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Abstract Fractal dimension is a powerful tool employed as a measurement of geometric aspects. In this work we
propose a method of topological fractal analysis for 2D binary digital images by using a graph-based topological
model of them, called Homological Spanning Forest (HSF, for short). Defined at interpixel level, this set of two
trees allows to topologically describe the (black and white) connected component distribution within the image
with regards to the relationship “to be surrounded by”. This distribution is condensed into a rooted tree, such that its
nodes are connected components determined by some special sub-trees of the previous HSF and the levels of the tree
specify the degree of nesting of each connected component. We ask for topological auto-similarity by comparing
this topological description of the whole image with a regular rooted tree pattern. Such an analysis can be used to
directly quantify some characteristics of biomedical images (e.g. cells samples or clinical images) that are not so
noticeable when using geometrical approaches.
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1 Introduction

In biomedical images, it is common to find structured data that does not seem to respond to geometric organizational
patterns, but to relational patterns between different subgroups of data [11,14,21].
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Fig. 1 A synthetic fractal image created by using a MATLAB script

This type of behavior is abundant when dealing with organic structures. E.g: the same organelle type from two
different cells shall present similar geometric properties, but not equal. However, it must keep the same connectivity
relationships with the remaining organelles of the same cell in order to perform its functions. Other examples would
be the organs of the body, which may differ slightly in their shape from one person to another, but they must keep
their connectivity relationships with other organs in order to maintain their correct function. This fact allows the
organ recognition without taking into account geometrical features. For this reason, in order to be able to analyze
these non-geometric pattern recognition, we develop here a pure topological approach. Another important fact that
can be found in many natural phenomena, is that their structures frequently exhibit repetition of the same patterns
at different scales. This type of multi-scale repetition effects is extensively studied at geometric level in fractal
geometry [4,10]. A synthetic fractal is depicted at Fig. 1.

In this articlewe propose amethod to perform a fractal topological analysis applied to 2Dbiomedical images, ana-
lyzing phenomena of non-geometric fractality in 2D binary images. In order to do that we use the HSF (Homological
Spanning Tree) method that provides us topological information about the black and white connected components
of the image and the relationships between them. The main advantage of this method lies on its computation speed,
since it is thought to be parallelizable. A graph/tree representation is generated, so we can analyze the degree of
repetition of the structures and the topological connections. Finally, we try to reflect this information in a parameter
that we call “index of topological fractality”, which can be useful in the characterization of images or description
of patterns or textures.

2 Methods for Fractal Dimension Computation

There are several ways to compute the fractal dimension D of an image. Classically it has been used the Hausdorff
dimension of an image [8], but other approaches has been developed, such as Prism Counting, Epsilon-Blanket and
others, as is shown in [1].

Nevertheless, as far as we can find in the literature, when it comes to computing the fractal dimension of
biomedical images, most of the developed algorithms are based on a Box-Counting approach [3,9,18–20].

The most popular Box-Counting Method (BCM), is the developed by Voss [22]. It consists on the use of a finite
number of nonempty boxes N (δ) (which have a given length δ) required to cover the surface of a structure. This
method is implemented normally by covering an object with grids of differentmesh size. The size of the structure can
be computed by taking into account those boxes that intercept the structure for a selected mesh-size δ. Computing
different estimations changing the grid-size, a set of results are obtained. This allows to get a relation between the
size of the structure (Nδ) and the size of the grid used (δ), which can be considered as an estimation of the fractal
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Fig. 2 a A fragment from
north of Great Britain. b A
rectangle

Fig. 3 a Box-counting
fractal index computation
from Fig. 2a. b
Box-counting fractal index
computation from Fig. 2b.
Although they are
topologically the same
object, due to the
dependence of geometry of
the Box-counting method,
the resulting values are
different for both pictures.
These values were obtained
by using the ImageJ
software tool for
Box-Counting dimension
computation

dimension. The slope β of the logarithmic plot of the number of boxes used to cover the fractal against the box size
yields to the fractal dimension D = −β The equation for the fractal dimension computation is:

D = − lim
δ→0

lnN δ(F)

ln(δ)
, (1)

where F is a non empty bounded subset of Rn [2].
Figures 2 and 3 can be an useful example of how two images, which have the same topology, exhibit different

results when computing the fractality of both of them using the Box-Counting method. The main advantage of the
solutions based on this method lies on its simple, but robust way to obtain features about the geometry of the cells,
and then to be able to detect anomalies regarding healthy, normal tissues [5].

On theother hand,whereas these kinds of approaches take into account the shapeof the visual texture, the proposed
method in this paper is based exclusively on the use of its topological properties. In other words, it performs an
analysis of the global connectivity of the set of regions of constant color via the study of local connectivity between
cells. This can be reached by means of the Homological Spanning Forest (HSF) computation of the digital image.
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3 Homological Spanning Forest and Nesting Degree of the Regions

AHomological Spanning Forest (HSF) of a binary digital image is a flexible topological model, which is composed
by a set of trees “covering” it at interpixel level. In our representation, we describe an image I as a cell complex
whose 0-cells are the pixels of the image. In order to compute the HSF over the whole interpixel scenario of a binary
image, the following steps must be followed:

1. Symmetric pACC (primal-dual Abstract Cell Complex) computation takes place, which contains information
about the adjacencies between contiguous pixels.

2. MrSF (Morse Spanning Forest) computation is carried out, thus obtaining an asymmetric pACC, which is a
kind of topological segmentation of the contractible cell complex.

3. Crack transports take place at the MrSF in order to create a new MrSF in which the number of primal contacts
between cells of the foreground are maximized.

Physical pixel are consideredhere as 0-cells of the pACC, and4-connectivity is employed for determining topological
properties of the image. Sequential and parallel algorithms for computing HSFs of digital objects were developed
in the works [12,13,15].

An HSF {T1, T2} of I is represented by two trees: one T1, “spanning” the 0-cells of I and the other T2 “spanning”
the 2-cells of I . Due to the fact that the image is contractible (i.e. it is topologically reducible to one point), the
number of 0-cell vertices in T1, is one more than its number of 1-cell vertices, and the number of 1-cell vertices in
T2 is equal to its number of 2-cell vertices:

n′
1 = n0 − 1 (2)

n2 = n′′
1 (3)

n1 = n′
1 + n′′

1 (4)

where n0 is the number of 0-cells, n1 is the number of 1-cells and n2 is the number of 2-cells in the cellularized
image. In particular, we have that n0 − n1 + n2 = 1

In T1, the number of “adjacent” (through 1-cells) 0-cells with the same color ismaximized. This allows to perform
segmentations of binary images, providing information about the different connected components and existing holes
in the image.

Figure 4a shows an example of the HSF of a simple image. 0-cells are depicted by dots, 1-cells by triangles and
2-cells by squares. The maximal (so-called critical) sub-trees of T1 joining adjacent 0-cells of the same color (black
or white) are connected components (CC) represented by the 0-cells 21, 26 and 31. The 1-cells labeled by 6 and
11 specify the one-dimensional holes of the image. In fact, these holes are delineated using the maximal (critical)
sub-trees of T2 joining adjacent (through 2-cells) 1-cells of the same color (in this case, black-white or white-black).

When dealing with binary images, it is easy to show that each critical 0–1 sub-tree of a CC is referred to the
environment that surrounds this CC. On the other hand, each critical 1–2 sub-tree gives information about the holes
in the image. Hence, the critical sub-trees allow to know the topological distribution of the image in terms of a
graph structure called Region Incidence Tree (or, RIT for short). The RIT have the topological information from
both 0–1 and 1–2 subtrees’s critical cells, and this allows us to know how regions interact one with each other and to
graphically represent it by a tree. By appropriately performing a pruning process (deleting all redundant information
from the RIT of the kind “(black or white) 4-hole = (white or black) 8-CC)”, we obtain the Region Adjacency Tree
(or, RAT for short) (see Fig. 4b). The result of this pruning consists on preserving only the information provided by
the critical 0–1 sub-trees. The level in the rooted RAT of a 4-CC provides information about its degree of nesting
with regards the relationship “to be surrounded by”. Let us note that the RAT is a classical notion in the image
analysis literature, also called topological, homotopy or inclusion tree [16,17]. The root of this tree is the dummy
region, an artificial region that embeds the whole image. A flowchart for obtaining the RAT is shown in Fig. 5.
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Fig. 4 a Output of an HSF
computation for an image
composed of three
concentric regions. The 0–1
cells tree (T1) links are
represented by red (primal)
and blue (dual) colors. The
1–2 cells tree (T2) links are
represented by blue (primal)
and green (dual) colors. b
Graphical representation of
the RAT (color figure
online)

Fig. 5 A flowchart for obtaining the RAT. First, HSF is computed from a cell complex version of the binary image. Once this is
achieved, the RIT can be built up from the information provided by the critical sub-trees of the HSF. Finally, the RAT is computed
performing a pruning at pixel level over the RIT

In summary, the principal advantage that RAT offers for a two-dimensional binary image is that it specifies the
degree of nesting for any region (4-CC) of the image with regards the topological relationship “to be surrounded
by”.

For gray-scale images it would be more suitable to use the RIT approach instead of the RAT. This is due to the
fact that the first one contains not only information about adjacencies between regions, but also about incidences
between them.

4 Fractal Topological Analysis from HSF Representation

In this section, we propose a first definition of topological auto-similarity and a preliminary approach for its analysis.
This approximation is based on the fact that for a repetitive occurrence of a fractal structure, there must be at least
some regularity in the relationships between the various related connected components of the image. Therefore,
the regularity expressed in this new approach serves as a sufficient condition for the existence of fractality. Let us
consider an image presenting a high degree of auto-similarity at topological level. In the case of planar images this
would suppose that the topological magnitudes of a coarse or big-scaled object repeat when a zoom is applied to
it. For example, if a region contains two holes, each of them must contain also two holes, and this can be extended
to further zooms inside each of these inner holes. This happens for a nesting level of two in Fig. 6a. The RAT
computation (such as the example depicted at the Fig. 6 b) serves not only to have an idea of how topologically
nested an image is, but also to build a method of fractal dimension analysis from a pure topological point of view.
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Fig. 6 a Output from a HSF computation for a fractal image. 0-cells from the critical 0–1 sub-tree are marked with red ovals, whereas
critical 1-cells from the 1–2 sub-tree are marked with yellow ovals. b A representation of the inherent fractality of the image is shown in
a. As can be seen, the deeper the image is being analyzed, a greater degree of detail is obtained from the tree. In this case, only critical
0–1 sub-trees are necessary to obtain the complete topological information of the image (color figure online)

Fig. 7 a An example. Each level of depth has its own color. b The representation of the continuous image as a topological tree, where
each node is a connected component (color figure online)

Once the RAT is obtained, fractal topological analysis can be carried out. The first step into our algorithm is to
define a convenient “sub-tree-size” r to be analyzed. Unlike geometrical methods, this size definition means how
deep we are analyzing the object. This order of depth or nesting is provided naturally by the levels of the rooted
RAT. To understand the order of depth we explain the example shown in Fig. 7.

A simple way to study topological auto-similarity of an image is by establishing a regular tree pattern of reference
for comparing it with the RAT of the image. The rooted tree of reference that we use here is the one that has a
constant number of child nodes for all its nodes. In the previous example at Fig. 7, we can see that the maximum
number of components within the same connected component is two (i.e. the maximum child nodes for any node
of the whole tree), so this is the value to consider. The standard tree of reference (considered here without fractal
“imperfections”) is that of Fig. 8b.

By comparing the reference tree with the one to be studied, we can extract their topological fractal differences
(Fig. 9a). These differences are missing components as well as critical 0–1 sub-trees derived from the missing
critical 0–1 sub-tree of higher levels (Fig. 9b). The final values for each level are summarized in Fig. 10.
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Fig. 8 a A regular system of reference. b The same system as a tree of depth

Fig. 9 aDifferences between our regular system used as a pattern and the example system. bDifferent number of connected components
between the example and the standard system

Fig. 10 Summary table needed to determine the fractal index for each level of depth. The depth level is showed at first column. The
number of nodes for a given depth level and the total number of nodes for a given level are the parameters of the second and third
columns, respectively. At fourth column, fractal indexes are shown. (*)For the zero level, the trivial case (without any perturbation) is
obtained

For each level r , we compute the topological fractal index Fr as the quotient between the logarithm of the number
of nodes Nr in the studied tree and the logarithm of the total number of nodes Ntr for the reference tree.

Fr = log Nr

log Ntr
, (5)

Representing the fractal index for each level Fr with respect to its level r , a regression line is obtained. The
slope of this line indicates the topological regularity of the image. A constant slope of value 0 indicates a totally
regular figure. Conversely, the more negative the value of the slope is, the more topologically irregular the image
is. Figure 11 shows the result and the regression line for the previous example.

The image from Fig. 12 used as an example seems to be a perfect topological regular image. Nevertheless,
topological properties are not easy to perceive by a quickly inspection. The comparison of the RAT of the image
with that of the reference tree (see Fig. 6) can be used as a necessary condition for determining topological fractality.
The process described in previous section reveals the next results. Firstly, a total of 71 CCs are found when building
the HSF. Only 11 CCs shows a perfect topological regularity up to deep level 2 in the sense that the subtree rooted
at those nodes and including only its children and grandchildren is the binary tree at that deep level. These CCs
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Fig. 11 Graphic
representation of the
fractality indexes for each
level versus the associated
depth level. Their regression
line is also shown. The
slope of this line indicates
the topological regularity of
the image

Fig. 12 A false synthetic fractal created by modifying the MATLAB script used for Fig. 1

Fig. 13 Slope a and coefficient b of the regression lines ax + b for the 23 holes that have a deep level of two at least in Fig. 12

are marked with the red numbers in Fig. 12. This pattern recognition is missed using the slope and coefficient for
regression lines (Fig. 13): only those holes whose slope and coefficient are exactly 1.0 are perfect fractals. Indeed,
the problem occurs with the white CCs that surround regions 4–11, because they have only one black region inside.
In fact, a detailed visual inspection reveals that Fig. 12 is different from Fig. 1.

5 Application in the Biomedical Field

From a topological point of view, image analysis allows to easily identify those topologically equivalent structures
that, conversely, can be very dissimilar at a geometric level. Practical applications can be found in many organic
structures. The study of CC inclusion relationships leads to straightforward pattern analysis for those equivalent but
changing structures such as cells and their content. A cell can be thought as a CC that contains other CCs (which are
cell organelles). Real tissue organelles are very variable in size and shape and can be randomly distributed inside
the cell. An example of topological analysis application is that of cellular blood inspection. Each type of blood cell
has specific topological characteristics such as the number of nuclei, although the shape of these nuclei can vary
greatly from one to another cell of the same type. This is especially relevant in the case of leukocytes or red blood
cells. In Fig. 14 the cross section of spermatozoa from the caddis fly (Polycentropus) is illustrated, showing the
microtube organization of motile flagella. After applying the convenient thresholding, their biological structures
are reduced to a RAT, which allows us to differentiate these structures from another cells.

Other useful applications are found in the field of topological pattern recognition which can be extended for a
wide selection of fields, such as biomaterials surface analysis or malignant tumor detection [6,7].
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Fig. 14 Cross section of spermatozoa from the caddis fly (Polycentropus). Every tree level shows the connected components that belong
to a given region. Image: DonW. Fawcett, David Phillips. The Cell Image Library, CIL:35970. Available at http://www.cellimagelibrary.
org

6 Conclusion

This paper proposes a preliminary approach of studying topological auto-similarity for binary 2-dimensional images.
Based on this, fractal topological index can be defined so that we can measure and distinguish straightforwardly the
topological auto-similarity of different structures (compared with that of a reference pattern) that cannot be easily
differentiated by geometric measures. The proposed fractal topological approach is only a first step towards other
more elaborated descriptions of topological nature, and must be improved in the near future. An interesting line of
practical development is the integration in this framework of statistical measures that allow us to describe in a more
detailed way the depth of the topological trees (like the RAT). We do not look only for the number of elements
per level, but also for their topological distribution. In addition, it is expected in the near future to perform this
topological analysis using real gray-scale or color images, in order to compare the efficiency of our approach with
other related works used for texture quantification and segmentation of biomedical images.
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