Skip to main content
Log in

Using a CAS/DGS to Analyze Computationally the Configuration of Planar Bar Linkage Mechanisms Based on Partial Latin Squares

  • Published:
Mathematics in Computer Science Aims and scope Submit manuscript

Abstract

Currently, the study of new isotopism invariants of partial Latin squares constitutes an open and active problem. This paper delves into this topic by analyzing computationally the configuration of planar bar linkage mechanisms for which the array formed by the lengths of their bars constitutes an empty-diagonal symmetric partial Latin square such that each one of its rows and columns has at least two non-empty cells. These assumptions enable one to define a series of algebraic and geometric constraints that can be readily implemented in any Computer Algebra or Dynamic Geometry System. In order to illustrate the different concepts and results introduced throughout the paper, it is explicitly determined and characterized the distribution of planar bar linkage mechanisms based on partial Latin squares of order up to five.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Alexander, R., Stolarsky, K.B.: Extremal problems of distance geometry related to energy integrals. Trans. Am. Math. Soc. 193, 1–31 (1974)

    Article  MathSciNet  Google Scholar 

  2. Arranz, J.M., Losada, R., Mora, J.A., Recio, T., Sada, M.: Modeling the cube using Geogebra. In: Bu, L., Schoen, R. (eds.) Model-Centered Learning. Modeling and Simulations for Learning and Instruction, pp. 119–131. SensePublishers, Rotterdam (2011)

    Chapter  Google Scholar 

  3. Botana, F., Abánades, M.Á., Escribano, J.: Exact internet accessible computation of paths of points in planar linkages and diagrams. Comput. Appl. Eng. Educ. 19, 835–841 (2011)

    Article  Google Scholar 

  4. Blumenthal, L.: Theory and Applications of Distance Geometry. Oxford University Press, Oxford (1953)

    MATH  Google Scholar 

  5. Corves, B., Hüsing, M., Riedel, M.: Descriptive and Intuitive Mechanism Design and Synthesis Using Geometry-Based Computer-Aided Methods. In: Thirteenth World Congress in Mechanism and Machine Science. Curran Associates, Inc., Guanajuato, Mexico (2011)

  6. Cox, D.A., Little, J.B., OShea, D.: Using Algebraic Geometry. Springer, New York (1998)

    Book  Google Scholar 

  7. Crippen, G.M., Havel, T.F.: Distance Geometry and Molecular Conformation. Wiley, New York (1988)

    MATH  Google Scholar 

  8. Crippen, G.M.: Distance geometry for realistic molecular conformations. In: Distance Geometry, pp. 315–328. Springer, New York (2013)

  9. Decker, W. Greuel, G.M., Pfister, G., Schönemann, H.: Singular 4-1-2–a computer algebra system for polynomial computations. http://www.singular.uni-kl.de (2018). Accessed 8 Nov 2019

  10. Dénes, J., Keedwell, A.D.: Latin Squares and their Applications. Academic Press, New York (1974)

    MATH  Google Scholar 

  11. Dokuchaev, M.A., Kasyanuk, M.V., Khibina, M.A., Kirichenko, V.V.: Exponent matrices and Frobenius rings. Algebra Discrete Math. 18, 186–202 (2014)

    MathSciNet  MATH  Google Scholar 

  12. Dong, Q., Wu, Z.: A linear-time algorithm for solving the molecular distance geometry problem with exact inter-atomic distance. J. Global Optim. 22, 365–375 (2002)

    Article  MathSciNet  Google Scholar 

  13. Eiran, D., Falcón, R.M., Kotlar, D., Marbach, T.G., Stones, R.J.: Two-line graphs of partial Latin rectangles. Electron. Notes Discrete Math. 68, 53–58 (2018)

    Article  Google Scholar 

  14. Erdman, A.G., Sandor, G.N.: Mechanism Design: Analysis and Synthesis. N.J. Prentice Hall, Englewood Cliffs (1984)

    Google Scholar 

  15. Falcón, R.M.: The set of autotopisms of partial Latin squares. Discrete Math. 313, 1150–1161 (2013)

    Article  MathSciNet  Google Scholar 

  16. Falcón, R.M.: Enumeration and classification of self-orthogonal partial Latin rectangles by using the polynomial method. Eur. J. Comb. 48, 215–223 (2015)

    Article  MathSciNet  Google Scholar 

  17. Falcón, R.M., Álvarez, V., Gudiel, F.: A computational algebraic geometry approach to analyze pseudo-random sequences based on Latin squares. Adv. Comput. Math. 45, 1769–1792 (2019)

    Article  MathSciNet  Google Scholar 

  18. Falcón, R.M., Falcón, O.J., Núñez, J.: A historical perspective of the theory of isotopisms. Symmetry 10, 1–21 (2018)

    Article  Google Scholar 

  19. Falcón, R.M., Stones, R.J.: Classifying partial Latin rectangles. Electron. Notes Discrete Math. 49, 765–771 (2015)

    Article  Google Scholar 

  20. Falcón, R.M., Stones, R.J.: Partial Latin rectangle graphs and autoparatopism groups of partial Latin rectangles with trivial autotopism groups. Discrete Math. 340, 1242–1260 (2017)

    Article  MathSciNet  Google Scholar 

  21. Havel, T.F.: Some examples of the use of distances as coordinates for euclidean geometry. J. Symb. Comp. 11, 579–593 (1991)

    Article  MathSciNet  Google Scholar 

  22. Hohenwarter, M.: GeoGebra: Ein Softwaresystem für dynamische Geometrie und Algebra der Ebene. Ph.D. Thesis. Paris Lodron University, Salzburg, Austria (2002)

  23. Hu, Y., Nelson-Maney, N., Anderson, P.S.L.: Common evolutionary trends underlie the four-bar linkage systems of sunfish and mantis shrimp. Evolution 71, 1397–1405 (2017)

    Article  Google Scholar 

  24. Hulpke, A., Kaski, P., Östergård, P.R.J.: The number of Latin squares of order 11. Math. Comput. 80, 1197–1219 (2011)

    Article  MathSciNet  Google Scholar 

  25. Iriarte, X., Aginaga, J., Ros, J.: Teaching mechanism and machine theory with GeoGebra. In: García-Prada, J.C., Castejón, C. (eds.) New Trends in Educational Activity in the Field of Mechanism and Machine Theory, pp. 211–219. Springer International Publishing, Switzerland (2014)

    Chapter  Google Scholar 

  26. Kolesova, G., Lam, C.W.H., Thiel, L.: On the number of \(8\times 8\) Latin squares. J. Combin. Theory Ser. A 54, 143–148 (1990)

    Article  MathSciNet  Google Scholar 

  27. Kotlar, D.: Computing the autotopy group of a Latin square by cycle structure. Discrete Math. 331, 74–82 (2014)

    Article  MathSciNet  Google Scholar 

  28. Kovács Z., Kovács, B.: A Compilation of LEGO Technic Parts to Support Learning Experiments on Linkages. Technical Report (2017) arXiv:1712.00440 [math.HO]

  29. Kurita, K., Inoue, F., Furuya, N., Shiokawa T., Natori M.: Development of adaptive roof structure by variable geometry truss. In: Proceedings of the 18th International Symposium on Automation and Robotics in Construction, pp. 1–6. Krakow, Poland (2001)

  30. Kurtenbach, S., Prause, I., Weigel, C., Corves, B.: Comparison of geometry software for the analysis in mechanism theory. In: García-Prada, J.C., Castejón, C. (eds.) New Trends in Educational Activity in the Field of Mechanism and Machine Theory, pp. 193–201. Springer International Publishing, Switzerland (2014)

    Chapter  Google Scholar 

  31. Lavor, C., Liberti, L., Maculan, N., Mucherino, A.: Recent advances on the discretizable molecular distance geometry problem. Eur. J. Oper. Res. 219, 698–706 (2012)

    Article  MathSciNet  Google Scholar 

  32. Menger, K.: Untersuchungen über allgemeine Metrik. Mathematische Annalen 100, 75–163 (1928)

    Article  MathSciNet  Google Scholar 

  33. Menger, K.: New foundation of Euclidean geometry. Am. J. Math. 53, 721–745 (1931)

    Article  MathSciNet  Google Scholar 

  34. McKay, B.D., Meynert, A., Myrvold, W.: Small Latin squares, quasigroups, and loops. J. Combin. Des. 15, 98–119 (2007)

    Article  MathSciNet  Google Scholar 

  35. Prause, I., Fauroux, J.C., Hüsing, M., Corves, B.: Using Geometry Sketchers and CAD Tools for Mechanism Synthesis. In: Proceedings of IFToMM 2015, The 14th World Congress in Mechanism and Machine Science, paper OS3-032, 11 pp. International Federation for the Theory of Mechanisms and Machines, Taiwan (2015)

  36. Porta, J.M., Rojas, N., Thomas, F.: Distance Geometry in Active Structures. In: Ottaviano E., Pelliccio A., Gattulli V. (eds.) Mechatronics for Cultural Heritage and Civil Engineering. Intelligent Systems, Control and Automation: Science and Engineering 92, pp. 115–136. Springer, Cham (2018)

  37. Rojas, N.: Distance-based formulations for the position analysis of kinematic chains. PhD thesis. Universitat Politècnica de Catalunya, Institut de Robòtica i Informàtica Industrial, Barcelona (2012)

  38. Saxe, J.: Embeddability of weighted graphs in \(k\)-space is strongly NP-hard. In: Proceedings of 17th Allerton Conference in Communications, Control and Computing, pp. 480–489. Monticello, IL (1979)

  39. Stones, D.S.: Symmetries of partial Latin squares. Eur. J. Combin. 34, 1092–1107 (2013)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raúl M. Falcón.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is partially supported by the Research Project FQM-016 from Junta de Andalucía, and by the Departmental Research Budget of the Department of Applied Mathematics I of the University of Seville.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Falcón, R.M. Using a CAS/DGS to Analyze Computationally the Configuration of Planar Bar Linkage Mechanisms Based on Partial Latin Squares. Math.Comput.Sci. 14, 375–389 (2020). https://doi.org/10.1007/s11786-019-00428-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11786-019-00428-1

Keywords

Mathematics Subject Classification

Navigation