Skip to main content
Log in

Usage of Modular Techniques for Efficient Computation of Ideal Operations

  • Published:
Mathematics in Computer Science Aims and scope Submit manuscript

Abstract

Modular techniques are widely applied to various algebraic computations. In this paper, we discuss how modular techniques can be efficiently applied to computation of Gröbner basis of the ideal generated by a given set, and extend the techniques for further ideal operations such as ideal quotient, saturation and radical computation. In order to make modular techniques very efficient, we focus on the most important issue, how to efficiently guarantee the correctness of computed results. Unifying notions of luckiness of primes proposed by several authors, we give precise and comprehensive explanation on the techniques which shall be a certain basis for further development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Adams, W.W., Loustaunau, P.: An Introduction to Gröbner Bases. Graduate Studies in Mathematics 3. American Mathematical Society, Providence (1994)

    MATH  Google Scholar 

  2. Afzal, D., Kanwal, F., Pfister, G., Steidel, S.: Solving via Modular Methods. In: Bridging Algebra, Geometry, and Topology, Springer Proceedings in Mathematics & Statistics, vol. 96, pp. 1–9 (2014)

  3. Arnold, E.: Modular algorithms for computing Gröbner bases. J. Symb. Comput. 35, 403–419 (2003)

    Article  MATH  Google Scholar 

  4. Böhm, J., Decker, W., Fieker, C., Pfister, G.: The use of bad primes in rational reconstruction. Math. Comput. 84, 3013–3027 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cox, D., Little, J., O’Shea, D.: Ideals, Varieties, and Algorithms, Undergraduate Text in Mathematics, 4th edn. Springer, New York (2015)

    Book  MATH  Google Scholar 

  6. Dahan, X., Kadri, A., Schost, É.: Bit-size estimates for triangular sets in positive dimension. J. Complex. 28, 109–135 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dahan, X., Moreno Maza, M., Schost, É., Wu, W., Xie, Y.: Lifting techniques for triangular decompositions. In: Proceedings of ISSAC 2005, pp. 108–115. ACM Press (2005)

  8. Dahan, X., Schost, É: Sharp estimates for triangular sets. In: Proceedings of ISSAC 2004, pp. 103–110. ACM Press (2004)

  9. Decker, W., Greuel, G.-M., Pfister, G.: Primary decomposition: algorithms and comparisons. In: Matzat, B.H., Greuel, G.M., Hiss, G. (eds.) Algorithmic Algebra and Number Theory, pp. 187–220. Springer, Berlin (1998)

    Google Scholar 

  10. Faugère, J.-C.: A new efficient algorithm for computing Gröbner bases (\(F_4\)). J. Pure Appl. Algebra 139, 61–88 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gräbe, H.: On lucky primes. J. Symb. Comput. 15, 199–209 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  12. Greuel, G.-M., Pfister, G.: A Singular Introduction to Commutative Algebra. Springer, Berlin (2002)

    Book  MATH  Google Scholar 

  13. Idrees, N., Pfister, G., Steidel, S.: Parallelization of modular algorithms. J. Symb. Comput. 46, 672–684 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kreuzer, M., Robbiano, L.: Computational Commutative Algebra 2. Springer, Berlin (2005)

    MATH  Google Scholar 

  15. Orange, S., Renault, G., Yokoyama, K.: Efficient arithmetic in successive algebraic extension fields using symmetries. Math. Comput. Sci. 6, 217–233 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Noro, M.: Modular algorithms for computing a generating set of the syzygy module. In: Computer Algebra in Scientific Computing CASC 2009, LNCS, vol. 5743, pp. 259–268. Springer (2009)

  17. Noro, M., Yokoyama, K.: A modular method to compute the rational univariate representation of zero-dimensional Ideals. J. Symb. Comput. 28, 243–263 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  18. Noro, M., Yokoyama, K.: Implementation of prime decomposition of polynomial ideals over small finite fields. J. Symb. Comput. 38, 1227–1246 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  19. Noro, M., Yokoyama, K.: Verification of Gröbner basis candidates. In: Mathematical Software-ICMS 2014, LNCS, vol. 8592, pp. 419–424. Springer (2014)

  20. Pauer, F.: On lucky ideals for Gröbner bases computations. J. Symb. Comput. 14, 471–482 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  21. Pfister, G.: On modular computation of standard basis. Anal. Stiint. Univ. Ovidius Constanta 15, 129–138 (2007)

    MathSciNet  MATH  Google Scholar 

  22. Renault, G., Yokoyama, K.: Multi-modular algorithm for computing the splitting field of a polynomial. In: Proceedings of ISSAC 2008, pp. 247–254. ACM Press (2008)

  23. Romanovski, V., Chen, X., Hu, Z.: Linearizability of linear systems perturbed by fifth degree homogeneous polynomials. J. Phys. A Math. Theor. 40, 5905–5919 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  24. Romanovski, V., PreŠern, M.: An approach to solving systems of polynomials via modular arithmetics with applications. J. Comput. Appl. Math. 236, 196–208 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  25. Steidel, S.: Gröbner bases of symmetric ideals. J. Symb. Comput. 54, 72–86 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  26. Sasaki, T., Takeshima, T.: A modular method for Gröbner-bases construction over \({\mathbb{Q}}\) and solving system of algebraic equations. J. Inf. Process. 12, 371–379 (1989)

    MATH  Google Scholar 

  27. Sturmfels, B.: Gröbner Bases and Convex Polytopes, AMS University Lecture Series, vol. 8. American Mathematical Society, Providence (1996)

    MATH  Google Scholar 

  28. Traverso, C.: Gröbner trace algorithms. In: Proceedings of ISSAC 1988, LNCS, vol. 358, pp. 125–138. Springer (1988)

  29. Traverso, C.: Hilbert functions and the Buchberger algorithm. J. Symb. Comput. 22, 355–376 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  30. von zur Gathen, J., Gerhard, J.: Modern Computer Algebra. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  31. Winkler, F.: A p-adic approach to the computation of Gröbner bases. J. Symb. Comput. 6, 287–304 (1988)

    Article  MATH  Google Scholar 

  32. Yokoyama, K.: Usage of modular techniques for efficient computation of ideal operations—(Invited Talk). In: Computer Algebra in Scientific Computing CASC 2012, LNCS, vol. 7442, pp. 361–362 (2012)

Download references

Acknowledgements

The authors would like to thank the referees for their helpful comments to improve the presentation of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuhiro Yokoyama.

Additional information

This work was supported by JSPS KAKENHI Grant Number 15K05008.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Noro, M., Yokoyama, K. Usage of Modular Techniques for Efficient Computation of Ideal Operations. Math.Comput.Sci. 12, 1–32 (2018). https://doi.org/10.1007/s11786-017-0325-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11786-017-0325-1

Keywords

Mathematics Subject Classification

Navigation