Skip to main content
Log in

A Note on Modified Hermite Interpolation

  • Published:
Mathematics in Computer Science Aims and scope Submit manuscript

Abstract

We discuss the problem of fitting a smooth regular curve \(\gamma {:}[0,T]{\rightarrow }\mathbb {E}^n\) based on reduced data\(Q_m = \{q_i\}_{i = 0}^m\) in arbitrary Euclidean space \(\mathbb {E}^n\). The respective interpolation knots \({\mathcal T} = \{t_i\}_{i = 0}^m\) satisfying \(q_i = \gamma (t_i)\) are assumed to be unknown. In our setting the substitutes \({\mathcal T}_{\lambda }=\{{\hat{t}}_i\}_{i = 0}^m\) of \({{\mathcal {T}}}\) are selected according to the so-called exponential parameterization governed by \(Q_m\) and \(\lambda \in [0,1]\). A modified Hermite interpolant \(\hat{\gamma }^H\) introduced in Kozera and Noakes (Fundam Inf 61(3–4):285–301, 2004) is used here to fit \((\hat{{\mathcal {T}}}_{\lambda },Q_m)\). The case of \(\lambda = 1\) (i.e. for cumulative chords) for general class of admissible samplings yields a sharp quartic convergence order in estimating \(\gamma {\in } C^4\) by \({\hat{\gamma }}^H\) [see Kozera (Stud Inf 25(4B–61):1–140, 2004) and Kozera and Noakes (Fundam Inf 61(3–4):285–301, 2004)]. As recently shown in Kozera and Wilkołazka (Math Comput Sci, 2018. https://doi.org/10.1007/s11786-018-0362-4) the remaining \(\lambda \in [0,1)\) render a linear convergence order in \({\hat{\gamma }}^H\approx \gamma \) for any \(Q_m\) sampled more-or-less uniformly. The related analysis relies on comparing the difference \(\gamma -{\hat{\gamma }}^H\circ \phi ^H\) in which \(\phi ^H\) forms a special mapping between [0, T] and \([0,{\hat{T}}]\) with \({\hat{T}} = {\hat{t}}_m\). In this paper: (a) several sufficient conditions enforcing \(\phi ^H\) to yield a genuine reparameterization are first formulated and then analytically and symbolically simplified. The latter covers also the asymptotic case expressed in a simple form. Ultimately, the reformulated conditions can be algebraically verified and/or geometrically visualized, (b) additionally in Sect. 3, the sharpness of the asymptotics of \(\gamma -{\hat{\gamma }}^H\circ \phi ^H\) [from Kozera and Wilkołazka (Math Comput Sci, 2018. https://doi.org/10.1007/s11786-018-0362-4)] is proved upon applying symbolic and analytic calculations in Mathematica.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. From now on we omit \(\lambda \) in our notation (unless needed otherwise).

  2. The second index in the superscript of mnpr in (2.10) is from now on omitted.

References

  1. de Boor, C.: A Practical Guide to Spline. Springer, Berlin (1985)

    Google Scholar 

  2. do Carmo, M.P.: Differential Geometry of Curves and Surfaces. Prentice-Hall, Engelwood Cliffs (1976)

    MATH  Google Scholar 

  3. Epstein, M.P.: On the influence of parameterization in parametric interpolation. SIAM J. Numer. Anal. 13, 261–268 (1976)

    Article  MathSciNet  Google Scholar 

  4. Farin, G.: Curves and Surfaces for Computer Aided Geometric Design. Academic Press, San Diego (1993)

    MATH  Google Scholar 

  5. Floater, M.S.: Chordal cubic spline interpolation is fourth order accurate. IMA J. Numer. Anal. 26(1), 25–33 (2005)

    Article  MathSciNet  Google Scholar 

  6. Janik, M., Kozera, R., Kozioł, P.: Reduced data for curve modeling—applications in graphics, computer vision and physics. Adv. Sci. Technol. 7(18), 28–35 (2013)

    Google Scholar 

  7. Kozera, R.: Curve modeling via interpolation based on multidimensional reduced data. Stud. Inf. 25(4B–61), 1–140 (2004)

    Google Scholar 

  8. Kozera, R., Noakes, L.: \(C^1\) interpolation with cumulative chord cubics. Fundam. Inf. 61(3–4), 285–301 (2004)

    MATH  Google Scholar 

  9. Kozera, R., Noakes, L.: Piecewise-quadratics and exponential parameterization for reduced data. Appl. Math. Comput. 221, 620–638 (2013)

    MathSciNet  MATH  Google Scholar 

  10. Kozera, R., Noakes, L.: Piecewise-quadratics and \(\varepsilon \)-uniformly sampled reduced data. Appl. Math. Inf. Sci. 10(1), 33–48 (2016)

    Article  Google Scholar 

  11. Kozera, R., Noakes, L.: Piecewise-quadratics and reparameterizations for interpolating reduced data. In: Proceedings of Computer Algebra in Scientific Computing, LNCS, vol. 9301, pp. 260–274. Springer (2015)

  12. Kozera, R., Wilkołazka, M.: A modified Hermite interpolation with exponential parameterization. Math. Comput. Sci. (2018). https://doi.org/10.1007/s11786-018-0362-4

    Article  MATH  Google Scholar 

  13. Kozera, R., Wilkołazka, M.: Convergence order in trajectory estimation by piecewise cubics and exponential parameterization. Math. Model. Anal. 24(1), 72–94 (2019)

    Article  MathSciNet  Google Scholar 

  14. Kozera, R., Noakes, L., Wilkołazka, M.: A modified complete spline interpolation and exponential parameterization. In: Proceedings of Computer Information Systems and Industrial Mangement, LNCS, vol. 9339, pp. 98–110. Springer (2015)

  15. Kozera, R., Noakes L., Wilkołazka, M.: A natural spline interpolation and exponential parameterization. In: Proceedings of American Institute of Physics, vol. 1738, pp. 180003-1–183003-4. AIP Publishing (2016)

  16. Kozera, R., M. Wilkołazka M.: A natural spline interpolation and exponential parameterization for length estimation of curves. In: Proceedings of American Institute of Physics, vol. 1863, pp. 400010-1–400010-4. AIP Publishing (2017)

  17. Kozera, R., Noakes, L., Szmielew, P.: Convergence orders in length estimation with exponential parameterization and \(\varepsilon \)-uniformly sampled reduced data. Appl. Math. Inf. Sci. 10(1), 107–115 (2016)

    Article  Google Scholar 

  18. Kuznetsov, E.B., Yakimovich, A.Y.: The best parameterization for parametric interpolation. J. Appl. Math. 191, 239–245 (2006)

    MathSciNet  MATH  Google Scholar 

  19. Kvasov, B.I.: Methods of Shape-Preserving Spline Approximation. World Scientific Publishing Company, Singapore (2000)

    Book  Google Scholar 

  20. Lee, E.T.Y.: Choosing nodes in parametric curve interpolation. Comput. Aided Des. 21(6), 363–370 (1989)

    Article  Google Scholar 

  21. Noakes, L., Kozera, R.: Cumulative chords piecewise-quadratics and piecewise-cubics. In: Klette, R., Kozera, R., Noakes, L., Weickert, J. (eds.) Geometric Properties from Incomplete Data, Computational Imaging and Vision, vol. 31, pp. 59–75. Kluwer Academic Publisher, Dordrecht (2006)

    Chapter  Google Scholar 

  22. Piegl, L., Tiller, W.: The NURBS Book. Springer, Berlin (1997)

    Book  Google Scholar 

  23. Rababah, A.: High order approximation methods for curves. Comput. Aided Geom. Des. 12, 89–102 (1995)

    Article  MathSciNet  Google Scholar 

  24. Wolfram, S.: The Mathematica Book, 5th edn. Wolfram Media, Champaign (2003)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Kozera.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This research was supported in part by PLGrid Infrastructure.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kozera, R., Wilkołazka, M. A Note on Modified Hermite Interpolation. Math.Comput.Sci. 14, 223–239 (2020). https://doi.org/10.1007/s11786-019-00434-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11786-019-00434-3

Keywords

Mathematics Subject Classification

Navigation