Skip to main content
Log in

Using Monodromy to Avoid High Precision in Homotopy Continuation

  • Published:
Mathematics in Computer Science Aims and scope Submit manuscript

Abstract

When solving polynomial systems with homotopy continuation, the fundamental numerical linear algebra computations become inaccurate when two paths are in close proximity. The current best defense against this ill-conditioning is the use of adaptive precision. While sufficiently high precision indeed overcomes any such loss of accuracy, high precision can be very expensive. In this article, we describe a simple heuristic rooted in monodromy that can be used to avoid the use of high precision.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bates, D.J., Hauenstein, J.D., Sommese, A.J., Wampler, C.W.: Bertini: Software for Numerical Algebraic Geometry (2006). http://www.bertini.nd.edu

  2. Bates D.J., Hauenstein J.D., Sommese A.J., Wampler C.W.: Adaptive multiprecision path tracking. SIAM J. Numer. Anal. 46, 722–746 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bates D.J., Hauenstein J.D., Sommese A.J., Wampler C.W.: Stepsize control for adaptive multiprecision path tracking. Contemp. Math. 496, 21–31 (2009)

    Article  MathSciNet  Google Scholar 

  4. Batez, D.J., Hauenstein, J.D., Sommese, A.J., Wampler, C.W.: Numerically Solving Polynomial Systems with Bertini. SIAM (2013)

  5. Beltrán C., Leykin A.: Robust certified numerical homotopy tracking. Found. Comput. Math. 13(2), 253–295 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  6. Brake, D., Niemerg, M., Bates, D.J.: Paramotopy: parameter homotopies in parallel (2013). http://www.paramotopy.com/index.html

  7. Hauenstein J.D., Sommese A.J., Wampler C.W.: Regeneration homotopies for solving systems of polynomials. Math. Comput. 80, 345–377 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  8. Hauenstein J.D., Sottile F.: Algorithm 921: alphaCertified: certifying solutions to polynomial systems. ACM Trans. Math. Softw. 38(4), 28 (2012)

    Article  MathSciNet  Google Scholar 

  9. Kalaba R.E., Tesfatsion L.: Solving nonlinear equations by adaptive homotopy continuation. Appl. Math. Comput. 41(2), 99–115 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  10. Kearfott R.B., Xing Z.: An interval step control for continuation methods. SIAM J. Numer. Anal. 31(3), 892–914 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  11. Lee T.L., Li T.Y., Tsai C.H.: Hom4ps-2.0: a software package for solving polynomial systems by the polyhedral homotopy continuation method. Computing 83(2–3), 109–133 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  12. Leykin A.: Numerical algebraic geometry for Macaulay2. J. Softw. Algebr. Geom. 3, 5–10 (2011)

    Article  MathSciNet  Google Scholar 

  13. Leykin A., Sottile F.: Galois groups of Schubert problems via homotopy continuation. Math. Comput. 78(267), 1749–1765 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  14. Leykin A., Verschelde J.: Decomposing solution sets of polynomial systems: a new parallel monodromy breakup algorithm. IJCSE 4(2), 94–101 (2009)

    Google Scholar 

  15. Martin B., Goldsztejn A., Granvilliers L., Jermann C.: Certified parallelotope continuation for one-manifolds. SIAM J. Numer. Anal. 51(6), 3373–3401 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  16. Morgan A.P., Sommese A.J., Wampler C.W.: Computing singular solutions to nonlinear analytic systems. Numer. Math. 58, 669–684 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  17. Piret K., Verschelde J.: Sweeping algebraic curves for singular solutions. J. Comput. Appl. Math. 234(4), 1228–1237 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  18. Sommese, A.J., Verschelde, J., Wampler, C.W.: Using monodromy to decompose solution sets of polynomial systems into irreducible components. In: Proc. of a NATO Conference, Eilat, pp. 297–315 (2001)

  19. Sommese A.J., Wampler C.W.: The Numerical Solution to Systems of Polynomials Arising in Engineering and Science. World Scientific, Singapore (2005)

    Book  Google Scholar 

  20. Verschelde J.: Algorithm 795: PHCpack: a general purpose solver for polynomial systems by homotopy continuation. ACM Trans. Math. Softw. 25(2), 251–276 (1999)

    Article  MATH  Google Scholar 

  21. Wilkinson J.H.: Rounding Errors in Algebraic Processes. Dover, USA (1994)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel J. Bates.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bates, D.J., Niemerg, M. Using Monodromy to Avoid High Precision in Homotopy Continuation. Math.Comput.Sci. 8, 253–262 (2014). https://doi.org/10.1007/s11786-014-0190-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11786-014-0190-0

Keywords

Navigation