
Using Oshima splines to produce accurate numerical
results and high quality graphical output

Setsuo Takato and José A. Vallejo

Abstract. We illustrate the use of Oshima splines in producing high-quality LATEX output in two
cases: first, the numerical computation of derivatives and integrals, and second, the display of sil-
houettes and wireframe surfaces, using the macros package KETCindy. Both cases are of particular
interest for college and university teachers wanting to create handouts to be used by students, or
drawing figures for a research paper. When dealing with numerical computations, KETCindy can
make a call to the CAS Maxima to check for accuracy; in the case of surface graphics, it is partic-
ularly important to be able to detect intersections of projected curves, and we show how to do it in
a seamlessly manner using Oshima splines in KETCindy. A C compiler can be called in this case
to speed up computations.
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1. Introduction
Cinderella is a dynamic geometry software (DGS) comprising two main components: CindyScreen,
an interactive screen where geometric elements can be constructed like in any other DGS, and
CindyScript, a scripting language which can manipulate not only geometric objects but more general
constructions. The following figure shows both components of Cinderella, CindyScreen (left), and
the CindyScript editor (right).

Fig.1 CindyScreen and CindyScript
KETCindy is a package of CindyScript macros designed to produce high-quality LATEX figures

and animations (see [5, 6]). It is well suited for particularly complex graphics such as the ones
appearing in dynamical systems theory [9], and flexible enough to satisfy the demands of a wide
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2 S. Takato and J. A. Vallejo

class of topics ranging from linear algebra to the calculus of variations, including the preprocessing
of data for 3D printing [10]–[15]. It can be accessed from the Comprehensive TEX Archive Network
(CTAN) repository [4], requiring Cinderella [1] and R [2] as dependences. In this text we will
also require the optional Computer Algebra System (CAS) Maxima [3]. The package comes with
its own documentation explaining the installation process.

As an example of its use, we now show how to draw a freehand smooth curve. For this task,
KETCindy uses Bézier curves and has several commands to create splines from them: Bezier,
CRspline, Ospline, Bspline and Mkbezierptcrv are already implemented. Here we use
CRspline, the command to draw a Catmull-Rom spline. The steps to generate a plotting data file
suitable for being included in a LATEX document are as follows:

1. Open a template in the work folder of ketcindyfolder or any KETCindy file. The rectangle in
the screen shows the drawing range for the picture environment in LATEX.

2. Change points SW, NE to fix the drawing area and add some other points A, B, C, D that will
serve as control points for the spline.

Fig.2 Initial screen Fig.3 Adding points
3. In the script editor, write the command CRspline("1",[A,B,C,D]): the curve is dis-

played in the screen. One can change the shape of the curve by moving any of the control
points A,B,C,D in the CindyScreen.

4. Pressing the button Figure in the screen will generate the plotting data for LATEX . The output
is represented in Figure 5 below.

Fig.4 Drawing CRspline curve

x

y

O

1

Fig.5 Plotting LATEX data

5. Further embellishment of the figure is, of course, possible. Le us complete it to illustrate the
notion of differences quotient. It suffices to write the following commands in the CindyScript
editor:

CRspline("1",[A,B,C,D]);
pt=[C.x,B.y];
Listplot("1",[B,pt,C,B]);
Bowdata("1",[B,pt],["do","E=\Delta x"]);
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Bowdata("2",[pt,C],[1.5,"do","E=\Delta y"]);
Letter(B,’’n’’,’’P’’);
Htickmark([B.x,"x",C.x,"\xi"]);
Vtickmark([B.y,"f(x)",C.y,"f(\xi)"]);

Again, pressing Figure will generate the LATEX code and the corresponding pdf file.

Fig.6 Adding other components to the figure
As a side remark, sometimes more flexibility than that provided by LATEX is required to insert

figures in a document. This is particularly the case when creating handouts to be distributed to
students, quizzes, cheat sheets, and the like. To deal with these cases, the layer environment,
which is defined in ketlayer.sty, can be useful. If graph1.tex is the result of steps 1 − 5
above, the code

\begin{layer}{140}{50}
\putnotes{115}{2}{$\frac{\varDelta y}{\varDelta x}\to f’(x)$}
\putnotese{80}{5}{\inputf{fig/graph1.tex}}
\end{layer}

when inserted in a LATEX document, will produce the following:
0
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∆x → f ′(x)

Let P(x, f(x)) be a point on the graph of y = f(x).
Let (ξ, f(ξ)) be a point close to P, and put

∆x = ξ − x,∆y = f(ξ)− f(x) .

Then
dy

dx
= lim
ξ→x

∆y

∆x
is the derivative of the function.

Question : Calculate
dy

dx
when f(x) = x2.

Fig.7 Example of a material for use in teaching
Change the arguments of \putnote to move each component. If they are placed properly,

set the second argument of layer to 0, then grids will disappear without moving the position of all
components.

\begin{layer}{140}{0}
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\putnotese{80}{5}{\inputf{fig/graph1.tex}}
\putnotes{115}{2}{$\frac{\varDelta y}{\varDelta x}\to f’(x)$}
\end{layer}
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∆y
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∆y
∆x → f ′(x)

Let P(x, f(x)) be a point on the graph of y = f(x).
Let (ξ, f(ξ)) be a point close to P, and put

∆x = ξ − x,∆y = f(ξ)− f(x) .

Then
dy

dx
= lim
ξ→x

∆y

∆x
is the derivative of the function.

Question : Calculate
dy

dx
when f(x) = x2.

Fig.8 Example of a material for use in teaching

\includegraphics of graphicx cannot do the same thing by itself. Moreover, \input
might be more convienient when inputting the file cosist of graphical codes such as pict2e and
TikZ.

The Catmull-Rom spline which we used in this example is well known and often used to draw
freehand shapes or to make a nonlinear interpolation. However, as with any other class of splines,
there are many cases in which the results it gives are not as good as one desires. This is particularly
true for conic sections, which can not be exactly generated using Bézier curves: if we take four points
A, B, C, D on an ellipse and use the Catmull-Rom spline to approximate it, the corresponding code
is

Paramplot("1","[3*cos(t),2*sin(t)]","t=[0,2*pi]",["da"]);
// shows the ellipse with a dashed line.

A=[3,0]; B=[0,2]; C=[-3,2]; D=[0,-2];
CRspline("1",[A,B,C,D,A]);

and the resulting figure is the following:

A
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D
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y

O

Fig.9 Catmull-Rom spline for an ellipse

Even recognizing the impossibility of exactly reproducing conic sections, this result is less
than sub-optimal. Due to the shortcomings of Catmull-Rom splines, Oshima developed a new idea
to determine the spline control points from the given points on the curve [7], in such a way that
the interpolation is nearly optimal in the case of conics (compare Figure 9 with Figure 12 below).
This opens the possibility of constructing numerical schemes for derivation and integration based on
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this spline, as well as a promising technique to attack the problem of determining the intersection
points of surfaces and curves, a basic problem in Computer Aided Geometric Design (or CAGD) that
must be solved in order to construct wireframes. Thus, our contribution in this paper is to describe
these techniques, and illustrate both its practical implementation and its application to some typical
problems. In this regard, we have used the set of macros KETCindy because it allows us to exploit the
very precise numerical computation of wireframes resulting from Oshima techniques (when those
computations are done through an external C compiler), and as a result, we can produce high-quality
graphical output, as shown in the examples below. The resulting framework, integrating the DGS
Cinderella, the CAS Maxima and a C compiler with KETCindy as the interface, has proven to be very
flexible and powerful, allowing the user to carry on the numerical tasks as well as the generation of
graphics in an intuitive and unified environment.

2. Oshima spline curve

Let points Pj−1 ,Pj ,Pj+1 ,Pj+2 be on a certain curve which we want to approximate, and Qj , Rj

be the control points corresponding to an interval PjPj+1. In the case of the Catmull-Rom spline
curve, these control points are defined solely by Pj ,Pj+1 using the conditions

−−→
PjQj =

1

6

−−−−−−→
Pj−1Pj+1,

−−−−→
Pj+1Rj =

1

6

−−−−→
Pj+2Pj .

Note that the coefficients appearing here are contants. Figure 10, shows the shape of the resulting
spline, where it is to be noticed that the curve bends rapidly.

Oshima’s definition is

−−→
PjQj = c

−−−−−−→
Pj−1Pj+1,

−−−−→
Pj+1Rj = c

−−−−→
Pj+2Pj ,

where the value of the coefficient c is determined from Pj−1 ,Pj ,Pj+1 ,Pj+2 as follows:

c =
4
−−−−→
PjPj+1

3(
−−−−−−→
Pj−1Pj+1 +

−−−−→
PjPj+2)

× 1

1 +
√

1
2 (1 + cos θ)

,

where θ is the angle between
−−−−−−→
Pj−1Pj+1 and

−−−−→
PjPj+2. See Figure 11, and notice that this time the

curve is smoother, as well as the different placement of the control points. Figure 12 represents the
Oshima spline for the ellipse of the preceding section.

Pj−1

Pj

Pj+1

Pj+2

Pj+3

Qj

Rj

Fig.10 Case of Catmull-Rom spline

Pj−1

Pj

Pj+1

Pj+2

Pj+3

Qj

Rj

θ

Fig.11 Case of Oshima spline
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Fig.12 Oshima spline for an ellipse

Though we can not say that Oshima spline gives a better interpolation in all cases, in general
it certainly does when it comes to drawing smooth freehand curves. As an application of this fact,
we will apply next the Oshima technique to the problem of numerical differentiation and integration.
KETCindy provides two commands (Integrate, Derivative) for these tasks.

2.1. Numerical integration

Pj

Pj+1

Pj+2

Pj+3C

x

y

O
Fig.16 Definite integral of a Bézier curve

Let C be a Bézier curve determined by the
control points Pj , Pj+1, Pj+2, Pj+3, and let
(xk, yk) denote the coordinates of Pk.
Since the parametric equations of C are

P = Pj(1− t)3 + 3Pj+1(1− t)2t
+3Pj+2(1− t)t2 + Pj+3t

3 (1)

(0 5 t 5 1),

the definite integral
∫ xj+3

xj

y dx becomes∫ 1

0

y
dx

dt
dt .

KETCindy can call Maxima using Mxfun to execute a single command and CalcbyM to
execute several commands [6]. Thus, we can evaluate the preceding integral with the following
CindyScript code:

cmdL=[
"P:[x1,y1]*(1-t)ˆ3+3*[x2,y2]*(1-t)ˆ2*t

+3*[x3,y3]*(1-t)*tˆ2+[x4,y4]*tˆ3",[],
"f:P[2]*diff(P[1],t)",[],
"ans:integrate",["f","t",0,1],
"ans",[]

];
CalcbyM("ans",cmdL);
println(ans);

The output is displayed in the console as

((10*x4-6*x3-3*x2-x1)*y4+(6*x4-3*x2-3*x1)*y3
+(3*x4+3*x3-6*x1)*y2+(x4+3*x3+6*x2-10*x1)*y1)/20.

This procedure is implemented in KETCindy’s command Integrate. Here we illustrate its
use through several examples.



Using Oshima splines 7

Example 1. To compute the area surrounded by ellipse
x2

32
+
y2

22
= 1 we would execute the script

Paramplot("1","[3*cos(t),2*sin(t)]","t=[0,pi]",["Num=25"]);
Paramplot("2","[3*cos(t),2*sin(t)]","t=[pi,2*pi]",["Num=25"]);
ans=Integrate("gp1",[-pi,pi])-Integrate("gp2",[-pi,pi]);
println(Sprintf(ans/(6*pi),6));

The result is 0.999937, which gives a good approximation to
S

πab
= 1.

Example 2. The definite integral of y = x2 sinx from 0 to π is computed by the script
Plotdata("1","xˆ2*sin(x)","x=[-pi,pi]",["Num=50"]);
ans=Integrate("gr1",[0,pi]);
println(Sprintf(ans,6));

The result is 5.869063. We can check this result with Maxima:
Mxfun("1","integrate",["xˆ2*sin(x)","x",0,"%pi"]);
Mxfun("2","float",[mx1]);

The output is %piˆ2-4, whose numerical value in double precision is 5.869604401089358.

Notice that Integrate can be applied to a list of points. Actually, gr1 and gp1, gp2 in the
preceding examples are lists of points.

Example 3. The definite integral of the implicit function 8x2 − 4
√

2xy + y2 − 3x− 6
√

2y + 2 = 0
in the region [−2, 2]× [−2, 2.5] is performed by

Implicitplot("1","8*xˆ2-4*sqrt(2)*x*y+yˆ2-3*x-6*sqrt(2)*y+2=0",
"x=[-2,2]","y=[-2,2.5]");

P=Ptstart("imp1");
Q=Ptend("imp1");
Letter([P,"n","P",Q,"n","Q"]);
ans=Integrate("imp1",[Q_1,P_1]);
println(Sprintf(ans,6));

The result is 1.698725.

P

Q

x

y

O

Fig.17 Integration of an implicit function

2.2. Numerical differentiation
We can also calculate the derivative of a function given by a list of points. To find the derivative of
C at the point Pj in Figure 16, we differentiate (1) and put t = 0, then

dP

dt
= −3Pj + Pj+1 .

Using this procedure, we have improved the command Derivative and implemented Tangentplot
to draw the tangent line at a point as an application. The following is an example of the use of
Tangentplot with the implicit function of Example 3.
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dx=(Q_1-P_1)/10;
forall(0..10,ii,

v=P_1+ii*dx;
Tangentplot(text(ii),"imp1","x="+format(v,6),["dr,0.2"]);

);

P

Q

x

y

O

Fig.18 Tangent lines to an implicit function

3. Drawing 3D surfaces
3.1. Intersection of silhouette lines
Teaching materials displaying 3D figures are often required in mathematics courses. For such printed
materials, figures presented as line drawings are better suited, because students can write their own
remarks over them on the paper (Figure 19). KETCindy supports the line drawing of 3D figures as
explained below, but let us first present a couple of examples:

x y

z

Fig.19 Line drawing of a surface

x y

z

Fig.20 Segmenting curves

To produce these 3D figures, KETCindy follows the steps:
1. The silhouette lines of the surface are determined. To this end, numerical data are obtained

from an implicit function of the form

J(u, v) =
dX

du

dY

dv
− dX

dv

dY

du
= 0 ,

where (X,Y ) = Proj(x, y, z) is the map onto the plane of projection.
2. The intersections of silhouette lines and projected curves (see Figure 20) are computed.
3. The curve is segmented by these intersections, and it is determined whether each segment is

hidden by the surface or not.
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Of the above, the second item is of fundamental importance, but it represents a difficult task in
the case of contacting curves because, numerically, they are polygonal lines (see Figure 21 for an
example, where the small window in red shows the contact region that will be further discussed
below).

x y

z

1

Fig.21 Case of contacting curves

The following graphical examples illustrate this setting: the right figure shows a magnification
of the contact region in the left one. The parametric equations of the surface are x = u cos v, y =
u sin v, and z = 4− u2.

Fig.22 Magnifying around the contact point

To refine the calculation in item 2, we have adopted an interpolatory scheme using Oshima
splines around the contact point.

In the figure below, the left pane shows a further magnification. The right one shows the Os-
hima splines of the silhouette line of the surface and the curve in red.



10 S. Takato and J. A. Vallejo

Fig.23 Use of Oshima spline curve

We can see that the intersection is still represented by a cluster of points, but a much narrow
one. A randomly chosen point in this intersection has coordinates

P = [−1.65827, 1.20578] . (2)

The exact values for the coordinates of the intersecting point (in double precision) computed
by Maxima are:

P = [−1.656701299244927, 1.210755779027779] ,

confirming that (2) is a good approximation to the contact point.
Once the lines representing the surface and the curves on it have been determined, the next step

is to hide those portions that lie behind the surface from the perspective of the observer. However, it
takes a long time to apply the algorithm for the elimination of those hidden parts if only CindyScript
is used. To speed up computations, KETCindy can call gcc(Gnu C Compiler). The following is the
CindyScript code used to generate Figure 21

fd=[
"z=4-(xˆ2+yˆ2)",
"x=R*cos(T)","y=R*sin(T)",
"R=[0,2]","T=[0,2*pi]","e"

];
Startsurf();
Sfbdparadata("1",fd);
Crvsfparadata("1","ax3d","sfbd3d1",fd);
Wireparadata("1","sfbd3d1",fd,5,2*pi/6*(0..5));
ExeccmdC("1",[""],[]);

Its execution takes only a few seconds in a standard desktop computer.

3.2. 3D animations
KETCindy can produce both, a flip movie which displays slides step by step, and LATEX anima-
tions suitable to be included in pdf documents (or translated into graphics formats such as APNG),
through the use of animate.sty. The use of the gcc compiler makes it feasible to animate 3D
surfaces. We show an example of an animation illustrating the construction of the Möbius band. A
snapshot of the corresponding CindyScreen appears in Figure 24, and the CindyScript code is the
following:
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Fig.24 Screen for 3D movies

Start3d([A,B,C,S,Sl,Sr]);
mf(s):=(

regional(tmp);
Startsurf();
fd=["p",
"x=2*cos(t)*(2+r*cos(t/2))",
"y=2*sin(t)*(2+r*cos(t/2))",
"z=2*r*sin(t/2)","r=[-0.4,0.4]","t=[0,"+text(s)+"]","nsew"
];
Sfbdparadata("1",fd);
tmp=select((1..12)/12*2*pi,#<=s);
Wireparadata("1","sfbd3d1",fd,5,tmp);
ExeccmdC("",[""],["nodisp"]);

);
Setpara("mobius","mf(s)","s=[0,2*pi]",["Div=24"]);

Pressing the button Flip generates the flip movie, while Anime generates the animation. The
separate slides of the flip movie are shown below.
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Fig.25 Slides for the animated Möbius band

4. Conclusions and future work
It is quite common that teachers, and researchers as well, need added functionalities in their soft-
ware of choice for producing high-quality graphical output or accurate numerical computations. It
is very important that these functionalities do not come at the cost of a significant increase in the
time required to learn their use. CindyScript is a scripting language that allows to build them easily
and, moreover, one that can interact with other software components such as Maxima and the gcc
compiler. This opens a whole new world of possibilities. For example, consider how easy it is to
write the following code to interactively compute the area surrounded by a closed curve:

Findarea(pd):=(
regional(p0,p1,p2,p3,s);
if(isstring(pdstr),pd=parse(pdstr),pd=pdstr);
s=0;
forall(1..(length(pd)-1),

p1=pd_#;
p2=pd_(#+1);
if(#==1,p0=pd_(length(pd)-1),p0=pd_(#-1));
if(#==length(pd)-1,p3=pd_2,p3=pd_(#+2));
s=s+IntegrateO(p0,p1,p2,p3);

);

It is then possible to put a slider on the screen, and the results obtained by sliding the control point
are shown below.

Fig.26 Adding a command with CindyScript
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Programming is an important factor when creating more appealing materials, and DGSs such
as Cinderella make it easy to visualize the output and modify it as necessary. Free CASs such as
Maxima are also useful for symbolic computations, and it is remarkable that KETCindy can work as
their user interface. Moreover, C compiler is very efficient in speeding up the calculations required
for drawing 3D figures with KETCindy. We could say that the combined use of KETCindy, Cinderella,
Maxima and C is a powerful tool to develop programs. Finally, let us comment that KETCindy also
has built-in commands to generate files in obj format, suitable to print 3D models. As a future work,
we will develop a C library to speed up the process.
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