the degrees of K can be deduced from this formula and the degrees for the discriminant and the
resultant. Indeed, since for all i = 1, . . . , n− 1 the polynomial fi ◦ g is homogeneous of degree ddi
in the Xi’s, by Proposition 3.9 we deduce that Disc(f1 ◦ g, . . . , fn−1 ◦ g) is homogeneous of degree

Di := dn−2

∏n−1
j=1 dj

di

(ddi − 1) +

n−1∑
j=1

(ddj − 1)


with respect to the coefficients of the polynomial fi and of degree

D :=

n−1∑
i=1

diDi = ndn−2

n−1∏
j=1

dj

 n−1∑
i=1

(ddi − 1)

with respect to the coefficients of the polynomials g1, . . . , gn. Therefore, it follows that K is homo-
geneous with respect to the coefficients of the polynomial fi of degree

Di − dn−1

∏n−1
j=1 dj

di

(di − 1) +

n−1∑
j=1

(dj − 1)

 = n(d− 1)dn−2

(
d1 . . . dn

di

)
and is homogeneous with respect to the coefficients of the polynomials g1, . . . , gn of degree

D − ndn−1

(
n−1∏
i=1

di

)
n−1∑
i=1

(di − 1) = n(n− 1)(d− 1)dn−2
n∏
i=1

di

since Res(g1, . . . , gn) is homogeneous of degree ndn−1 with respect to the coefficients of the poly-
nomials g1, . . . , gn.

Now, we turn to the proof of the irreducibility of K. First we observe that it is sufficient to
prove the claimed properties in Frac(k) so that we will always work in a UFD. We begin with the
case where 2 6= 0 in k. We will proceed by induction on the integer r = d1 + d2 + · · · + dn−1.
The difficult point is actually to prove this irreducibility property for r = n − 1, that is to say
for the case d1 = · · · = dn−1 = 1. Indeed, let us assume this for a moment and suppose that
r > n − 1. Then, at least one of the degree di is greater or equal to 2 and we can assume without
loss of generality that it is d1 by permuting the fi’s if necessary. Consider the specialization that
sends f1 to the product of a generic form l and a generic polynomial f ′1 of degree d1 − 1. Lemma
3.30 implies that K has a multiplicativity property with respect to the polynomial f1, . . . , fn, so
that this specialization sends K(f1, . . . , fn) (we omit the gi’s in the notation for simplicity) to the
product K(l, f2, . . . , fn)K(f ′1, f2, . . . , fn). Now, if K is reducible then all its irreducible factors
depending on the polynomial f1 must depend on l and f ′1 after the above specialization. Therefore,
since K(l, f2, . . . , fn) are K(f ′1, f2, . . . , fn) are both irreducible by our inductive hypothesis and
distinct, we deduce that K(f1, . . . , fn) is also irreducible.

So, it remains to prove that K is irreducible in the case d1 = · · · = dn−1 = 1. Set fi =∑n
j=1 Ui,jXj for all i = 1, . . . , n − 1, introduce new indeterminates W1, . . . ,Wn and define the

determinant

Λ :=

∣∣∣∣∣∣∣∣∣∣∣

U1,1 U1,2 · · · U1,n

U2,1 U2,2 · · · U2,n

...
...

...
Un−1,1 Un−1,2 · · · Un−1,n

W1 W2 · · · Wn

∣∣∣∣∣∣∣∣∣∣∣
.
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By (3.1.5) and the covariance property of resultants [Jou91, §5.11], we have

Res

(
f1 ◦ g, . . . , fn−1 ◦ g, J

(
f1 ◦ g, . . . , fn−1 ◦ g,

n∑
i=1

Wigi

))

= dd
n−1

Res

(
f1 ◦ g, . . . , fn−1 ◦ g,

n∑
i=1

Wigi

)
Disc(f1 ◦ g, . . . , fn−1 ◦ g)

= dd
n−1

Λd
n−1

Res(g1, . . . , gn)Disc(f1 ◦ g, . . . , fn−1 ◦ g).

On the other hand, since Λ.J(g1, . . . , gn) = J(f1 ◦ g, . . . , fn−1 ◦ g,
∑n
i=1Wigi) we obtain that

Res

(
f1 ◦ g, . . . , fn−1 ◦ g, J

(
f1 ◦ g, . . . , fn−1 ◦ g,

n∑
i=1

Wigi

))
= Res (f1 ◦ g, . . . , fn−1 ◦ g,Λ.J(g1, . . . , gn))

= Λd
n−1

Res(f1 ◦ g, . . . , fn−1 ◦ g, J(g1, . . . , gn))

= Λd
n−1

dd
n−1

Res(g1, . . . , gn)K(f1, . . . , fn, g1, . . . , gn).

where the last equality follows from Lemma 3.30. Therefore, by comparison of these two computa-
tions (in the generic case over the integers and then by specialization) we deduce that

K(f1, . . . , fn, g1, . . . , gn) = Disc(f1 ◦ g, . . . , fn−1 ◦ g) (3.4.1)

under our assumption d1 = · · · = dn−1 = 1. In order to show that this discriminant is irreducible,
we will compare several specializations.

We begin with the specialization of the polynomials f1, . . . , fn−1 to X1, . . . , Xn−1 respec-
tively. Under this specialization, the polynomial fi ◦ g is sent to gi for all i = 1, . . . , n − 1 and
hence Disc(f1 ◦ g, . . . , fn−1 ◦ g) is sent to Disc(g1, . . . , gn−1) which is known to be an irreducible
polynomial in the coefficients of the polynomials g1, . . . , gn−1 by Theorem 3.23. It follows that if
Disc(f1 ◦ g, . . . , fn−1 ◦ g) is reducible, then necessarily there exists a non constant and irreducible
polynomial P (Ui,j) which is independent of the coefficients of the polynomials g1, . . . , gn and that
divides Disc(f1 ◦ g, . . . , fn−1 ◦ g).

Now, consider the specialization that sends the polynomial gn to 0. Then, the discriminant
Disc(f1 ◦ g, . . . , fn−1 ◦ g) is sent to

Disc

(
n−1∑
i=1

U1,jgj , . . . ,

n−1∑
i=1

Un−1,jgj

)
=

∣∣∣∣∣∣∣
U1,1 · · · U1,n−1

...
...

Un−1,1 · · · Un−1,n−1

∣∣∣∣∣∣∣
n(d−1)dn−2

×Disc(g1, . . . , gn−1)

where the equality holds by the covariance property given in Proposition 3.18. We deduce that
P (Ui,j) is equal to the determinant of the matrix (Ui,j)16i,j6n−1 up to multiplication by an in-
vertible element in k. But if we consider the specialization that sends the polynomial g1 to 0, then
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by a similar argument we get that Disc(f1 ◦ g, . . . , fn−1 ◦ g) is sent to

Disc

(
n∑
i=2

U1,jgj , . . . ,

n∑
i=2

Un−1,jgj

)
=

∣∣∣∣∣∣∣
U1,2 · · · U1,n

...
...

Un−1,2 · · · Un−1,n

∣∣∣∣∣∣∣
n(d−1)dn−2

×Disc(g2, . . . , gn).

Therefore, we deduce that up to multiplication by an invertible element in k, P (Ui,j) should also
be equal to the determinant of the matrix (Ui,j)16i,j6n−1. Hence, we get a contradiction. This
concludes the proof of the irreducibility of K when 2 6= 0 in k.

Now, we turn to the proof that K is the square of an irreducible polynomial under the assump-
tion 2 = 0 in k. By Theorem 3.24, the discriminant is the square of a polynomial, irreducible in the
generic case, that we will denote by ∆. Now, define the polynomial χ by the equality

∆(f1 ◦ g, . . . , fn−1 ◦ g) = ∆(f1, . . . , fn−1)d
n−1

Res(g1, . . . , gn)
1
2d1...dn−1

∑n−1
i=1 (di−1)χ(f1, . . . , fn−1, g1, . . . , gn)

so that K(f1, . . . , fn−1, g1, . . . , gn) = χ(f1, . . . , fn−1, g1, . . . , gn)2. To prove that χ is an irre-
ducible polynomial we can proceed similarly to the case where 2 6= 0 in k: we proceed by induction
on the integer r = d1 + · · · + dn−1 > n − 1. Assuming for a moment that the statement holds for
r = n−1, then the reasoning is exactly the same: χ inherits of a multiplicative property fromK and
hence by specializing one polynomial of degree > 2, say f1, to the product of a linear form l and a
polynomial f ′1 of degree d1 − 1 then we conclude that χ is irreducible.

To prove that χ is indeed irreducible when d1 = · · · = dn−1 = 1, we also proceed similarly to
the case where 2 6= 0. Using (3.4.1) that holds in the generic case other the integers, we deduce that
there exists ε ∈ k such that ε2 = 1 and

χ(f1, . . . , fn−1, g1, . . . , gn) = ε∆(f1 ◦ g, . . . , fn−1 ◦ g)

in k under the assumption d1 = · · · = dn−1 = 1. From here, we conclude that χ is irreducible by
exploiting, as in the case 2 6= 0, the three specializations fi 7→ Xi for all i = 1, . . . , n − 1, then
gn 7→ 0 and finally g1 7→ 0, the argumentation being the same. �

4. The discriminant of a hypersurface
In this section we study the discriminant of a single homogeneous polynomial in several variables.

Let k be a commutative ring and f be a homogeneous polynomial of degree d > 2 in the
polynomial ring k[X1, . . . , Xn] (n > 1). We will denote by ∂if the partial derivative of f with
respect to the variable Xi. Recall the classical Euler identity

df =

n∑
i=1

Xi∂if.

We will also often denote by f , respectively f̃ , the polynomial f(X1, . . . , Xn−1, 0), respectively
f(X1, . . . , Xn−1, 1), in k[X1, . . . , Xn−1].

We aim to study the quotient ring

k[X1, . . . , Xn]/
(f, ∂1f, · · · , ∂nf)
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and its associated inertia forms of degree 0 with respect to m := (X1, . . . , Xn). The geometric
interpretation of the generic case over the commutative ring k is the following. Let d be an integer
greater or equal to 2. We suppose that

f(X1, . . . , Xn) =
∑
|α|=d

UαX
α

and denote kA := k[Uα | |α| = d], kC := kA[X1, . . . , Xn] and

kB := kC
/

(f, ∂1f, · · · , ∂nf)

The closed image of the canonical projection π of Proj(kB) to Spec(kA) is defined by the ideal
H0

m(kB)0; roughly speaking, it parameterizes all the homogeneous forms of degree d with coeffi-
cients in k whose zero locus has a singular point.

4.1. Regularity of certain sequences
We suppose that we are in the generic case over the commutative ring k. We begin with two technical
results. Given a sequence of elements r1, . . . , rs in a ring R, we will denote by Hi(r1, . . . , rs;R)
the ith homology group of the Koszul complex associated to this sequence.

Lemma 4.1. For all i > 2 we have Hi(f, ∂1f, . . . , ∂nf ;k C) = 0.

Proof. Let us emphasize some coefficients of f by rewriting it as

f(X1, . . . , Xn) = g(X1, . . . , Xn) +

n∑
i=1

EiXiX
d−1
n

where g ∈ kC. Then, it appears that the sequence (∂1f, . . . , ∂n−1f, f) is, in this order, regular in
the ring kCXn . Indeed, the quotient by ∂1f amounts to express E1 in the polynomial ring

k[Uα |Uα 6= E1, . . . , En][X1, . . . , Xn]Xn .

Then the quotient by ∂2f amounts to express E2 and so on. We end with the quotient by f that
amounts to express En. From this property and the well known properties of the Koszul complex, it
follows that

Hi(f, ∂1f, . . . , ∂nf ; kC)Xn = 0 for all i > 2.

But we can argue similarly by choosing another variableXj instead ofXn and therefore we actually
deduce that

Hi(f, ∂1f, . . . , ∂nf ; kC)Xj = 0 for all i > 2 and j = 1, . . . , n. (4.1.1)

Now, the consideration of the two spectral sequences
′Ep,q1 = Hq

m(K•(f, ∂1f, . . . , ∂nf ; kC)) =⇒ En = Hn
m(K•(f, ∂1f, . . . , ∂nf ; kC))

′′Ep,q2 = Hp
m(Hq(f, ∂1f, . . . , ∂nf ; kC)) =⇒ En = Hn

m(K•(f, ∂1f, . . . , ∂nf ; kC))

shows that for all i > 2 we have Hi(f, ∂1f, . . . , ∂nf ; kC) = 0, as claimed. �

Proposition 4.2. The two following statements hold:

(i) For all i ∈ {1, . . . , n} the sequence (f, ∂1f, . . . , ∂̂if, . . . , ∂nf) is regular in the ring kC.
(ii) If d is a nonzero divisor in k then the sequence (∂1f, . . . , ∂nf) is regular in the ring kC.

Proof. We prove (i) in the case i = n to not overload the notation; the other cases can be treated
similarly. For simplicity, we set

K• := K•(f, ∂1f, . . . , ∂nf ; kC), L• := K(f, ∂1f, . . . , ∂n−1f ; kC).
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Since K• = L•⊗kC K•(∂nf ; kC), we deduce, using the two spectral sequences associated to
the two filtrations of a double complex having only two rows, that we have an exact sequence

0→ H0(∂nf ;H2(L•))→ H2(K•)→ H1(∂nf ;H1(L•))→ 0.

But by Lemma 4.1, we know that H2(K•) = 0; it follows that ∂nf is a nonzero divisor in H1(L).
The homology of L• is annihilated by the ideal generated by (f, ∂1f, . . . , ∂n−1f). So, by the Euler
identity we deduce that Xn∂nf annihilates H1(L). But since we have just proved that ∂nf is a
nonzero divisor in H1(L) we obtain XnH1(L) = 0.

Denoting f̄(X1, . . . , Xn−1) := f(X1, . . . , Xn−1, 0) ∈ kA[X1, . . . , Xn−1], we have the exact
sequence of complexes

0→ L•
×Xn−−−→ L• → L•/XnL• → 0

where the complex L•/XnL• is nothing but the Koszul complex

L•/XnL• = K•(f̄ , ∂1f̄ , . . . , ∂n−1f̄ ; kA[X1, . . . , Xn−1]).

It follows that H2(L•/XnL•) = 0 and hence the long exact sequence of homology

· · · → H2(L•/XnL•)→ H1(L•)
×Xn−−−→ H1(L•)→ H1(L•/XnL•)→ · · ·

shows that Xn is a nonzero divisor in H1(L). This, with the equality XnH1(L•) = 0 obtained
above, implies that H1(L•) = 0 which means that (f, ∂1f, . . . , ∂n−1f) is a regular sequence in kC.

SettingM• := K•(∂1f, . . . , ∂nf ; kC), we will prove the point (ii) by showing thatH1(M•) =
0. Since K• = M• ⊗kC K•(f ; kC) we have the two exact sequences

0→ H0(f ;H2(M•))→ H2(K•)→ H1(f ;H1(M•))→ 0 (4.1.2)

0→ H0(f ;H1(M•))→ H1(K•)→ H1(f ;H1(M•))→ 0. (4.1.3)

First, by (4.1.1) we know that H2(K•) = 0 and hence the exact sequence (4.1.2) shows that
H1(f,H1(M)) = 0, that is to say that f is a nonzero divisor in H1(M). But the Euler identity
implies that df annihilates H1(M•), so dH1(M) = 0. Second, from the exact sequence of com-
plexes

0→ K•
×d−−→ K• → K•/dK• → 0

we get the long exact sequence

· · · → H2(K•/dK•)→ H1(K•)
×d−−→ H1(K•)→ · · ·

which shows, since H2(K•/dK•) = 0, that d is a nonzero divisor in H1(K•).
Finally, the exact sequence (4.1.3) combined with the two facts dH1(M) = 0 and d is a

nonzero divisor in H1(K•), implies that H0(f ;H1(M•)) = 0, that is to say that the multiplication
map ×f : H1(M•)→ H1(M•) is surjective. It follows that, by composition, for any integer m > 1
the multiplication map ×fm : H1(M•) → H1(M•) is also surjective. But H1(M) is a Z-graded
module and f has degree d for this graduation, so we have, for any ν ∈ Z and m ∈ N∗, a surjective
map

H1(M•)ν−dm
×fm−−−→ H1(M)ν .

AsH1(M)µ = 0 for µ� 0 we finally get, by choosingm� 0, thatH1(M)ν = 0 for all ν ∈ Z. �

Corollary 4.3. For all i ∈ {1, . . . , n}, the resultant

Res(∂1f, . . . , ∂̂if, . . . , ∂n−1f, f) ∈ kA

is a primitive polynomial, hence nonzero divisor, in kA.

Proof. This result is a consequence of Proposition 4.2 and [Jou92, Proposition 3.12.4.2]. The last
claim is obtained by observing that this resultant is a nonzero divisor in Z/pZA for all integers p,
which implies that it is a primitive polynomial in ZA, hence in kA. �
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4.2. Definition of the discriminant
Lemma 4.4. Let k be a commutative ring and f ∈ k[X1, . . . , Xn] be a homogeneous polynomial of
degree d > 2. Then, we have the following equality in k:

d(d−1)n−1

Res(∂1f, . . . , ∂n−1f, f) = Res(∂1f, . . . , ∂nf)Res(∂1f, . . . , ∂n−1f).

Proof. On the one hand we have, using the homogeneity of the resultant,

Res(∂1f, . . . , ∂n−1f, df) = d(d−1)n−1

Res(∂1f, . . . , ∂n−1f, f),

and on the other hand we have, using successively [Jou91, §5.9], [Jou91, §5.7] and [Jou91, Lemma
4.8.9],

Res(∂1f, . . . , ∂n−1f, df) = Res(∂1f, . . . , ∂n−1f,Xn∂nf)

= Res(∂1f, . . . , ∂nf)Res(∂1f, . . . , ∂n−1f,Xn)

= Res(∂1f, . . . , ∂nf)Res(∂1f, . . . , ∂n−1f).

Comparing these two computations we deduce the claimed equality. �

Proposition 4.5. Let f(X1, . . . , Xn) =
∑
|α|=d UαX

α be the generic homogeneous polynomial of
degree d > 2 over the integers. Then the resultant Res(∂1f, . . . , ∂nf) is divisible by da(n,d) in the
ring ZA where

a(n, d) :=
(d− 1)n − (−1)n

d
∈ Z.

Proof. By Corollary 4.3, we know that Res(∂1f, . . . , ∂n−1f, f) is a primitive polynomial in ZA.
Denoting by c(n, d) the content of Res(∂1f, . . . , ∂nf) for all n, d > 2, Lemma 4.4 implies that

c(n, d)c(n− 1, d) = d(d−1)n−1

for all n > 3 and d > 2

and also that c(2, d) = dd−2 = da(2,d) for all d > 2 (just remark that we have Res(dUXd−1
1 ) = dU ).

Therefore, we can proceed by induction on n to prove the claimed result: assume that c(n− 1, d) =
da(n−1,d), which is true for n = 3, then

c(n, d) = d(d−1)n−1−a(n−1,d) = da(n,d)

since it is immediate to check that a(n− 1, d) + a(n, d) = (d− 1)n−1. �

We are now ready to define the discriminant of a homogeneous polynomial of degree d > 2.

Definition 4.6. Let f(X1, . . . , Xn) =
∑
|α|=d UαX

α ∈ ZA be the generic homogeneous polyno-
mial of degree d > 2. The discriminant of f , that will be denoted Disc(f), is the unique element in
ZA such that

da(n,d)Disc(f) = Res(∂1f, . . . , ∂nf). (4.2.1)

Let R be a commutative ring and g =
∑
|α|=d uαX

α be a homogeneous polynomial of degree
d > 2 in R[X1, . . . , Xn]. Then we define the discriminant of g as Disc(g) := λ(Disc(f)) where λ
is the canonical (specialization) morphism λ : ZA→ R : Uα 7→ uα.

4.3. Formal properties
Up to a nonzero integer constant factor, the discriminant of a homogeneous polynomial corresponds
to a resultant. Consequently, most of its properties follow from the properties of the resultant.

Proposition 4.7. Let k be a commutative ring and f be a homogeneous polynomial in k[X1, . . . , Xn]
of degree d > 2.

(i) For all t ∈ k, we have Disc(tf) = tn(d−1)n−1

Disc(f).
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(ii) For all n > 2, we have the equality in k

Disc(f)Disc(f) = Res(∂1f, . . . , ∂n−1f, f).

Proof. To prove (i), we use the homogeneity of the resultant: one obtains

Res(t∂1f, . . . , t∂nf) = t
∑n
i=1(d−1)n−1

Res(∂1f, . . . , ∂nf).

To prove (ii), we first assume that we are in the generic case, that is to say that f =
∑
|α|=d UαX

α

and k = ZA := Z[Uα | |α| = d]. Using the notation of Proposition 4.5, we have a(n, d) + a(n −
1, d) = d(d−1)n−1

for all n > 3 and d > 2. Moreover, from Definition 4.6, we deduce that

Res(∂1f, . . . , ∂nf)Res(∂1f, . . . , ∂n−1f) = d(d−1)n−1

Disc(f)Disc(f).

Now, comparing with Lemma 4.4, we get the claimed formula in ZA and then over any commutative
ring k by specialization. �

Remark 4.8. In the case where n = 2 and d is a nonzero divisor of k (equivalently char(k) does not
divide d), the point (ii) recovers a well known formula: set f := U0X

d
1 +U1X

d−1
1 X2 + · · ·+UdX

d
2

for simplicity, then
U0Disc(f) = Res(∂1f, f) = Res(f, ∂1f).

This follows from Definition 4.6 since we have

da(1,d)Disc(f) = dDisc(U0X
d
1 ) = Res(dU0X

d−1
1 ) = dU0

in kA.

Corollary 4.9. Let f(X1, . . . , Xn) =
∑
|α|=d UαX

α ∈ kA be the generic homogeneous polyno-
mial of degree d > 2 over the commutative ring k. Then Disc(f) is a primitive polynomial, hence
nonzero divisor, in kA.

Proof. The first claim is a combination of both Corollary 4.3 and Proposition 4.7, (ii). To prove the
second claim we can argue as in the proof of Corollary 4.3. �

We continue with some particular examples.

Example 4.10. Let h(X1, . . . , Xn−1) =
∑
|α| VαX

α be the generic homogeneous polynomial of
degree d > 2 in the variables X1, . . . , Xn−1 over the commutative ring k and consider the homoge-
neous polynomial

g(X1, . . . , Xn) = UXd
n + h(X1, . . . , Xn−1) ∈ k[U, Vα | |α| = d][X1, . . . , Xn].

Then, we have
Disc(g) = d(d−1)n−1+(−1)nU (d−1)n−1

Disc(h)d−1.

Proof. Notice that without loss of generality, it is enough to prove this formula in the case k = Z.
Now, since ∂ng = dUXd−1

n and ∂ig = ∂ih for i = 1, . . . , n− 1, we deduce that

Res(∂1g, . . . , ∂ng) = (dU)(d−1)n−1

Res(∂1h, . . . , ∂n−1h)d−1.

Therefore, from the definition of the discriminant we get

da(n,d)Disc(g) = (dU)(d−1)n−1

d(d−1)a(n−1,d)Disc(h)d−1

and the claimed formula follows from a straightforward computation. �

Example 4.11 ([Dem69]). Consider the homogeneous polynomial of degree d > 2

g(X1, . . . , Xn) = A1X
d
1 + · · ·+AnX

d
n ∈ Z[A1, . . . , An][X1, . . . , Xn].

Then, its discriminant consists of only one monomial; more precisely,

Disc(g) = dn(d−1)n−1−a(n,d)(A1A2 . . . An)(d−1)n−1

∈ Z[A1, . . . , An].
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Proof. Indeed, since ∂ig = dAiX
d−1
i for all i = 1, . . . , n, from the classical properties of the

resultant we get

Res(∂1g, . . . , ∂ng) = dn(d−1)n−1

Res(A1X
d−1
1 , · · · , AnXd−1

n )

= dn(d−1)n−1

(A1A2 . . . An)(d−1)n−1

.

The claimed result follows by comparing this equality with (4.2.1). �

Example 4.12 ([Dem69]). Consider the homogeneous polynomial of degree d > 2

g(X1, . . . , Xn) = Xd
1 + UX1X

d−1
2 +X2X

d−1
3 + · · ·+Xn−1X

d−1
n ∈ Z[U ][X1, . . . , Xn].

Then, its discriminant contains only one monomial modulo d. More precisely,

Disc(g) = U (d−1)n−1+(−1)n mod (d) ∈ Z[U ].

Proof. To prove this formula, we proceed by induction on the number n of variables. So, assume
first that n = 2. We have g = X1 + UX1X

d−1
2 and we easily compute in the ring Z[U ]

Res(∂1g, ∂2g) = Res(dXd−1
1 + UXd−1

2 , (d− 1)UX1X
d−2
2 )

= (d− 1)d−1Ud−1Res(UXd−1
2 , X1)Res(dXd−1

1 , Xd−2
2 )

= (−1)d−1(d− 1)d−1dd−2Ud. (4.3.1)

From (4.2.1) and since a(2, d) = d− 2, we deduce that

Disc(g) = (−1)d−1(d− 1)d−1Ud = Ud mod (d).

Now, fix the integer n > 2 and suppose that the claimed formula is proved at the step n − 1.
Again, an easy computation of resultants in Z[U ] yields

Res(∂1g, . . . , ∂n−1g, g) (4.3.2)

= Res(UXd−1
2 ,−UX1X

d−2
2 +Xd−1

3 , . . . ,−Xn−2X
d−2
n−1 +Xd−1

n , g) mod (d)

= Ud(d−1)n−2

Res(Xd−1
2 , Xd−1

3 , . . . , Xd−1
n , Xd

1 ) mod (d)

= Ud(d−1)n−2

mod (d).

By Proposition 4.7, (ii), it follows that, in Z[U ],

Ud(d−1)n−2

= Disc(g)Disc(g) mod (d)

= U (d−1)n−2+(−1)n−2

Disc(g) mod (d).

We deduce that

Disc(g) = Ud(d−1)n−2−(d−1)n−2−(−1)n−2

= U (d−1)n−1+(−1)n−1

mod (d) ∈ Z[U ].

�

Next, we provide two formulas that encapsulate the behavior of the discriminant under a linear
change of coordinates and under a general base change formula.

Proposition 4.13. Let k be a commutative ring and f be a homogeneous polynomial of degree d > 2
in k[X1, . . . , Xn]. Being given a matrix ϕ = [ci,j ]16i,j6n with entries in k and denoting

f ◦ ϕ(X1, . . . , Xn) := f

c1,1X1 + · · ·+ c1,nXn, . . . ,

n∑
j=1

ci,jXj , . . . ,

n∑
j=1

cn,jXn

 ,

we have
Disc(f ◦ ϕ) = det(ϕ)d(d−1)n−1

Disc(f).
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Proof. By specialization, it is sufficient to prove this formula in the generic setting, that is to say
with f =

∑
|α|=d UαX

α ∈ ZA. Since f ◦ ϕ and f have the same degree d as polynomials in the
Xi’s, it is equivalent to prove that

Res(∂1(f ◦ ϕ), . . . , ∂n(f ◦ ϕ)) = det(ϕ)d(d−1)n−1

Res(∂1f, . . . , ∂nf).

To do this, we remark, by basic differential calculus, that

[∂1(f ◦ ϕ), . . . , ∂n(f ◦ ϕ)] = [∂1(f) ◦ ϕ, . . . , ∂n(f) ◦ ϕ] .det(ϕ),

as matrices. Therefore, the covariance formula of the resultant [Jou91, §5.11.2] shows that

Res(∂1(f ◦ ϕ), . . . , ∂n(f ◦ ϕ)) = det(ϕ)(d−1)n−1

Res(∂1(f) ◦ ϕ, . . . , ∂n(f) ◦ ϕ).

Moreover, the formula for linear change of coordinates for the resultant [Jou91, §5.13.1] gives

Res(∂1(f) ◦ ϕ, . . . , ∂n(f) ◦ ϕ) = det(ϕ)(d−1)nRes(∂1f, . . . , ∂nf),

and we conclude the proof by observing that (d− 1)n + (d− 1)n−1 = d(d− 1)n−1. �

One consequence of this invariance property is the following generalization of the formula
defining the discriminant given in Proposition 4.7, (ii).

Proposition 4.14. Let k be a commutative ring, let f be a homogeneous polynomial of degree d > 2
in k[X1, . . . , Xn] and let ϕ = [ci,j ]16i6n,16j6n−1 be a n × (n − 1)-matrix with coefficients in k.
Then, we have

Disc(f)Disc
(
f([X1, . . . , Xn−1] ◦ tϕ)

)
= Res (f, [∂1f, . . . , ∂nf ] ◦ ϕ) .

Proof. By specialization, it is sufficient to prove this equality for f the generic homogeneous poly-
nomial of degree d over the integers and for ϕ := [Vi,j ]16i6n,16j6n−1 a matrix of indeterminates.
Adding another column of indeterminates to ϕ, we introduce the matrix ψ := [Vi,j ]16i,j6n.

Now, consider the following resultant

Ω := Res
(
f([X1, . . . , Xn] ◦ tψ),[

∂1f([X1, . . . , Xn] ◦ tψ), . . . , ∂nf([X1, . . . , Xn] ◦ tψ)
]
◦ ϕ
)
.

On the one hand, by the invariance property of the resultant [Jou91, §5.13] we have

Ω = det(ψ)d(d−1)n−1

Res (f, [∂1f, . . . , ∂nf ] ◦ ϕ) . (4.3.3)

On the other hand, since[
∂1f([X1, . . . , Xn] ◦ tψ), . . . , ∂nf([X1, . . . , Xn] ◦ tψ)

]
◦ ϕ =[

∂

∂X1
(f([X1, . . . , Xn] ◦ tψ)), . . . ,

∂

∂Xn
(f([X1, . . . , Xn] ◦ tψ))

]
by the composition rule of the derivatives, we get from Proposition 4.7, (ii) that

Ω = Disc(f([X1, . . . , Xn] ◦ tψ))Disc(f([X1, . . . , Xn−1, 0] ◦ tψ))

= Disc(f([X1, . . . , Xn] ◦ tψ))Disc(f([X1, . . . , Xn−1] ◦ tϕ))

= det(ψ)d(d−1)n−1

Disc(f)Disc(f([X1, . . . , Xn−1] ◦ tϕ)) (4.3.4)

where the last equality holds by invariance of the discriminant; see Proposition 4.13. Finally, the
claimed formula follows by comparing (4.3.3) and (4.3.4), taking into account the fact that det(ψ)
is a nonzero divisor in our generic setting. �

Now, we turn to the more general problem of the behavior of the discriminant under a general
change of basis.
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Proposition 4.15. Let k be a commutative ring, f be a homogeneous polynomial of degree m > 2
and g1, . . . , gn be homogeneous polynomials of degree d > 1. There exists a polynomial K that
depends on the coefficients of the polynomials f, g1, . . . , gn such that

Disc(f(g1, . . . , gn)) = Disc(f)d
n−1

Res(g1, . . . , gn)m(m−1)n−1

K(f, g1, . . . , gn).

Proof. We prove the existence of K in the universal setting over the integers so that the claimed
result follows by specialization. From the equality of matrices[

∂X1
(f(g)) · · · ∂Xn(f(g))

]
=

[
∂X1

f(g) · · · ∂Xnf(g)
]  ∂X1g1 · · · ∂Xng1

...
...

∂X1
gn · · · ∂Xngn


we deduce that for all i = 1, . . . , n

∂X1
(f(g)) ∈ (∂X1

f(g), . . . , ∂Xnf(g)). (4.3.5)

Therefore, applying the divisibility property of the resultant [Jou91, §5.6], we obtain that

Res
(
∂X1

f(g), . . . , ∂Xnf(g)
)

divides Res
(
∂X1

(f(g)), . . . , ∂Xn(f(g))
)
.

On the one hand, using the base change formula of the resultant [Jou91, §5.12], we have

Res
(
∂X1

f(g), . . . , ∂Xnf(g)
)

= Res(g1, . . . , gn)(m−1)nRes(∂X1
f, . . . , ∂Xnf)

= ma(m,d)dn−1

Disc(f)d
n−1

Res(g1, . . . , gn)(m−1)n

and on the other hand

Res
(
∂X1(f(g)), . . . , ∂Xn(f(g))

)
= (md)a(n,md)Disc(f(g1, . . . , gn)).

Therefore, since Disc(f) is a primitive polynomial, we deduce that Disc(f)d
n−1

divides Disc(f(g)).
Now, notice that we have f(g1, . . . , gn) ∈ (g1, . . . , gn)m and that for all i = 1, . . . , n we have

∂X1
(f(g)) ∈ (g1, . . . , gn)m−1 by using from (4.3.5). Using the generalized divisibility property of

the resultant [Jou91, §6.2], it follows that

Res(g1, . . . , gn)m(m−1)n−1

divides Res(∂X1
(f(g)), . . . , ∂Xn−1

(f(g)), f(g)).

But
Res(∂X1

(f(g)), . . . , ∂Xn−1
(f(g)), f(g)) = Disc(f(g))Disc(f(g))

and Res(g1, . . . , gn) is an irreducible polynomial that depends on all the coefficients of all the poly-
nomials g1, . . . , gn. We deduce that

Res(g1, . . . , gn)m(m−1)n−1

divides Disc(f(g1, . . . , gn)).

Finally, since Res(g1, . . . , gn) and Disc(f) are obviously coprime, the existence of the polynomial
K is proved. �

4.4. Inertia forms and the discriminant
By definition, it is clear that the discriminant of a homogeneous polynomial f ∈ R[X1, . . . , Xn],
where R is a field, of degree d > 2 vanishes if and only if ∂1f, . . . , ∂nf (and hence f if char(k)
does not divide d) have a non trivial common root in an algebraic extension ofR. The purpose of this
section is to study the behavior of the discriminant when R, the coefficient ring of the homogeneous
polynomial f , is not assumed to be a field.

Let d > 2 be a fixed integer and consider the polynomial

f(X1, . . . , Xn) :=
∑
|α|=d

UαX
α.
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Let k be a commutative ring and denote by kA := k[Uα | |α| = d] the coefficient ring of f over k.
Then f ∈ kA[X1, . . . , Xn]; it is the generic homogeneous polynomial of degree d over k. Defining
the ideals of kC := kA[X1, . . . , Xn]

D := (f, ∂1f, . . . , ∂nf), m := (X1, . . . , Xn),

we recall that P := TFm(D)0 = H0
m(kB)0 where kB is the quotient ring kC/D. This latter ideal

is nothing but the defining ideal of the closed subscheme of Spec(kA) obtained as the image of the
canonical projective morphism

Proj(kB)→ Spec(kA).

In the sequel, our aim is to relate the discriminant of f as defined in Definition 4.6 with this ideal of
inertia forms P ⊂ kA.

Proposition 4.16. For j ∈ {1, . . . , n} we have an isomorphism of k[X1, . . . , Xn]-algebras

kBXj
∼−→ k[Uα | |α| = d, αj < d− 1][X1, . . . , Xn][X−1

j ]. (4.4.1)

In particular, for all j ∈ {1, . . . , n} the ring kBXj is a domain if k is a domain.

Proof. Let i be a fixed integer in {1, . . . , n}. The Euler equality df =
∑n
j=1Xj∂jf shows that,

after localization by the variable Xj , we have

DXj = (∂1f, . . . , ∂j−1f, ∂j+1f, . . . , ∂nf, f) ⊂ kCXj .

In order to emphasize some particular coefficients of the polynomial f , let us rewrite it as

f(X1, . . . , Xn) =

n∑
i=1

EiXiX
d−1
j +

∑
|α|=d,αj<d−1

UαX
α.

Then, denoting by Q(X1, . . . , Xn) the second term of the right side of this equality, for all integers
i ∈ {1, . . . , n} such that i 6= j we have

∂if(X1, . . . , Xn) = EiXd−1
j + ∂iQ(X1, . . . , Xn).

It follows that the following k[X1, . . . , Xn]-algebras morphism

kCXj −→ k[Uα | |α| = d, αj < d− 1][X1, . . . , Xn][X−1
j ]

Ei (i 6= j) 7→ −X−d+1
j ∂iQ

Ej 7→ −X−dj Q+

n∑
i 6=j,i=1

XiX
−d
j ∂iQ = −X−dj ((1− d)Q+Xj∂jQ)

has kernel DXj and therefore induces an isomorphism of k[X1, . . . , Xn]-algebras

kBXj
∼−→ k[Uα | |α| = d, αj < d− 1][X1, . . . , Xn][X−1

j ].

�

Corollary 4.17. For all i = 1, . . . , n we have

TFm(D) = ker(kC → kBXi)

where kC → kBXi is the canonical map, so that

TFm(D)0 = ker(kA→ kBXi) = H0
(Xi)

(kB)0.

In particular, if k is a domain then TFm(D) and P are prime ideals.
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Proof. Observe first that by definition we have

TFm(D) = ker(kC →
n∏
i=1

kBXi).

The isomorphisms (4.4.1) show that for any pair of integers (i, j) ∈ {1, . . . , n}2 the variable Xi

is a nonzero divisor in kBXj and hence that the canonical map kBXi → kBXiXj is injective. By
considering the commutative diagrams, for all pairs (i, j) ∈ {1, . . . , n}2,

C

��

// BXi

��
BXj // BXiXj

we obtain that TFm(D) = ker(kC → kBXi) for all i = 1, . . . , n. From here, assuming that k is
domain we deduce easily that TFm(D) is a prime ideal of kC and that P = TFm(D)0 is a prime
ideal of kA. �

We now turn to the relation between the ideal of inertia forms TFm(D) and the discriminant
of f .

Theorem 4.18. Let R be a commutative ring and f a homogeneous polynomial in R[X1, . . . , Xn]d
with d > 2. Then, we have the following inclusions of ideals in R:

(Disc(f)) ⊂ TFm((f, ∂1f, . . . , ∂nf)) ∩R ⊂
√

(Disc(f)).

Proof. We first prove these inclusions in the generic case over the integers, that is to say with f =∑
|α|=d UαX

α and R = ZA = Z[Uα | |α| = d].
By definition of the discriminant, we have

da(n,d)Disc(f) = Res(∂1f, . . . , ∂nf) in ZA.

But since Res(∂1f, . . . , ∂nf) is an inertia form of the ideal (∂1f, . . . , ∂nf) with respect to m, we
deduce that

da(n,d)Disc(f) ∈ TFm(D)0

which is a prime ideal (Z is a domain). Moreover, we claim that da(n,d) /∈ TFm(D)0 because

TFm(D)0 ∩ Z = (0).

Indeed, this equality can be checked using any particular specialization of the coefficients Uα; for
instance, if we specialize f to Xd

1 , then D specializes to the ideal (Xd
1 , dX

d−1
1 ) in Z[X1, . . . , Xn]

and clearly TFm((Xd
1 , dX

d−1
1 ))0 = (0) ⊂ Z. Finally, we deduce that Disc(f) ∈ TFm(D)0.

We turn to the proof of the second inclusion, always in the generic case over the integers.
Suppose given a ∈ H0

m(ZB)0 and denote by ZB
′ the quotient ring ZC/(∂1f, . . . , ∂nf). By the

Euler identity, da ∈ H0
m(ZB

′)0. Since both ideals H0
m(ZB

′)0 and (Res(∂1f, . . . , ∂nf)) of ZA have
the same radical, we deduce that there exists an integer N such that Res(∂1f, . . . , ∂nf) divides
(da)N . Using (3.1.4), there exists a′ ∈ ZA such that

dNaN = da(n,d)a′Disc(f) in ZA.

Taking the contents in the above equality, we deduce that

aN =
a′

Ck(a′)
Ck(a)NDisc(f) in ZA

and this proves that TFm(D)0 ⊂
√

(Disc(f)).
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To conclude the proof, we first remark that the inclusion

(Disc(f)) ⊂ TFm((f, ∂1f, . . . , ∂nf)) ∩R
is, by specialization, an immediate consequence of the same inclusion in the generic case over the
integers. The rest of the proof is a consequence of a base change property, exactly as in the proof of
Proposition 2.4. �

Corollary 4.19. Let k be a domain and f =
∑
|α|=d UαX

α be the generic homogeneous polynomial
of degree d > 2 over k. Then, Disc(f) = c.P r where c is an invertible element in k, r is a positive
integer and P is a prime polynomial that generates the ideal P ⊂ kA.

Proof. Let us first assume that k is a UFD. Theorem 4.18 implies that both ideals P = TFm(D)0 and
(Disc(f)) of kA have the same radical and Corollary 4.17 shows that P is a prime ideal. Therefore,
we deduce immediately that Disc(f) = c.P r as claimed.

Now, assume that k is a domain. Depending on its characteristic, it contains either Z or Z/pZ,
p a prime integer, that we will denote by F in the sequel. Thus, we have an injective map F ↪→ k
which is moreover flat (for k is a torsion-free F -module). Therefore, the canonical exact sequence
(see Corollary 4.17)

FTFm(D)→ FC → FBXn
remains exact after tensorization by k over F . Since FC⊗F k = kC and FBXn ⊗F k = kBXn , this
latter being an immediate consequence of (4.4.1), we deduce that

kTFm(D) = FTFm(D)⊗F k. (4.4.2)

Since F is a UFD, we know that FDisc(f) = c.P r where c is an invertible element in F , r is
a positive integer and P is a prime polynomial in FA that generates FP. Now, considering the
canonical specialization ρ : FA→ kA, we get

kDisc(f) = ρ(FDisc(f)) = ρ(c).ρ(P )r,

where the first equality follows from the definition of the discriminant. But by (4.4.2), ρ(P ) generates
kP and since kP is a prime ideal by Corollary 4.17, we deduce that ρ(P ) is a prime polynomial in
kA. To conclude, observe that ρ(c) is clearly an invertible element in k because F is contained in
k. �

Remark 4.20. From the proof of the above corollary we see that the only dependence of r on k is
the characteristic of k, for F only depends on this characteristic.

With this property, we can explore the behavior of the discriminant in some particular cases.
Here are two such examples.

Proposition 4.21. The universal discriminant over the integers is a prime polynomial in ZA that
generates the ideal ZP.

Proof. By Corollary 4.19, there exists an irreducible polynomial P ∈ ZA that generates ZP and an
integer r > 1 such that ZDisc(f) = ±P r. In order to prove that r = 1 we will use two specializa-
tions.

First, consider the specialization that sends f to UXd
n+f(X1, . . . , Xn−1, 0) where U denotes,

for simplicity, the coefficient of Xd
n of f . By Example 4.10, we get that ZDisc(f) specializes to

d(d−1)n−1+(−1)nU (d−1)n−1

Disc(f(X1, . . . , Xn−1, 0))d−1 ∈ ZA.

Since U is an irreducible polynomial in ZA and U does not divide Disc(f(X1, . . . , Xn−1, 0)) (this
latter discriminant actually does not depend on U ), we deduce that r divides (d− 1)n−1.

Second, consider the specialization that sends f to the polynomial

g ∈ Z/dZ[U ][X1, . . . , Xn]
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given in Example 4.12. We have seen that Disc(f) specializes to U (d−1)n−1+(−1)n . It follows that r
divides (d− 1)n−1 + (−1)n.

Finally, we have shown that r divides two consecutive and positive integers, namely (d−1)n−1

and (d− 1)n−1 + (−1)n. Therefore, r must be equal to 1. �

Proposition 4.22. Let k be a domain and f =
∑
|α|=2 UαX

α be the generic homogeneous poly-
nomial of degree 2 over k. If char(k) 6= 2 or n is odd, then Disc(f) is a prime polynomial in kA
that generates P. Otherwise, if char(k) = 2 and n is even, then Disc(f) = P 2 where P is a prime
polynomial that generates P.

Proof. As explained in the proof of Corollary 4.19, it is enough to prove this proposition under the
assumption that k is a UFD. So let us assume hereafter that this is the case.

By Corollary 4.19, there exists an irreducible polynomial P ∈ kA that generates kP, an integer
r > 1 and c an invertible element in k such that kDisc(f) = c.P r. Depending on the characteristic
of k and the parity of n we will prove that r is equal to 1 or 2.

Rewriting f(X1, . . . , Xn) as f =
∑

06i6j6nAi,jXiXj (so that kA is now the polynomial
ring k[Ai,j , 0 6 i 6 j 6 n]), for all i ∈ {1, . . . , n} we have

∂if = A1,iX1 + · · ·+Ai−1,iXi−1 + 2Ai,iXi +Ai,i+1Xi+1 + · · ·+Ai,nXn

in kA[X1, . . . , Xn]. Then, Definition 4.6 implies that∣∣∣∣∣∣∣∣∣∣∣

2A1,1 A1,2 · · · A1,n−1 A1,n

A1,2 2A2,2 A2,n

...
. . .

...
A1,n−1 2An−1,n−1 An−1,n

A1,n A2,n · · · An−1,n 2An,n

∣∣∣∣∣∣∣∣∣∣∣
=

{
2 Disc(f) = 2c.P r if n is odd
Disc(f) = c.P r if n is even

(4.4.3)

in the polynomial ring kA.

Let us first assume that char(k) 6= 2. Denote by ρ the specialization that leaves invariant Ai,i
for all i and sends Ai,j to 0 for all i 6= j. The specialization of (4.4.3) by ρ yields

2nA1,1A2,2 . . . An,n =

{
2c.ρ(P )r if n is odd
c.ρ(P )r if n is even

and from here we deduce that r must be equal to 1.

Now, assume that char(k) = 2 and that n is even. Since char(k) = 2, the determinant in
(4.4.3) can be seen as the determinant of a skew-symmetric matrix, and since n is even it is known
that it is equal to the square of its pfaffian. Therefore, (4.4.3) implies that r > 2.

Consider the specializationϕ that leaves invariantA1+2k,2+2k for all integers k = 0, 1, . . . , (n−
2)/2 and that sends all the other variables Ai,j to 0. The matrix in (4.4.3) then specializes by ϕ to
the block diagonal matrix

diag

([
0 A1,2

A1,2 0

]
,

[
0 A3,4

A3,4 0

]
, . . . ,

[
0 An−1,n

An−1,n 0

])
and therefore (4.4.3) yields

(n−2)/2∏
k=0

A1+2k,2+2k
2 = c.ϕ(P )r

This implies that r 6 2 and hence we conclude that r = 2 if char(k) = 2 and n is even. Then, to
conclude observe that Z/2ZDisc(f) is a square (necessarily c = 1 in this case), so that we deduce
that c is actually a square in k via the canonical specialization from Z/2Z to k. It follows that
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kDisc(f) = (uP )2 where u2 = c and u is an invertible element in k, and the claimed result follows
as uP is an irreducible element that generates P.

Let us turn to the last case: char(k) = 2 and n is odd. Consider the specialization φ that leaves
invariant An−2,n, An−1,n and A1+2k,2+2k for all k = 0, 1, . . . , (n − 3)/2, and that sends all the
other variables Ai,j to 0. In order to determine the image of kDisc(f) by this specialization, we
remark that we have the following commutative diagram of specializations

ZA
φ //

��

Z[An−2,n, An−1,n, A1+2k,2+2k | k = 0, 1, . . . , (n− 3)/2]

��
kA

φ // k[An−2,n, An−1,n, A1+2k,2+2k | k = 0, 1, . . . , (n− 3)/2]

where the vertical arrows are induced by the ring morphism Z → k. So, we can first perform the
specialization φ over the integers and then specialize to k.

The matrix in (4.4.3) specializes by ϕ to the block diagonal matrix

diag

([
0 A1,2

A1,2 0

]
, . . . ,

[
0 An−4,n−3

An−4,n−3 0

]
, 0 An−2,n−1 An−2,n

An−2,n−1 0 An−1,n

An−2,n An−1,n 0

 .

Therefore, the specialization of (4.4.3) by φ over the integers yields the equality

2An−2,n−1An−2,nAn−1,n

(n−5)/2∏
k=0

−(A1+2k,2+2k)2 = 2φ(ZDisc(f))

so that,

An−2,n−1An−2,nAn−1,n

(n−5)/2∏
k=0

−(A1+2k,2+2k)2 = φ(ZDisc(f)).

Now, we specialize this equality to k and we obtain

An−2,n−1An−2,nAn−1,n

(n−5)/2∏
k=0

A1+2k,2+2k
2 = φ(kDisc(f)) = c.φ(P )r.

From here, we deduce that r must be equal to 1. �

Our next step is to prove that the conclusion of this proposition holds without restriction on the
degree d. This is Theorem 4.26. Notice that in the case n = 2 we already know that such a result is
valid by Theorem 3.23 and Theorem 3.24 (see also [AJ06, §8.5]).

4.5. Zariski weight of the discriminant
Let k be a commutative ring and consider the generic homogeneous polynomial in the variables
X1, . . . , Xn of degree d > 2

f :=
∑
|α|=d

UαX
α ∈ C := A[X1, . . . , Xn]

where A := k[Uα | |α| = d]. Define also the ideals m := (X1, . . . , Xn) and n := (X1, . . . , Xn−1)

of C and rewrite the polynomial f as f =
∑d
t=0 fd−tX

t
n where fl is the generic homogeneous

polynomial of degree l in A[X1, . . . , Xn−1] for all l = 0, . . . , d.
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Now, fix an integer µ such that 0 6 µ 6 d and define the polynomials

h :=

µ∑
t=0

fd−tX
t
n ∈ Cd and g :=

d∑
t=µ

fd−tX
t−µ
n ∈ Cd−µ.

Proposition 4.23. For all integers 0 6 µ 6 d the sequence h, ∂1h, . . . , ∂n−2h is C-regular. More-
over, for all integers 1 6 µ 6 d, the sequence h, ∂1h, . . . , ∂n−1h is C-regular outside V (n).

Proof. By Proposition 4.2, the sequence fd, ∂1fd, . . . , ∂n−2fd is C-regular. It follows that the se-
quence Xn, h, ∂1h, . . . , ∂n−2h is also C-regular. Since all the elements of this sequence are homo-
geneous of positive degree, this sequence remains C-regular under any permutation of its elements.
Therefore, h, ∂1h, . . . , ∂n−2h,Xn is C-regular, in particular h, ∂1h, . . . , ∂n−2h is C-regular.

To prove the second assertion, we have to prove that the sequence h, ∂1h, . . ., ∂n−1h is CXj -
regular for all 1 6 j 6 n− 1. Up to a permutation of the variables X1, . . . , Xn−1, one can assume
that j = n− 1.

For the sake of simplicity in the notation, we rename by Vi the coefficient of the monomial
XiX

d−1
n−1 in fd for all i = 1, . . . , n− 1 so that

fd = V1X1X
d−1
n−1 + V2X2X

d−1
n−1 + · · ·+ Vn−2Xn−2X

d−1
n−1 + Vn−1X

d
n−1 + · · · .

We also define the polynomial v by the equality

h = v + V1X1X
d−1
n−1 + V2X2X

d−1
n−1 + · · ·+ Vn−2Xn−2X

d−1
n−1 + Vn−1X

d
n−1.

Now, perform the following successive specializations:

Vn−1 7→ −1

Xd
n−1

(v + V1X1X
d−1
n−1 + V2X2X

d−1
n−1 + · · ·+ Vn−2Xn−2X

d−1
n−1), (4.5.1)

Vi 7→
−1

Xd−1
n−1

∂iv, 1 6 i 6 n− 2.

They successively annihilate h, ∂1h, . . . , ∂n−1h and we recover that h, ∂1h, . . . , ∂n−2h is a regular
sequence (outside V (n)). In addition, (4.5.1) yields an isomorphism

CXn−1
/

(h, ∂1h, . . . , ∂n−2h) −→ A′[X1, . . . , Xn][X−1
n−1]

where A′ := k[Uα | |α| = d, Uα 6= Vi ∀i ∈ {1, . . . , n − 1}]. Therefore, it remains to prove that the
image of ∂n−1h by the specializations (4.5.1) is a nonzero divisor in A′[X1, . . . , Xn][X−1

n−1]. For
that purpose, we observe that the Euler identity implies that

X1∂1h+ · · ·+Xn−1∂n−1h =

µ∑
t=0

(d− t)fd−tXt
n = dh−

µ∑
t=1

tfd−tX
t
n.

But the polynomials fd−t for 1 6 t 6 µ do not depend on the variables V1, V2, . . ., Vn−1, so we
deduce that Xn−1∂n−1h is specialized to −

∑µ
t=1 tfd−tX

t
n by (4.5.1). Assuming µ > 1, the k-

content of this polynomial contains the k-content of fd−1 which is a primitive polynomial over k,
and we conclude the proof by the Dedekind-Mertens Lemma. �

By definition, the polynomial h ∈ C is homogeneous of degree d with respect to the vari-
ables X1, . . . , Xn and of valuation d − µ with respect to the variables X1, . . . , Xn−1. Therefore,
for all i = 1, . . . , n − 1, the polynomial ∂ih is of degree d − 1 with respect to the variables
X1, . . . , Xn and of valuation d − 1 − µ with respect to the variables X1, . . . , Xn−1. We will de-
note by Red(h, ∂1h, ∂2h, . . . , ∂n−1h) the reduced resultant of h, ∂1h, ∂2h, . . . , ∂n−1h with respect
to these degrees and weights. It is well defined for all µ such that 1 6 µ 6 d− 2 ([Zar37, OM88]).
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Proposition 4.24. For all 1 6 µ 6 d− 2 the reduced resultant

Red(h, ∂1h, ∂2h, . . . , ∂n−1h)

is a primitive polynomial, hence a nonzero divisor, in A.

Proof. The reduced resultant is a nonzero divisor by Proposition 4.23 and the Poisson formula
([Zar37, Theorem 5.1 and Theorem 5.2], [OM88, Chapter IV]). Then, we deduce that it is primi-
tive over the integers, hence over k, by applying the previous property with k = Z and k = Z/pZ
for all prime integers p. �

Theorem 4.25. Assume that the ring A = k[Uα | |α| = d] is graded by the Zariski weight, i.e. by
setting weight(c) := 0 for all c ∈ k and weight(Uα) := max(αn − µ, 0). Then, the discriminant
Disc(f) ∈ A is of valuation (d − µ)(d − 1 − µ)n−1. Moreover, its isobaric part H of weight
(d− µ)(d− 1− µ)n−1 satisfies the equality

Disc(g)Disc(ḡ)Red(h, ∂1h, . . . , ∂n−1h) = H.Disc(f̄) ∈ A

where Disc(ḡ) = Disc(fd−µ), Disc(f̄) = Disc(fd) and Red(h, ∂1h, . . . , ∂n−1h) are all isobaric
polynomials of zero weight.

Proof. Let f0 :=
∑
|α|=d V0,αX

α and fi :=
∑
|α|=d−1 Vi,αX

α for i = 1, . . . , n − 1 be generic
homogeneous polynomials of degree d, d − 1, . . . , d − 1 respectively and let ϕ0, ϕ1, . . . , ϕn−1 be
their generic specialization of degree d, d−1, . . . , d−1 and of valuation d−µ, d−µ−1, . . . , d−µ−1
respectively. Notice that we consider here the canonical grading of k[Vi,α∀i, α], so that

f0 =
∑
|α|=d

V0,αX
α, fi =

∑
|α|=d−1

Vi,αX
α, ϕ0 =

∑
|α|=d
αn6µ

V0,αX
α, ϕi =

∑
|α|=d−1

αn6µ

V0,αX
α

for all i = 1, . . . , n− 1. Moreover, we also define the polynomials

g0 :=
∑
|α|=d
αn>µ

V0,αX
α/Xµ

n , gi :=
∑

|α|=d−1

αn>µ

V0,αX
α/Xµ

n ∈ k[Vi,α,∀i, α][X1, . . . , Xn]

for all i = 1, . . . , n− 1.
Now, consider the grading of k[Vi,α ∀i, α] defined in this theorem, namely

weight(Vi,α) := max(αn − µ, 0) for all i = 0, . . . , n− 1.

Then, by definition of the reduced resultant of ϕ0, ϕ1, . . . , ϕn−1, we have the equality

Res(f0, . . . , fn−1) = Res(g0, . . . , gn)Red(ϕ0, . . . , ϕn)+

terms of weight > (d− µ)(d− 1− µ)n−1 (4.5.2)

Denote by ρ the specialization from k[Vi,α ∀i, α] to A = k[Uα | |α| = d] (and also, by abusing
notation, its canonical extension to polynomial rings) which is such that ρ(f0) = f and ρ(fi) = ∂if
for all i = 1, . . . , n − 1. It is easy to check that ρ(g0) = g, ρ(ϕ0) = h and that ρ(gi) = ∂ig,
ρ(ϕi) = ∂ih for all = 1, . . . , n − 1. Moreover, ρ is isobaric with respect to the Zariski grading of
k[Vi,α ∀i, α] and A because each variable Uα has the same Zariski weight in f and ∂1f, . . . , ∂n−1f .
Therefore, the specialization of (4.5.2) yields the equality

Res(f, ∂1f, . . . , ∂n−1f) = Res(g, ∂1g, . . . , ∂n−1g)Red(h, ∂1h, . . . , ∂n−1h)

+ terms of weight > (d− µ)(d− 1− µ)n−1.
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By Proposition 4.7, we deduce that

Disc(f)Disc(f̄) = Disc(g)Disc(ḡ)Red(h, ∂1h, . . . , ∂n−1h)+

terms of weight > (d− µ)(d− 1− µ)n−1.

But Disc(g) 6= 0, Disc(ḡ) 6= 0 and by Proposition 4.24 Red(h, ∂1h, . . . , ∂n−1h) 6= 0. Since
Disc(f̄), Disc(ḡ) and Red(h, ∂1h, . . . , ∂n−1h) 6= 0 have null Zariski weight and Disc(g) is iso-
baric of Zariski weight (d − µ)(d − 1 − µ)n−1, we deduce that Disc(f) ∈ A is of valuation
(d− µ)(d− 1− µ)n−1 with respect to Zariski weight as claimed.

Pushing further the computations, we see that

Disc(f̄) = Disc(h̄) divides Red(h, ∂1h, . . . , ∂n−1h)

and hence we deduce the formula of the theorem. To see this property, notice that the reduced resul-
tant is a reduced inertia form, that is to say that there exists an integer N such that

(X1, . . . , Xn−1)NRed(h, ∂1h, . . . , ∂n−1h) ⊂ (h, ∂1h, . . . , ∂n−1h).

Specializing Xn to 0, we get

(X1, . . . , Xn−1)NRed(h, ∂1h, . . . , ∂n−1h) ⊂ (h̄, ∂1h̄, . . . , ∂n−1h̄) ⊂ A[X1, . . . , Xn−1]

from we deduce the claimed property by Proposition 4.21. �

We are now ready to extend Proposition 4.22 to the generic homogeneous polynomial of arbi-
trary degree d > 2.

Theorem 4.26. Let k be a domain and f =
∑
|α|=d UαX

α be the generic homogeneous polynomial
of degree d > 2 over k. If char(k) 6= 2 or n is odd, then Disc(f) is a prime polynomial in kA
that generates P. Otherwise, if char(k) = 2 and n is even, then Disc(f) = P 2 where P is a prime
polynomial that generates P.

Proof. By Corollary 4.19, there exists an invertible element c in k, a prime polynomial P that gen-
erates P and an integer r such that Disc(f) = c.P r.

Now, grading A with the Zariski weight, for all integers 1 6 µ 6 d − 2 Theorem 4.25 shows
that

Disc(f) = Qµ(f).Disc(g) + terms of weight > (d− µ)(d− µ− 1)n−1

where Qµ(f) has weight zero and Disc(g) is isobaric of weight (d− µ)(d − µ− 1)n−1. Let Ps be
the isobaric part of smallest weight s of P . Then, we deduce that for all integers 1 6 µ 6 d− 2

Qµ(f).Disc(g) = c.(Ps)
r.

In particular, if µ = d − 2 then g is the generic homogeneous polynomial in X1, . . . , Xn of degree
2. But by Proposition 4.22 we know that Disc(g) is prime if n is odd or 2 6= 0 in k, and that it is
equal to the square of a prime polynomial otherwise. We deduce that r = 1 in the first case and that
necessarily r 6 2 in the second case.

Assume now that 2 = 0 in k and n is even. We have just seen that r ∈ {1, 2}. We claim that in
this case, the canonical projection Proj(B)→ Spec(A) is not birational onto its image Spec(A/P).
This implies that r cannot be equal to 1, so r = 2 and Disc(f) = c.P 2. Then, to conclude observe
that Z/2ZDisc(f) is a square (necessarily c = 1 in this case), so that we deduce that c is actually a
square in k via the canonical specialization from Z/2Z to k. It follows that kDisc(f) = (uP )2 where
u2 = c and u is an invertible element in k, and the claimed result follows as uP is an irreducible
element that generates P.

To prove that Proj(B) → Spec(A) is not birational, we examine the module of relative dif-
ferentials ΩB(Xn)/A. In the following section, we will prove in Lemma 4.27 that it is isomorphic to
the cokernel of a Hessian matrix. Moreover, under the assumptions that 2 = 0 in k and n is even it
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turns out that the determinant of this Hessian matrix is equal to zero (see the beginning of Section
4.6 below). Consequently, the projection Proj(B)→ Spec(A) cannot be birational. �

4.6. Inertia forms and the Hessian
Let k be a commutative ring. Given a polynomial f ∈ k[X1, . . . , Xn], we will denote by Hess(f),
and call it the Hessian of f , the determinant of the (symmetric) matrix

H(f) :=

(
∂2f

∂Xi∂Xj

)
16i,j6n

.

When 2 = 0 in k, the elements on the diagonal of H(f) all vanish and H(f) is then a skew-
symmetric matrix. Consequently, Hess(f) = 0 if n is odd and Hess(f) is the square of a polynomial
(its Pfaffian) if n is even. Regarding this behavior, the case where f is a generic polynomial of degree
2 is particularly instructive.

Lemma 4.27. Set A := k[Ui,j | 1 6 i < j 6 n] and let

f :=
∑

16i6j6n

Ui,jXiXj ∈ A[X1, . . . , Xn]

be the generic homogeneous polynomial of degree 2 over the ring k. If n is even or if 2 is a nonzero
divisor in k then Hess(f) is a nonzero divisor in A.

Proof. If n is even, the monomial U2
1,2U

2
3,4 . . . U

2
n−1,n appears in Hess(f) with a coefficient ±1 (to

see it, one can for instance specialize all the other variables to zero). We deduce that the k-content
of Hess(f) is equal to k and therefore that Hess(f) is a nonzero divisor in A by Dedekind-Mertens
Lemma.

Now, assume that n is odd and that 2 is a nonzero divisor in k. By specializing U1,j to 0 for all
1 < j 6 n, Hess(f) specializes to 2U1,1Hess(g) where g =

∑
26i6j6n Ui,jXiXj . But since n− 1

is even, Hess(g) is a nonzero divisor in A and it follows that Hess(f) is also a nonzero divisor. �

Proposition 4.28. Set A := k[Uα | |α| = d] and let

f :=
∑
|α|=d

UαX
α ∈ A[X1, . . . , Xn]

be the generic homogeneous polynomial of degree d over the ring k. If n is odd or if 2 is a nonzero
divisor in k then the determinant

det

(
∂2f

∂Xi∂Xj

)
16i,j6n−1

(4.6.1)

is a nonzero divisor in the quotient ring A[X1, . . . , Xn] /TFm (D).

Proof. The case n = 1 being trivially correct, we assume that n > 2. We first prove the claimed
result under the assumption that k is a domain. In this case, TFm (D) is a prime ideal by Corollary
4.17 and hence we have to show that

det

(
∂2f

∂Xi∂Xj

)
16i,j6n−1

/∈ TFm (D) (4.6.2)

But it is enough to exhibit a particular specialization for which this property holds. So consider the
specialization the sends f to the polynomial

h :=

 ∑
16i6j6n−1

Ui,jXiXj

Xd−2
n ∈ k[Ui,j | 1 6 i 6 j 6 n− 1][X1, . . . , Xn].
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Denoting g :=
∑

16i6j6n−1 Ui,jXiXj , we have

det

(
∂2h

∂Xi∂Xj

)
16i,j6n−1

= Hess(g)X(d−2)(n−1)
n .

Therefore, specializing further the variable Xn to 1, we see that to prove (4.6.2) it is sufficient to
prove that

Hess(g) /∈ (g, ∂1g, . . . , ∂n−1g, (d− 2)g)

= (g, ∂1g, . . . , ∂n−1g) ⊂ k[Ui,j | 1 6 i, j 6 n− 1][X1, . . . , Xn−1].

But this holds because the ideal (g, ∂1g, . . . , ∂n−1g) is nonzero and it is contained in the ideal
(X1, . . . , Xn−1), whereas Hess(g) belongs to k[Ui,j | 1 6 i, j 6 n− 1] and is nonzero by Lemma
4.27.

We now turn to the proof in the case k is an arbitrary commutative ring. Let D stands for the
determinant (4.6.1). We begin with the case where n is odd. By (4.4.1), ZBXn is a free abelian group.
Moreover, from what we have just proved under the assumption that k is a domain, we deduce that
the multiplication by D in ZBXn and Z/pZBXn , p a prime integer, are all injective maps. Denoting
by ZQ the quotient abelian group of the multiplication byD in ZBXn , that is to say we have he exact
sequence of abelian groups

0→ ZBXn
×D−−→ ZBXn → ZQ→ 0,

we deduce that ZQ is torsion free (for TorZ1 (Z/pZ, ZQ) = 0 for all prime integers p) and hence
is flat. By a classical property of flatness we obtain that TorZ1 (ZQ, k) = 0 and therefore that the
multiplication by D in kBXn is an injective map, i.e. D is a nonzero divisor in kBXn . Finally, since

TFm(D) = ker(kC → kBXn) (4.6.3)

by Corollary 4.17, it follows that D is a nonzero divisor in kC /TFm(D).
We can proceed similarly to prove the claimed result in the case where n is even. The multipli-

cation by D in ZBXn and Z/pZBXn , p a prime but odd integer, are all injective maps. It follows that
after inversion of 2 we obtain the exact sequence

0→ Z[ 12 ]BXn
×D−−→ Z[ 12 ]BXn → Z[ 12 ]Q→ 0

where the Z[ 1
2 ]-module Z[ 12 ]Q is torsion free and is hence flat. Consequently, if 2 is a unit in k we

immediately deduce by tensorization by k over Z[ 1
2 ] that the multiplication by D in kBXn is an

injective map. Now, if 2 is a nonzero divisor in k then k can be embedded in k[ 1
2 ]. This induces the

inclusion of kBXn in k[ 12 ]BXn . But we have just proved that D is a nonzero divisor in k[ 12 ]BXn , so
we deduce that it is also a nonzero divisor in kBXn and hence also a nonzero divisor in kC /TFm(D)
by (4.6.3). �

Theorem 4.29. Set A := k[Uα | |α| = d] and let

f :=
∑
|α|=d

UαX
α ∈ A[X1, . . . , Xn]

be the generic homogeneous polynomial of degree d over k. If n is odd or if 2 is a nonzero divisor in
k then

TFm(f, ∂1f, . . . , ∂nf) ∩A ⊂ (∂1f̃ , . . . , ∂n−1f̃)2 + (f̃),

where for all polynomial P (X1, . . . , Xn) the notation P̃ stands for P (X1, . . . , Xn−1, 1).
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Proof. Let a ∈ TFm(f, ∂1f, . . . , ∂nf) ∩ A. There exists an integer N such that XN−1
n a belongs

to the ideal (f, ∂1f, . . . , ∂nf). Moreover, using the Euler identity df =
∑n
i=1Xi∂if , we ob-

tain that XN
n a belongs to the ideal (f, ∂1f, . . . , ∂n−1f) and therefore that there exist polynomials

P1, . . . , Pn−1 and Q in A[X1, . . . , Xn] such that

XN
n a = P1∂1f + · · ·+ Pn−1∂n−1f +Qf. (4.6.4)

By applying the derivation ∂j(−) for all j = 1, . . . , n− 1, we obtain the following equalities:

∀j ∈ {1, . . . , n− 1},
n−1∑
i=1

Pi
∂2f

∂Xi∂Xj
= 0 mod (f, ∂1f, . . . , ∂n−1f).

By Cramer’s rules, it follows that for all i = 1, . . . , n− 1 we have

Pi.det

(
∂2f

∂Xi∂Xj

)
16i,j6n−1

∈ (f, ∂1f, . . . , ∂nf) ⊂ TFm(f, ∂1f, . . . , ∂nf).

But by Proposition 4.28, the determinant

det

(
∂2f

∂Xi∂Xj

)
16i,j6n−1

is not a zero divisor in the quotient ring

A[X1, . . . , Xn]/
TFm(f, ∂1f, . . . , ∂nf).

Therefore, we deduce that Pi ∈ TFm(f, ∂1f, . . . , ∂nf) for all i = 1, . . . , n − 1 and hence, using
again Euler identity, that

P̃i ∈ (f̃ , ∂1f̃ , . . . , ∂n−1f̃).

Coming back to the definition (4.6.4) of the Pi’s, the claimed result is proved. �

An immediate consequence of this theorem is the

Corollary 4.30. For any commutative ring k and any homogeneous polynomial f ∈ k[X1, . . . , Xn],
we have

Disc(f) ∈ (∂1f̃ , . . . , ∂n−1f̃)2 + (f̃).

We end this paragraph with the computation of the module of relative differentials ΩB(Xn)/A

induced by the canonical inclusion A→ B(Xn).

Lemma 4.31. For any commutative ring k, the module ΩB(Xn)/A of relative differential of B(Xn)

over A is isomorphic to the cokernel of the map
n−1⊕
i=1

A[X1, . . . , Xn−1]

(f̃ , ∂1f̃ , . . . , ∂n−1f̃)

Hess(f̃)−−−−−→
n−1⊕
i=1

A[X1, . . . , Xn−1]

(f̃ , ∂1f̃ , . . . , ∂n−1f̃)

whose matrix in the canonical basis is given by the Hessian matrix H(f̃).

Proof. By definition of B, it is clear that

B(Xn) ' A[X1, . . . , Xn−1]/(f̃ , ∂1f̃ , . . . , ∂n−1f̃).

We need to introduce some notation. We can decompose f as a sum

f = fd + fd−1Xn + · · ·+ fd−2X
2
n + f1X

d−1
n + f0X

d
n

where the fi’s are homogeneous polynomials in X1, . . . , Xn−1 of degree d− i. We set

h := f − f1X
d−1
n − f0X

d
n
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and we rename the coefficients Uα, αn > d− 1, of f by setting

f1 = E1X1 + E2X2 · · ·+ En−1Xn−1, f0 = En.

Setting D := k[X1, . . . , Xn−1][Uα |αn 6 d − 2], we define a k-linear map λ from B(Xn) to D as
follows:

Xi 7→ Xi, i = 1, . . . , n− 1 (4.6.5)
Uα 7→ Uα, αn 6 d− 2

Ei 7→ −∂ih̃, i = 1, . . . , n− 1

En 7→ −h̃+

n−1∑
i=1

Xi∂ih̃

It is clear that λ is surjective. Moreover, observe that f̃ = h̃+En+
∑n−1
i=1 EiXi, so that ∂if̃ = ∂ih̃+Ei

for all i = 1, . . . , n− 1, and hence we deduce that λ is an isomorphism.
Now, B(Xn) is an A-algebra by the canonical inclusion of A in B(Xn). Using the isomorphism

λ, we get that ΩB(Xn)/A ' ΩD/A and A → D is given by (4.6.5) (without the Xi’s that have been
removed). Setting Ā = k[Uα |αn 6 d − 2], so that A = Ā[E1, . . . , En], we get maps of rings
Ā→ A→ D and the relative cotangent sequence

D ⊗A ΩA/Ā
can−−→ ΩD/Ā → ΩD/A → 0

which is exact. Since ΩA/Ā ' ⊕ni=1AdEi and ΩD/Ā ' ⊕n−1
i=1 DdXi, the map can in this se-

quence can be represented by a matrix in the basis dE1, . . . , dEn and dX1, . . .dXn−1 respectively.
By straightforward computations, we get

can(dEi) = −

n−1∑
j=1

∂2h̃

∂Xi∂Xj
dXj

 = −

n−1∑
j=1

∂2f̃

∂Xi∂Xj
dXj

 , i = 1, . . . , n− 1,

and

can(dEn) =

n−1∑
i=1

n−1∑
j=1

Xj
∂2h̃

∂Xi∂Xj

 dXi =

n−1∑
i=1

n−1∑
j=1

Xj
∂2f̃

∂Xi∂Xj

dXi

= −
n−1∑
j=1

Xjcan(dEj)

so that the first n − 1 columns of this matrix corresponds to −Hess(f̃) and its last column is the
span of the n − 1 first ones. Therefore, the image of can is isomorphic to the image of the map
Dn−1 → Dn−1 defined by the matrix −Hess(f̃), and the claimed result follows. �

The computation we have done in this lemma shows that the unramified points of Proj(B)
over Spec(A) are the non-degenerated quadratic points, that is to say the points where the Hessian
of f̃ does not vanish. We used it at the end of the proof of Theorem 4.26 to show that the canon-
ical projection of Proj(B) over Spec(A) is not birational if char(k) = 2 and n is even under the
assumption that k is a domain. If n is odd or 2 is a nonzero divisor in k then this projection is bira-
tional (without assuming that k is a domain). The purpose of the next section is to prove this fact by
providing an explicit blowup structure to Proj(B).
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4.7. Effective blow-up structure
For the sake of simplicity in the text, we introduce a particular notation for some coefficients Uα of
the generic homogeneous polynomial f ∈ kA of degree d > 2 :

f(X1, . . . , Xn) = E1X1X
d−1
n + E2X2X

d−1
n + · · ·+ En−1Xn−1X

d−1
n + EnXd

n + · · ·
Moreover, we introduce n− 1 polynomials

gi(X1, . . . , Xn) =
∑
|β|=d−1

ViβX
β , i = 1, . . . , n− 1

and define the coefficient ring

kA
′ = kA[Viβ | 1 6 i 6 n− 1, |β| = d− 1]

so that f and g1, . . . , gn−1 belong to kA
′[X1, . . . , Xn]. For the sake of simplicity, we will omit the

subscript k in the notation whenever there is no possible confusion.

The resultant S := Res(∂1f, . . . , ∂n−1f, f) ∈ A can be obtained by specialization of the
resultant R := Res(g1, . . . , gn−1, f) ∈ A′. More precisely, for all integers i = 1, . . . , n−1 we have

∂f

∂Xi
=

∑
|α|=d,αi>1

αiUα
Xα

Xi
=

∑
|β|=d−1

(βi + 1)Uβ+eiX
β

where ei stands for the multi-index such that Xei = Xi for all i = 1, . . . , n− 1. Thus, we define the
specialization

ρ : A′ → A

Viβ 7→ (βi + 1)Uβ+ei , i = 1, . . . , n− 1

Uβ 7→ Uβ

so that ρ(R) = S. Notice that we also have ρ(∂R/∂En) = ∂S/∂En. Now, set D := Disc(f) ∈ A
and recall that f̄(X1, . . . , Xn−1) := f(X1, . . . , Xn−1, 0).

Proposition 4.32. There exist polynomials ∆1(f), . . . ,∆n(f) ∈ ZA such that

Disc(f̄)∆i(f) = ρ

(
∂R

∂Ei

)
∈ ZA.

For any commutative ring k, we define the polynomials ∆1(f), . . . ,∆n(f) ∈ kA by change of basis
Z→ k.

Moreover,

∆n(f) =
∂D

∂En
∈ kA (4.7.1)

and for all 1 6 i, j 6 n we have

∆i(f)Xj −∆j(f)Xi ∈ TFm(∂1f, . . . , ∂n−1f, f) ⊂ kA[X1, . . . , Xn]. (4.7.2)

Proof. We begin by proving the claim about ∆n(f). For that purpose, introduce a new indeterminate
T . By Taylor expansion we have

Res(g1, . . . , gn−1, f + TXd
n)−R = T

∂R

∂En
mod (T 2) ∈ kA

′[T ].

Applying the specialization ρ and the definition of the discriminant, we obtain

Disc(f̄)(Disc(f + TXd
n)−Disc(f)) = Tρ

(
∂R

∂En

)
mod (T 2) ∈ kA[T ]. (4.7.3)

But the Taylor expansion also yields the equality

Disc(f + TXd
n)−Disc(f) = T

∂D

∂En
mod (T 2) ∈ kA[T ]. (4.7.4)
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Therefore, combining (4.7.3) and (4.7.4) we deduce that

Disc(f̄)
∂D

∂En
= ρ

(
∂R

∂En

)
=

∂S

∂En
∈ kA (4.7.5)

so that the claim ∆n(f) = ∂D/∂En in kA is proved since Disc(f̄) is a nonzero divisor by Corollary
4.9.

Now, we turn to the polynomials ∆1(f), . . . ,∆n−1(f) and hence we assume that k = Z. From
[Jou91, Lemme 4.6.1], we know that for all multi-index α such that |α| = d we have

Xd
n

∂R

∂Uα
−Xα ∂R

∂En
∈ TFm(g1, . . . , gn).

Moreover, [Jou91, Lemma 4.6.6] then shows that the specialization of Xi by ∂R/∂Ei for all i =
1, . . . , n yields (

∂R

∂En

)d
∂R

∂Uα
−
(
∂R

∂E1

)α1

· · ·
(
∂R

∂En

)αn ∂R

∂En
∈ R.ZA′

By the properties of the resultant, R is irreducible, ∂R/∂En 6= 0 and ∂R/∂En /∈ R.ZA
′ so we

deduce that (
∂R

∂En

)d−1
∂R

∂Uα
−
(
∂R

∂E1

)α1

· · ·
(
∂R

∂En

)αn
∈ R.ZA′.

Taking suitable choices for the multi-index α, we finally obtain that for all integers i = 1, . . . , n− 1(
∂R

∂En

)d−1
∂R

∂Uα
−
(
∂R

∂Ei

)d
∈ R.ZA′. (4.7.6)

Now, since Disc(f̄) divides S = ρ(R), by definition of the discriminant and divides ρ(∂R/∂En)
by (4.7.5), we deduce that it also divides ρ(∂R/∂Ei)d for all integers i = 1, . . . , n − 1 by spe-
cialization of (4.7.6) under ρ. But Disc(f̄) is irreducible in ZA, so we finally deduce that Disc(f̄)
divides ρ(∂R/∂Ei) for all i = 1, . . . , n − 1 and hence we obtain the existence of the polynomials
∆1(f), . . . ,∆n−1(f) ∈ ZA.

It remains to prove (4.7.2). Recall from [Jou91, Lemma 4.6.1, (4.6.3)] that for all 1 6 i, j 6 n
we have

∂R

∂Ei
Xj −

∂R

∂Ej
Xi ∈ TFm(g1, . . . , gn−1, f) ⊂ kA

′[X1, . . . , Xn].

Applying the specialization ρ, we deduce that

Disc(f̄) (∆i(f)Xj −∆j(f)Xi) ∈ TFm(D).

Therefore, we deduce that (4.7.2) holds if k = Z because in this case Disc(f̄) is irreducible and does
not divide Disc(f), hence does not belong to the prime ideal TFm(D). Finally, (4.7.2) holds for any
k by change of basis Z→ k. �

We are now ready to define a map from kC to a Rees algebra. Recall that P := TFm(kD)0 ⊂
kA and denote by ∆̄i the image of ∆i(f) by the canonical map A → A/P for all i = 1, . . . , n.
Introducing a new indeterminate T , we define the A-algebra morphism

ϕ : kC = kA[X1, . . . , Xn] → ReesA/P(∆̄1, . . . , ∆̄n) ⊂ A/P[T ]

h =
∑
ν∈N

hν(X1, . . . , Xn) 7→
∑
ν∈N

hν(∆̄1, . . . , ∆̄n)T ν

where the notation hν stands for the homogeneous part of degree ν of h ∈ kC. Notice that it is a
graded and surjective map.

Lemma 4.33. With the above notation, ϕ vanishes on TFm(D).
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Proof. Since ϕ is graded, it is sufficient to check the claimed property on graded parts. Let h ∈ Cν .
By using (4.7.2), we obtain that

Xν
nh(∆1(f), . . . ,∆n(f))−∆n(f)νh(X1, . . . , Xn) ∈ TFm(D). (4.7.7)

It follows that if h ∈ Cν ∩ TFm(D) then Xν
nh(∆1(f), . . . ,∆n(f)) ∈ TFm(D). Similarly, we get

that Xν
j h(∆1(f), . . . ,∆n(f)) ∈ TFm(D) for all j = 1, . . . , n and consequently, we deduce that

h(∆1(f), . . . ,∆n(f)) ∈ TFm(D)0 = P ⊂ kA,

hence hν(∆̄1, . . . , ∆̄n) = 0 ∈ A/P. �

As a consequence of this lemma, the morphism ϕ induces

ϕ̄ : kC/TFm(D) = kB/H
0
m(B)→ ReesA/P(∆̄1, . . . , ∆̄n)

From a geometric point of view, ϕ̄ defines a map from a blow-up variety to the discriminant variety.
Below, we will prove that this map is an isomorphism under suitable assumptions. As a consequence,
it will follow that the scheme morphism

Proj(B) = Proj(B/H0
m(B))→ Spec(A/P)

is birational since ϕ̄ identifies Proj(B) to the blow-up of Spec(A/P) along the ideal (∆̄1, . . . , ∆̄n).

Lemma 4.34. Assume that k is a domain and that n is odd or 2 6= 0 in k. Let a ∈ P = TFm(D)0.
If ∂a/∂En = 0 then a ∈ TFm(D2)0. In particular, if ∂a/∂En = 0 then ∂a/∂Uα ∈ P for all
multi-index α such that |α| = d.

Proof. Let a ∈ P = TFm(D)0 such that ∂a/∂En = 0. by Corollary 4.17, there exits an integer N
and polynomials P1, . . . , Pn−1, Q ∈ kA[X1, . . . , Xn] such that

XN
n a = P1∂1f + ∂2f + · · ·+ ∂n−1f +Qf. (4.7.8)

Since ∂if does not depend on En for all 1 6 i 6 n− 1, by derivation with respect to En we get

0 = XN
n

∂a

∂En
=
∂P1

∂En
∂1f + · · ·+ ∂Pn−1

∂En
∂n−1f +

∂Q

∂En
f +QXd

n.

It follows immediately that
Xd
nQ ∈ (f, ∂1f, . . . , ∂n−1f)

and hence, by comparing with (4.7.8), we deduce that there exits polynomials L1, . . . , Ln−1,M ∈
kA[X1, . . . , Xn] such that

XN+d
n a = L1∂1f + L2∂2f + · · ·+ Ln−1∂n−1f +Mf2. (4.7.9)

Computing the derivatives with respect to Xj for all 1 6 j 6 n− 1, we get the equalities

0 =

n−1∑
i=1

Li
∂2f

∂Xi∂Xj
+

n−1∑
i=1

∂Li
∂Xj

∂f

∂Xi
+ 2Mf

∂f

∂Xj
+
∂M

∂Xj
f2, 1 6 j 6 n− 1.

Hence, for all 1 6 j 6 n− 1 we have
n−1∑
i=1

Li
∂2f

∂Xi∂Xj
∈ (f2, ∂1f, . . . , ∂n−1f)

and Cramer’s rules show that for all 1 6 l 6 n− 1 we have

det

(
∂2f

∂Xi∂Xj

)
16i,j6n−1

Ll ∈ (f2, ∂1f, . . . , ∂n−1f).

Finally, by comparison with (4.7.9) we obtain

XN+d
n a det

(
∂2f

∂Xi∂Xj

)
16i,j6n−1

∈ (f, ∂1f, ∂2f, . . . , ∂n−1f)2.
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In other words, using the notation f̃(X1, . . . , Xn−1) := f(X1, . . . , Xn−1, 1), we obtained that

Hess(f̃).a ∈ (f̃ , ∂1f̃ , . . . , ∂n−1f̃)2. (4.7.10)

Now, Proposition 4.28 implies that Hess(f̃) is a nonzero divisor in the quotient ring kB̃ :=

kA[X1, . . . , Xn−1]/(f̃ , ∂1f̃ , . . . , ∂n−1f̃). Moreover, Proposition 4.2, (ii) shows that the sequence
f̃ , ∂1f̃ , . . . , ∂n−1f̃ is a regular sequence in kA[X1, . . . , Xn−1] and hence

(f̃ , ∂1f̃ , . . . , ∂n−1f̃)/
(f̃ , ∂1f̃ , . . . , ∂n−1f̃)2

is a free B̃-module. Therefore, this and (4.7.10) show that

a ∈ (f̃ , ∂1f̃ , . . . , ∂n−1f̃)2.

Finally, using Corollary 4.17 we conclude that a ∈ TF(Xn)(D2) = TFm(D2). �

Corollary 4.35. If n is odd or if 2 is a nonzero divisor in k then ∂D/∂En is not a zero divisor in the
quotient ring kC /TFm(D).

Proof. We first assume that k is a domain. Then, observe that we can assume without loss of gen-
erality that k is actually a field by extension to the fraction field of k. Now, if ∂D/∂En 6= 0 then
Lemma 4.34 implies that D divides ∂D/∂Uα for all multi-index α such that |α| = d and hence that
∂D/∂Uα = 0 for all α such that |α| = d by inspecting the degrees. If k has characteristic zero then
we deduce thatD = 0, a contradiction with Theorem 4.26. If k has characteristic p > 0, then passing
to the algebraic closure of k (which is a perfect field) we get that D must be some polynomial raised
to the power p, again a contradiction with Theorem 4.26.

It remains to prove that the claimed property holds for an arbitrary ring k, knowing that it is
valid for a domain. To do this, we can proceed exactly as in the proof of Proposition 4.28. �

We are now ready to prove the main result of this section.

Theorem 4.36. If n is odd or 2 is a nonzero divisor in k, then ϕ̄ is an isomorphism.

Proof. Since ϕ̄ is graded and surjective, it is sufficient to show that it is injective on graded parts. So
let h ∈ Cν and assume that h(∆1(f), . . . ,∆n(f)) ∈ P. Then, (4.7.7) and (4.7.1) shows that(

∂D

∂En

)ν
h(X1, . . . , Xn) ∈ TFm(D). (4.7.11)

But by Corollary 4.35, ∂D/∂En is not a zero divisor in the quotient ring kC /TFm(D). Therefore
(4.7.11) implies that h(X1, . . . , Xn) ∈ TFm(D) and from here we deduce that ϕ̄ is an isomorphism.

�
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Appendix - Two formulas of F. Mertens
In this appendix, we give rigorous proofs of two outstanding formulas that were given by Frantz
Mertens around 1890 in its study of the resultant of homogeneous polynomials [Mer86].

Let R be a commutative ring and suppose given n > 1 homogeneous polynomials f1, . . . , fn
in R[X1, . . . , Xn] with positive degree d1, . . . , dn respectively, such that

∏n
i=1 di > 1. Introducing

news indeterminates U1, . . . , Un, we define

θ(U1, . . . , Un) := Res(f1, . . . , fn−1,

n∑
i=1

UiXi) ∈ R[U1, . . . , Un]



On the discriminant scheme of homogeneous polynomials 59

and θi(U1, . . . , Un) := ∂θ/∂Ui ∈ R[U1, . . . , Un] for all i = 1, . . . , n. In addition, let V1, . . . , Vn,
W1, . . . ,Wn, X,Y be a collection of some other new indeterminates and consider the ring mor-
phisms

ρ : R[U1, . . . , Un] → R[V1, . . . , Vn,W1, . . . ,Wn][X1, . . . , Xn]

Ui 7→ Vi(

n∑
j=1

WjXj)−Wi(

n∑
j=1

VjXj).

and

ρ : R[U1, . . . , Un] → R[V1, . . . , Vn,W1, . . . ,Wn][X,Y ]

Ui 7→ ViX +WiY

First Mertens’ formula:

ResX,Y (ρ(θ), ρ(fn(θ1, . . . , θn))) = (−1)d1...dnDiscX,Y (ρ(θ))dnRes(f1, . . . , fn).

Second Mertens’ formula:

Res(f1, . . . , fn−1, ρ(fn(θ1, . . . , θn))) = (−1)d1...dnDiscX,Y (ρ(θ))dnRes(f1, . . . , fn).

Notice that the subscript X,Y is written to emphasize that the discriminant, or the resultant, is
taken with respect to these two variables.

Proof. We begin with the proof of the first formula and then we will deduce the second formula
form the first one. Observe that we can assume that R is actually the universal ring of coefficients of
the polynomials f1, . . . , fn that we will denote by A.

From definition, θ is an inertia form of the polynomials f1, . . . , fn−1,
∑n
i=1 UiXi with respect

to (X1, . . . , Xn): there exists an integer, say N , and polynomials h1, . . . , hn−1, h in the polynomial
ring A[U1, . . . , Un][X1, . . . , Xn] such that

XN
n θ = h1f1 + · · ·+ hn−1fn−1 + h(

n∑
i=1

UiXi).

A simple computation then shows that Xiθj −Xjθi is an inertia form of the same polynomials for
all pairs (i, j). By successive iterations, we deduce thatXdn

n fn(θ1, . . . , θn)−θdnn fn(X1, . . . , Xn) is
also such an inertia form. Finally, we obtain that fn(θ1, . . . , θn) is an inertia forms of the polynomials

f1, . . . , fn−1, fn,

n∑
i=1

UiXi

with respect to (X1, . . . , Xn). Obviously, the same holds for θ.
Set R := ResX,Y (ρ(θ), ρ(fn(θ1, . . . , θn))). There exists an integer N1 such that

XN1R ∈ (ρ(θ), ρ(fn(θ1, . . . , θn))) ⊂ A[V1, . . . , Vn,W1, . . . ,Wn][X,Y ]

and therefore we deduce that there exists an integer N2 such that

XN1XN2
n R ∈ (f1, . . . , fn, ρ(

n∑
i=1

UiXi))

⊂ A[V1, . . . , Vn,W1, . . . ,Wn][X,Y ][X1, . . . , Xn].

Now, specializing X to
∑n
i=1WiXi and Y to −

∑n
i=1 ViXi we obtain that

(

n∑
i=1

WiXi)
N1XN2

n R ∈ (f1, . . . , fn) ⊂ A[V1, . . . , Vn,W1, . . . ,Wn][X1, . . . , Xn].
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In other words, (
∑n
i=1WiXi)

N1R is an inertia form of the polynomials f1, . . . , fn with respect to
(X1, . . . , Xn). Moreover, since

∑n
i=1WiXi is obviously not such an inertia form, we deduce that

R is. Consequently, there exists

M ∈ A[V1, . . . , Vn,W1, . . . ,Wn]

such that

R := ResX,Y (ρ(θ), ρ(fn(θ1, . . . , θn))) = MRes(f1, . . . , fn). (A.1)

Looking at this equation, we see that both R and Res(f1, . . . , fn) are homogeneous with re-
spect to the coefficients of the polynomial fn of the same degree d1 . . . dn−1. Therefore, M must be
independent of these coefficients, but it could depend on the degree dn. To emphasize this property,
we use the notation M(f1, . . . , fn−1, dn). If we specialize fn to Xdn

n in (A.1), we obtain

ResX,Y (ρ(θ), ρ(θn))dn = M(f1, . . . , fn−1, dn)Res(f1, . . . , fn−1, Xn)dn .

But on the other hand, form the definition of M , we have

ResX,Y (ρ(θ), ρ(θn)) = M(f1, . . . , fn−1, 1)Res(f1, . . . , fn−1, Xn).

By comparison, it follows that M(f1, . . . , fn−1, dn) = M(f1, . . . , fn−1, 1)dn and hence it remains
to determine M(f1, . . . , fn−1, 1). For that purpose, noticing that ∂ρ(θ)/∂Y =

∑n
i=1Wiρ(θi), we

choose to specialize fn to the linear form
∑n
i=1WiXi. We obtain

ResX,Y (ρ(θ),
∂ρ(θ)

∂Y
) = M(f1, . . . , fn−1, 1)Res(f1, . . . , fn−1,

n∑
i=1

WiXi).

Now, by definition of DiscX,Y (ρ(θ)), we have

ResX,Y (ρ(θ),
∂ρ(θ)

∂Y
) = DiscX,Y (ρ(θ))ResX,Y (ρ(θ), X)

= DiscX,Y (ρ(θ)).ρ(θ)(0,−1)

= DiscX,Y (ρ(θ))Res(f1, . . . , fn−1,−
n∑
i=1

WiXi)

= (−1)d1...dn−1DiscX,Y (ρ(θ))Res(f1, . . . , fn−1,

n∑
i=1

WiXi).

It follows that M(f1, . . . , fn−1, 1) = (−1)d1...dn−1DiscX,Y (ρ(θ)) and the first formula is proved.

We turn to the proof of the second formula. For the sake of simplicity, define

h := ρ(fn(θ1, . . . , θn)) ∈ A[V1, . . . , Vn,W1, . . . ,Wn][X1, . . . , Xn]

and denote by dh its degree with respect to the variables X1, . . . , Xn. It is not hard to check that
dh = dn(d1 . . . dn−1 − 1) which is a positive integer by our assumption

∏n
i=1 di > 1.

By applying Mertens’ first formula, we obtain the equality

ResX,Y (θ, ρ(h(θ1, . . . , θn))) = (−1)d1...dn−1dhDiscX,Y (ρ(θ))dhRes(f1, . . . , fn−1, h) (A.2)

= DiscX,Y (ρ(θ))dhRes(f1, . . . , fn−1, h)
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From the definitions we have

ρ(h(θ1, . . . , θn)) = ρ

[fn(θ1, . . . , θn)] (. . . , Vi(

n∑
j=1

Wjθj)−Wi(

n∑
j=1

Vjθj), . . .)


= [fn(θ1, . . . , θn)] (. . . , Vi(

n∑
j=1

Wjρ(θj))−Wi(

n∑
j=1

Vjρ(θj)), . . .)

= [fn(θ1, . . . , θn)] (. . . , Vi
∂ρ(θ)

∂Y
−Wi

∂ρ(θ)

∂X
, . . .).

Thus, if we define

F (X,Y ) := ρ(fn(θ1, . . . , θn)) = [fn(θ1, . . . , θn)] (. . . , ViX +WiY, . . .),

then

ρ(h(θ1, . . . , θn)) = F

(
∂ρ(θ)

∂Y
,−∂ρ(θ)

∂X

)
= (−1)dhF

(
−∂ρ(θ)

∂Y
,
∂ρ(θ)

∂X

)
where the last equality holds because deg(F ) = dh. Now, from Proposition 3.7, recall that

ResX,Y (ρ(θ), F (−∂ρ(θ)

∂Y
,
∂ρ(θ)

∂X
)) = ResX,Y (ρ(θ), F (X,Y ))DiscX,Y (ρ(θ))dh .

Therefore, we have (observe that (−1)d1...dn−1dh = 1)

ResX,Y (ρ(θ), ρ(h(θ1, . . . , θn))) = ResX,Y (ρ(θ), F (X,Y ))DiscX,Y (ρ(θ))dh

and using again the first Mertens’ formula for ResX,Y (ρ(θ), F (X,Y )), we obtain

ResX,Y (ρ(θ), ρ(h(θ1, . . . , θn))) =

(−1)d1...dnDiscX,Y (ρ(θ))dnRes(f1, . . . , fn)DiscX,Y (ρ(θ))dh . (A.3)

Now, the comparison of the equations (A.2) and (A.3) yields

DiscX,Y (ρ(θ))dhRes(f1, . . . , fn−1, h)

= (−1)d1...dnDiscX,Y (ρ(θ))dnRes(f1, . . . , fn)DiscX,Y (ρ(θ))dh .

We conclude the proof by observing that Disc(ρ(θ)) ∈ A[V1, . . . , Vn,W1, . . . ,Wn] is nonzero, a
fact that we show in the following lemma. �

Lemma A DiscX,Y (ρ(θ)) is nonzero in A[V1, . . . , Vn,W1, . . . ,Wn], where A is the universal ring
of the coefficients of the polynomials f1, . . . , fn−1.

Proof. We exhibit a specialization for which Disc(ρ(θ)) is easily seen to be nonzero. We start by
specializing each polynomial fi, i = 1, . . . , n− 1 to the product of di generic linear forms

li,j := Ui,j,1X1 + Ui,j,1X2 + · · ·+ Ui,j,nXn =

di∑
r=1

Ui,j,rXr, i = 1, . . . , n, j = 1, . . . , di.

Set A′ = Z[Ui,j,r : i = 1, . . . , n, j = 1, . . . , di, r = 1, . . . , n]. After this specialization, we get

θ =
∏

16ji6di
i=1,...n−1

det(l1,j1 , l2,j2 , . . . , ln−1,jn−1, U1X1 + . . . , UnXn)
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in A′[U1, . . . , Un]. For each (n − 1)-uple λ := (j1, . . . , jn−1) in the above product we denote by
∆λ(U1, . . . , Un) the corresponding determinant. We deduce that

∂ρ(θ)

∂Y
=
∑
λ

∆λ(W1, . . . ,Wn)
∏

µ, µ 6=λ

ρ(∆µ)

 .

Now, on the one hand we have (the resultant and the discriminant are taken with respect to X,Y )

Res

(
ρ(θ),

∂ρ(θ)

∂Y

)
=

Disc(ρ(θ)).ρ(θ)(0,−1) = (−1)d1...dn−1Disc(ρ(θ))
∏
λ

∆λ(W1, . . . ,Wn),

and on the other hand

Res

(
ρ(θ),

∂ρ(θ)

∂Y

)
= Res

∏
λ

ρ(∆λ),
∑
λ

∆λ(W1, . . . ,Wn)
∏

µ, µ 6=λ

ρ(∆µ)


=
∏
λ

Res

ρ(∆λ),
∑
ω

∆ω(W1, . . . ,Wn)
∏

µ, µ 6=ω

ρ(∆µ)


=
∏
λ

Res

ρ(∆λ),∆λ(W1, . . . ,Wn)
∏

µ, µ 6=λ

ρ(∆µ)


=

(∏
λ

∆λ(W1, . . . ,Wn)

) ∏
λ,µ

λ 6=µ

Res (ρ(∆λ), ρ(∆µ)) .

Therefore, choosing an order for the (n− 1)-uples λ, we deduce that

Disc(ρ(θ)) = (−1)
N2+N

2

∏
λ<µ

Res (ρ(∆λ), ρ(∆µ))
2

with N = d1 . . . dn−1. Moreover, for any (n− 1)-uple λ, it is easy to see that

ρ(∆λ) = ∆λ(V1, . . . , Vn)X + ∆λ(W1, . . . ,Wn)Y.

It follows that in A′[V1, . . . , Vn,W1, . . . ,Wn] we have the equality

Disc(ρ(θ)) = (−1)
N2+N

2 ×∏
λ<µ

(∆λ(V1, . . . , Vn)∆µ(W1, . . . ,Wn)−∆λ(W1, . . . ,Wn)∆µ(V1, . . . , Vn))
2
. (A.4)

To finish the proof, we specialize a little more our polynomials f1, . . . , fn−1 by specializing each
linear form li,j to Xi − Ui,j,nXn. Then, it is not hard to check that

∆λ=(j1,...,jn−1)(V1, . . . , Vn) = U1,j1V1 + U2,j2V2 + · · ·+ Un−1,jn−1Vn−1 + Vn (A.5)

and hence that ∆λ(0, . . . , 0, 1) = 1. Therefore, we deduce that for any pair (λ, µ) such that λ 6= µ
we have

∆λ(0, . . . , 0, 1)∆µ(W1, . . . ,Wn)−∆λ(W1, . . . ,Wn)∆µ(0, . . . , 0, 1) =

∆µ(W1, . . . ,Wn)−∆λ(W1, . . . ,Wn)

and this quantity is clearly nonzero in view of (A.5). �
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