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Abstract We consider LU and Q R matrix decompositions using exact computations. We show that fraction-
free Gauß–Bareiss reduction leads to triangular matrices having a non-trivial number of common row factors.
We identify two types of common factors: systematic and statistical. Systematic factors depend on the reduction
process, independent of the data, while statistical factors depend on the specific data. We relate the existence of
row factors in the LU decomposition to factors appearing in the Smith–Jacobson normal form of the matrix. For
statistical factors, we identify some of the mechanisms that create them and give estimates of the frequency of
their occurrence. Similar observations apply to the common factors in a fraction-free Q R decomposition. Our
conclusions are tested experimentally.
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1 Introduction

Although known earlier to Dodgson [8] and Jordan1 (see Durand [9]), the fraction-free method for exact matrix
computations became well known because of its application by Bareiss [1] to the solution of a linear system over Z,
and later over an integral domain [2]. He implemented fraction-free Gaussian elimination of the augmented matrix
[A B], and kept all computations in Z until a final division step. Since, in linear algebra, equation solving is related
to the matrix factorizations LU and Q R, it is natural that fraction-free methods would be extended later to those
factorizations. The forms of the factorizations, however, had to be modified from their floating-point counterparts
in order to retain purely integral data. The first proposed modifications were based on inflating the initial data
until all divisions were guaranteed to be exact, see for example Lee and Saunders [17], Nakos et al. [21] and
Corless and Jeffrey [7]. This strategy, however, led to the entries in the L and U matrices becoming very large,
and an alternative form was presented in Zhou and Jeffrey [26], and is described below. Similarly, fraction-free
Gram–Schmidt orthogonalization and Q R factorization were studied in Erlingsson et al. [10] and Zhou and Jeffrey
[26]. Further extensions have addressed fraction-free full-rank factoring of non-invertible matrices and fraction-free
computation of the Moore–Penrose inverse [15]. More generally, applications exist in areas such as the Euclidean
algorithm, and the Berlekamp–Massey algorithm [16].

More general domains are possible, and here we consider matrices over a principal ideal domain D. For the
purpose of giving illustrative examples and conducting computational experiments, matrices over Z and Q[x] are
used, because these domains are well established and familiar to readers. We emphasize, however, that the methods
here apply for all principal ideal domains, as opposed to methods that target specific domains, such as Giesbrecht
and Storjohann [12] and Pauderis and Storjohann [24].

The shift from equation solving to matrix factorization has the effect of making visible the intermediate results,
which are not displayed in the original Bareiss implementation. Because of this, it becomes apparent that the
columns and rows of the L and U matrices frequently contain common factors, which otherwise pass unnoticed.
We consider here how these factors arise, and what consequences there are for the computations.

Our starting point is a fraction-free form for LU decomposition [15]: given a matrix A over D,

A = Pr L D−1U Pc,

where L and U are lower and upper triangular matrices, respectively, D is a diagonal matrix, and the entries of
L , D, and U are from D. The permutation matrices Pr and Pc ensure that the decomposition is always a full-rank
decomposition, even if A is rectangular or rank deficient; see Sect. 2. The decomposition is computed by a variant of
Bareiss’s algorithm [2]. In Sect. 6, the L D−1U decomposition also is the basis of a fraction-free Q R decomposition.

The key feature of Bareiss’s algorithm is that it creates factors which are common to every element in a row,
but which can then be removed by exact divisions. We refer to such factors, which appear predictably owing to
the decomposition algorithm, as “systematic factors”. There are, however, other common factors which occur with
computable probability, but which depend upon the particular data present in the input matrix. We call such factors
“statistical factors”. In this paper we discuss the origins of both kinds of common factors and show that we can
predict a nontrivial proportion of them from simple considerations.

Once the existence of common factors is recognized, it is natural to consider what consequences, if any, there
are for the computation, or application, of the factorizations. Some consequences we shall consider include a lack
of uniqueness in the definition of the LU factorization, and whether the common factors add significantly to the
sizes of the elements in the constituent factors. This in turn leads to questions regarding the benefits of removing
common factors, and what computational cost is associated with such benefits.

A synopsis of the paper is as follows. After recalling Bareiss’s algorithm, the L D−1U decomposition, and the
algorithm from Jeffrey [15] in Sect. 2, we establish, in Sect. 3, a relation between the systematic common row
factors of U and the entries in the Smith–Jacobson normal form of the same input matrix A. In Sect. 4 we propose

1 Marie Ennemond Camille Jordan 1838–1922; not Wilhelm Jordan 1842–1899, of Gauß–Jordan.
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an efficient way of identifying some of the systematic common row factors introduced by Bareiss’s algorithm;
these factors can then be easily removed by exact division. In Sect. 5 we present a detailed analysis concerning the
expected number of statistical common factors in the special case D = Z, and we find perfect agreement with our
experimental results. We conclude that the factors make a measurable contribution to the element size, but they do
not impose a serious burden on calculations.

In Sect. 6 we investigate the Q R factorization. In this context, the orthonormal Q matrix used in floating point
calculations is replaced by a � matrix, which is left-orthogonal, i.e. �t� is diagonal, but ��t is not. We show that,
for a square matrix A, the last column of �, as calculated by existing algorithms, is subject to an exact division by
the determinant of A, with a possibly significant reduction in size.

Throughout the paper, we employ the following notation. We assume, unless otherwise stated, that the ring D is
an arbitrary principal ideal domain. We denote the set of all m-by-n matrices over D by Dm×n . We write 1n for the
n-by-n identity matrix and 0m×n for the m-by-n zero matrix. We shall usually omit the subscripts if no confusion
is possible. For A ∈ D

m×n and 1 ≤ i ≤ m, Ai,∗ is the i th row of A. Similarly, A∗, j is the j th column of A for
1 ≤ j ≤ n. If 1 ≤ i1 < i2 ≤ m and 1 ≤ j1 < j2 ≤ n, we use Ai1...i2, j1... j2 to refer to the submatrix of A made up
from the entries of the rows i1 to i2 and the columns j1 to j2. Given elements a1, . . . , an ∈ D, with diag(a1, . . . , an)

we refer to the diagonal matrix that has a j as the entry at position ( j, j) for 1 ≤ j ≤ n. We will use the same
notation for block diagonal matrices.

We denote the set of all column vectors of length m with entries inD byDm and that of all row vectors of length n
byD1×n . IfD is a unique factorization domain and v = (v1, . . . , vn) ∈ D

1×n , thenwe set gcd(v) = gcd(v1, . . . , vn).
Moreover, with d ∈ D we write d | v if d | v1 ∧ · · · ∧ d | vn (or, equivalently, if d | gcd(v)). We also use the same
notation for column vectors.

We will sometimes write column vectors w ∈ D
m with an underline w and row vectors v ∈ D

1×n with an
overline v if we want to emphasize the specific type of vector.

2 Bareiss’s Algorithm and the LD−1U Decomposition

For the convenience of the reader, we start by recalling Bareiss’s algorithm [2]. Let D be an integral domain2, and
let A ∈ D

n×n be a matrix and b ∈ D
n be a vector. Bareiss modified the usual Gaussian elimination with the aim of

keeping all calculations inD until the final step. If this is done naïvely then the entries increase in size exponentially.
Bareiss used results from Sylvester and Jordan to reduce this to linear growth. Bareiss defined the notation3

A(k)
i j = det

⎡
⎢⎢⎢⎣

A1,1 · · · A1,k A1, j
...

. . .
...

...

Ak,1 · · · Ak,k Ak, j

Ai,1 · · · Ai,k Ai, j

⎤
⎥⎥⎥⎦ , (2.1)

for i > k and j > k, and with special cases A(0)
i, j = Ai j and A(−1)

0,0 = 1.
We start with division-free Gaussian elimination, which is a simple cross-multiplication scheme, and denote

the result after k steps by A[k]
i j . We assume that any pivoting permutations have been completed and need not be

considered further. The result of one step is

A[1]
i, j = A1,1Ai, j − Ai,1A1, j = det

[
A1,1 A1, j

Ai,1 Ai, j

]
= A(1)

i, j , (2.2)

2 Note that in this section we do not require D to be a principal ideal domain; it suffices to assume that D is an integral domain.
3 Note that there is some notational confusion in [1], where the symbol A(k)

i j is used both to mean the definition (2.1) and the result of
applying any elimination scheme k times. Compare [1, equation (7)] and its unnumbered companion lower on the same page. Bareiss
actually used ai j where we use Ai, j .
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and the two quantities A[1]
i, j and A(1)

i, j are equal. A second step, however, leads to

A[2]
i, j = A[1]

2,2A[1]
i, j − A[1]

i,2 A[1]
2, j = A1,1 det

⎡
⎣

A1,1 A1,2 A1, j

A2,1 A2,2 A2, j

Ai,1 Ai,2 Ai, j

⎤
⎦ = A1,1A(2)

i, j . (2.3)

Thus, as stated in Sect. 1, simple cross-multiplication introduces a systematic common factor in all entries i, j > 2.
This effect continues for general k (see [2]), and leads to exponential growth in the size of the terms. Since the
systematic factor is known, it can be removed by an exact division, and then the terms grow linearly in size. Thus
Bareiss’s algorithm is

A(k+1)
i, j = 1

A(k−1)
k,k

(
A(k)

k+1,k+1A(k)
i, j − A(k)

i,k+1A(k)
k+1, j

)
, (2.4)

and the division is exact. The elements of the reduced matrix are thus minors of A. The main interest for Bareiss was
to advocate a ‘two-step’ method, wherein one proceeds from step k to step k + 2 directly, rather than by repeated
Gaussian steps. The two-step method claims improved efficiency, but the results obtained are the same, and we
shall not consider it here.

In Jeffrey [15], Bareiss’s algorithm was used to obtain a fraction-free variant of the LU factorization of A. We
quote the main result from that paper here as Theorem 1. The idea behind the factorization is that schemes which
inflate the initial matrix A, such as Lee and Saunders [17] and Nakos et al. [21] and Corless and Jeffrey [7] do
not avoid the quotient field, but merely move the divisors to the other side of the defining equation, at the cost of
significant inflation. In any subsequent application, the divisors will have to move back, and the inflation will have
to be reversed. In contrast, the present factorization isolates the divisors in an explicit inverse matrix. The matrices
Pr , L , D, U, Pc appearing in the decomposition below contain only elements from D, but the inverse of D,if it
were evaluated, would have to contain elements from the quotient field. By expressing the factorization in a form
containing D−1 unevaluated, all calculations can stay within D.

Theorem 1 (Jeffrey [15, Thm. 2]). A rectangular matrix A with elements from an integral domain D, having
dimensions m × n and rank r, may be factored into matrices containing only elements from D in the form

A = Pr L D−1U Pc = Pr

( L
M

)
D−1 (U V)

Pc

where the permutation matrix Pr is m × m; the permutation matrix Pc is n × n; L is r × r , lower triangular and
has full rank:

L =

⎡
⎢⎢⎢⎢⎣

A(0)
1,1

A(0)
2,1 A(1)

2,2
...

...
. . .

A(0)
r,1 A(1)

r,2 · · · A(r−1)
r,r

⎤
⎥⎥⎥⎥⎦

; (2.5)

M is (m − r) × r and could be null; U is r × r and upper triangular, while V is r × (n − r) and could be null:

U =

⎡
⎢⎢⎢⎢⎣

A(0)
1,1 A(0)

1,2 · · · A(0)
1,r

A(1)
2,2 · · · A(1)

2,r
. . .

...

A(r−1)
r,r

⎤
⎥⎥⎥⎥⎦

. (2.6)
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Finally, the D matrix is

D−1 =

⎡
⎢⎢⎢⎢⎣

A(−1)
0,0 A(0)

1,1

A(0)
1,1A(1)

2,2
. . .

A(n−2)
n−1,n−1A(n−1)

n,n

⎤
⎥⎥⎥⎥⎦

−1

. (2.7)

Remark 2 It is convenient to call the diagonal elements A(k−1)
k,k pivots. They drive the pivoting strategy, which

determines Pr , and they are used for the exact-division step (2.4) in Bareiss’s algorithm.

Remark 3 As in numerical linear algebra, the L D−1U decomposition can be stored in a single matrix, since the
diagonal (pivot) elements need only be stored once.

The proof of Theorem 1 given in Jeffrey [15] outlines an algorithm for the computation of the L D−1U decom-
position. The algorithm is a variant of Bareiss’s algorithm [1], and yields the same U . The difference is that Jeffrey
[15] also explains how to obtain L and D in a fraction-free way.

Algorithm 4 (L D−1U decomposition)

Input: A matrix A ∈ D
m×n.

Output: The L D−1U decomposition of A as in Theorem 1.

1. Initialize p0 = 1, Pr = 1m, L = 0m×m, U = A and Pc = 1n.
2. For each k = 1, . . . ,min{m, n}:

(a) Find a non-zero pivot pk in Uk...mk...n and bring it to position (k, k) recording the row and column swaps
in Pr and Pc. Also apply the row swaps to L accordingly. If no pivot is found, then set r = k and exit the
loop.

(b) Set Lk,k = pk and Li,k = Ui,k for i = k + 1, . . . , m.
Eliminate the entries in the kth column and below the kth row in U by cross-multiplication; that is, for
i > k set Ui,∗ to pkUi,∗ − UikUk,∗.

(c) Perform division by pk−1 on the rows beneath the kth in U; that is, for i > k set Ui,∗ to Ui,∗/pk−1. Note
that the divisions will be exact.

3. If r is not set yet, set r = min{m, n}.
4. If r < m, then trim the last m − r columns from L as well as the last m − r rows from U.
5. Set D = diag(p1, p1 p2, . . . , pr−1 pr ).
6. Return Pr , L, D, U, and Pc.

The algorithm does not specify the choice of pivot in step 2a. Conventional wisdom (see, for example, Geddes
et al. [11]) is that in exact algorithms choosing the smallest possible pivot (measured in a way suitable for D) will
lead to the smallest output sizes. We have been able to confirm this experimentally in Middeke and Jeffrey [18] for
D = Z where size was measured as the absolute value. In step 2c the divisions are guaranteed to be exact. Thus,
an implementation can use more efficient procedures for this step if available (for example, for big integers using
mpz_divexact in the gmp library which is based on Jebelean [14] instead of regular division).

One of the goals of the present paper is to discuss improvements to the decomposition explained above. Through-
out this paper we shall use the term L D−1U decomposition to mean exactly the decomposition from Theorem 1 as
computed by Algorithm 4. For the variations of this decomposition we introduce the following term:

Definition 5 (Fraction-Free LU Decomposition). For a matrix A ∈ D
m×n of rank r we say that A = Pr L D−1U Pc

is a fraction-free LU decomposition if Pr ∈ D
m×m and Pc ∈ D

n×n are permutation matrices, L ∈ D
m×r has

Li j = 0 for j > i and Lii �= 0 for all i , U ∈ D
r×n has Ui j = 0 for i > j and Uii �= 0 for all i , and D ∈ D

r×r is a
diagonal matrix (with full rank).
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We will usually refer to matrices L ∈ D
m×r with Li j = 0 for j > i and Lii �= 0 for all i as lower triangular and

to matrices U ∈ D
r×n with Ui j = 0 for i > j and Uii �= 0 for all i as upper triangular even if they are not square.

As mentioned in the introduction, Algorithm 4 does result in common factors in the rows of the output U and
the columns of L . In the following sections, we will explore methods to explain and predict those factors. The next
result asserts that we can cancel all common factors which we find from the final output. This yields a fraction-free
LU decomposition of A where the size of the entries of U (and L) are smaller than in the L D−1U decomposition.

Corollary 6 Given a matrix A ∈ D
m×n with rank r and its standard L D−1U decomposition A = Pc L D−1U Pc,

if DU = diag(d1, . . . , dr ) is a diagonal matrix with dk | Uk,∗ for k = 1, . . . , n, then setting Û = D−1
U U and

D̂ = DD−1
U where both matrices are fraction-free we have the decomposition A = Pc L D̂−1Û Pc.

Proof By Theorem 1, the diagonal entries of U are the pivots chosen during the decomposition and they also divide
the diagonal entries of D. Thus, any common divisor of Uk,∗ will also divide Dkk and therefore both Û and D̂ are
fraction-free. We can easily check that A = Pc L D−1DU D−1

U U = Pc L D̂−1Û Pc. ��
Remark 7 If we predict common column factors of L we can cancel them in the same way. However, if we have
already canceled factors from U , then there is no guarantee that d | L∗,k implies d | D̂kk . Thus, in general we can
only cancel gcd(d, D̂kk) from L∗,k (if D allows greatest common divisors). The same holds mutatis mutandis if we
cancel the factors from L first.

It will be an interesting discussion for future research whether it is better to cancel as many factors as possible
from U or to cancel them from L .

3 LU and the Smith–Jacobson Normal Form

This section explains a connection between “systematic factors” (that is, common factors which appear in the
decomposition due to the algorithm being used) and the Smith–Jacobson normal form. For Smith’s normal form,
see [5,20], and for Jacobson’s generalization, see [22]. Given a matrix A over a principal ideal domain D, we study
the decomposition A = Pr L D−1U Pc. For simplicity, from now on we consider the decomposition in the form
P−1

r AP−1
c = L D−1U. The following theorem connecting the L D−1U decomposition with the Smith–Jacobson

normal form can essentially be found in [2].

Theorem 8 Let the matrix A ∈ D
n×n have the Smith–Jacobson normal form S = diag(d1, . . . , dn) where

d1, . . . , dn ∈ D. Moreover, let A = L D−1U be an L D−1U decomposition of A without permutations. Then
for k = 1, . . . , n

d∗
k =

k∏
j=1

d j | Uk,∗ and d∗
k | L∗,k .

Remark 9 The values d∗
1 , . . . , d∗

n are known in the literature as the determinantal divisors of A.

Proof The diagonal entries of the Smith–Jacobson normal form are quotients of the determinantal divisors [20,
II.15], i. e., d∗

1 = d1 and dk = d∗
k /d∗

k−1 for k = 2, . . . , n. Moreover, d∗
k is the greatest common divisor of all k × k

minors of A for each k = 1, . . . , n. The entries of U and L , however, are k-by-k minors of A, as displayed in (2.5)
and (2.6). ��

From Theorem 8, we obtain the following result.

Corollary 10 The kth determinantal divisor d∗
k can be removed from the kth row of U (since it divides Dk,k by

Theorem 6) and also d∗
k−1 can be removed from the kth column of L because d∗

k−1 | d∗
k and d∗

j divides the j th pivot
for j = k − 1, k. Thus, d∗

k−1d∗
k | Dk,k .
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We illustrate this with an example using the polynomials over the finite field with three elements as our domain
Z3[t]. Let A ∈ Z3[t]4×4 be the matrix

A =

⎛
⎜⎜⎝

2t2 + t + 1 0 t2 + 2t 2t3 + 2t2 + 2t + 2
t3 + t2 + 2t + 1 t2 0 2t3 + t2 + 2
t4 + t3 + t + 2 t3 + 2t2 + t 2t3 + t2 + t 2t2 + t + 1

2t t 2t t2 + 2t

⎞
⎟⎟⎠ .

Computing the regular (that is, not fraction-free) LU decomposition yields A = L0U0 where

L0 =

⎛
⎜⎜⎜⎜⎝

1 0 0 0
−t3−t2+t−1

t2−t−1
1 0 0

−t4−t3−t+1
t2−t−1

t2−t+1
t 1 0

t
t2−t−1

1
t

t4−t3−t2+t−1
t4−t3−t2−1

1

⎞
⎟⎟⎟⎟⎠

and

U0 =

⎛
⎜⎜⎜⎜⎝

−t2 + t + 1 0 t2 − t −t3 − t2 − t − 1

0 t2 t5+t3−t2−t
t2−t−1

−t6+t4+t3+t
t2−t−1

0 0 −t4+t3+t2+1
t2−t−1

t5−t4+t3−t2−t−1
t2−t−1

0 0 0 t2−t
t4−t3−t2−1

⎞
⎟⎟⎟⎟⎠

.

On the other hand, the L D−1U decomposition for A is A = L D−1U where

L =

⎛
⎜⎜⎝

−(t2 − t − 1) 0 0 0
t3 + t2 − t + 1 −t2(t2 − t − 1) 0 0

(t2 + 1)(t2 + t − 1) −t (t + 1)2(t2 − t − 1) (t + 1)t2(t3 + t2 + t − 1) 0
−t −t (t2 − t − 1) t2(t4 − t3 − t2 + t − 1) (t − 1)t3

⎞
⎟⎟⎠ ,

D = diag
(−(t2 − t − 1), t2(t2 − t − 1)2,

−(t + 1)t4(t2 − t − 1)(t3 + t2 + t − 1), (t + 1)(t − 1)t5(t3 + t2 + t − 1)
)

and

U =

⎛
⎜⎜⎝

−(t2 − t − 1) 0 t (t − 1) −(t + 1)(t2 + 1)
0 −t2(t2 − t − 1) −t (t − 1)(t3 + t2 − t + 1) t (t5 − t3 − t2 − 1)
0 0 (t + 1)t2(t3 + t2 + t − 1) −t2(t5 − t4 + t3 − t2 − t − 1)
0 0 0 (t − 1)t3

⎞
⎟⎟⎠

(showing the entries completely factorised). The Smith–Jacobson normal form of A is

diag
(
1, t, t, t (t − 1)

);

and thus the determinantal divisors are d∗
1 = 1, d∗

2 = t , d∗
3 = t2, and d∗

4 = t3(t −1). As we can see, d∗
j does indeed

divide the j th row of U and the j th column of L for j = 1, 2, 3, 4. Moreover, d∗
1d∗

2 = t divides D2,2, d∗
2d∗

3 = t3

divides D3,3, and d∗
1d∗

2 = t5(t − 1) divides D4,4.
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4 Efficient Detection of Factors

When considering the output of Algorithm 4, we find an interesting relation between the entries of L and U which
can be exploited in order to find “systematic” common factors in the L D−1U decomposition. Theorem 11 below
predicts a divisor of the common factor in the kth row of U , by looking at just three entries of L . Likewise, we
obtain a divisor of the common factor of the kth column of L from three entries of U . As in the previous section,
let D be a principal ideal domain. We remark that for general principal ideal domains the theorem below is more of
a theoretical result. Depending on the specific domain D, actually computing the greatest common divisors might
not be easy (or even possible). The theorem becomes algorithmic, if we restrict D to be (computable) Euclidean
domain. For other domains, the statement is still valid; but it is left to the reader to check whether algorithms for
computing greatest common divisors exist.

Theorem 11 Let A ∈ D
m×n and let Pr L D−1U Pc be the L D−1U decomposition of A. Then

gcd(Lk−1,k−1, Lk,k−1)

gcd(Lk−1,k−1, Lk,k−1, Lk−2,k−2)

∣∣∣ Uk,∗

and

gcd(Uk−1,k−1, Uk−1,k)

gcd(Uk−1,k−1, Uk−1,k, Uk−2,k−2)

∣∣∣ L∗,k

for k = 2, . . . , m − 1 (where we use L0,0 = U0,0 = 1 for k = 2).

Proof Suppose that during Bareiss’s algorithm after k − 1 iterations we have reached the following state

A(k−1) =

⎛
⎜⎜⎜⎜⎝

T ∗ ∗ ∗
0 p ∗ ∗
0 0 a v

0 0 b w

0 0 ∗ ∗

⎞
⎟⎟⎟⎟⎠

,

where T is an upper triangular matrix, p, a, b ∈ D, v,w ∈ D
1×n−k−1 and the other overlined quantities are row

vectors and the underlined quantities are column vectors. Assume that a �= 0 and that we choose it as a pivot.
Continuing the computations we now eliminate b (and the entries below) by cross-multiplication

A(k−1) �

⎛
⎜⎜⎜⎜⎝

T ∗ ∗ ∗
0 p ∗ ∗
0 0 a v

0 0 0 aw − bv

0 0 0 ∗

⎞
⎟⎟⎟⎟⎠

.

Here,we can see that any common factor ofa andbwill be a factor of every entry in that row, i. e., gcd(a, b) | aw−bv.
However, we still have to carry out the exact division step. This leads to

A(k−1) �

⎛
⎜⎜⎜⎜⎝

T ∗ ∗ ∗
0 p ∗ ∗
0 0 a v

0 0 0 1
p (aw − bv)

0 0 0 ∗

⎞
⎟⎟⎟⎟⎠

= A(k).

The division by p is exact. Some of the factors in p might be factors of a or b while others are hidden in v or
w. However, every common factor of a and b which is not also a factor of p will still be a common factor of the
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resulting row. In other words,

gcd(a, b)

gcd(a, b, p)

∣∣∣ 1

p
(aw − bv).

In fact, the factors do not need to be tracked during the L D−1U reduction but can be computed afterwards: All the
necessary entries a, b and p of A(k−1) will end up as entries of L . More precisely, we shall have p = Lk−2,k−2,
a = Lk−1,k−1 and b = Lk,k−1.

Similar reasoning can be used to predict common factors in the columns of L . Here, we have to take into account
that the columns of L are made up from entries in U during each iteration of the computation. ��

As a typical example consider the matrix

A =

⎛
⎜⎜⎜⎜⎝

8 49 45 −77 66
−10 −77 −19 −52 48
51 18 −81 31 69

−97 −58 37 41 22
−60 0 −25 −18 −92

⎞
⎟⎟⎟⎟⎠

.

This matrix has a L D−1U decomposition with

L =

⎛
⎜⎜⎜⎜⎝

8 0 0 0 0
−10 −126 0 0 0
51 −2355 134076 0 0

−97 4289 −233176 −28490930 0
−60 2940 −148890 −53377713 11988124645

⎞
⎟⎟⎟⎟⎠

and with

U =

⎛
⎜⎜⎜⎜⎝

8 49 45 −77 66
0 −126 298 −1186 1044
0 0 134076 −414885 351648
0 0 0 −28490930 55072620
0 0 0 0 11988124645

⎞
⎟⎟⎟⎟⎠

.

Note that in this example pivoting is not needed, i.e., we have Pr = Pc = 1. The method outlined in Theorem 11
correctly predicts the common factor 2 in the second row of U , the factor 3 in the third row and the factor 2 in the
fourth row. However, it does not detect the additional factor 5 in the fourth row of U .

The example also provides an illustration of the proof of Theorem 8: The entry −414885 of U at position (3, 4)
is given by the determinant of the submatrix

⎛
⎝

8 49 −77
−10 −77 −52
51 18 31

⎞
⎠

consisting of the first three rows and columns 1, 2 and 4 of A. In this particular example, however, the Smith–
Jacobson normal form of the matrix A is diag(1, 1, 1, 1, 11988124645) which does not yield any information about
the common factors.

Given Theorem 11, one can ask how good this prediction actually is. Concentrating on the case of integer
matrices, the following Theorem 12 shows that with this prediction we do find a common factor in roughly a quarter
of all rows. Experimental data suggest a similar behavior for matrices containing polynomials in Fp[x] where p
is prime. Moreover, these experiments also showed that the prediction was able to account for 40.17% of all the
common prime factors (counted with multiplicity) in the rows of U .4

4 This experiment was carried out with random square matrices A of sizes between 5-by-5 and 125-by-125. We decomposed A into
Pr L D−1U Pc and then computed the number of predicted prime factors in U and related that to the number of actual prime factors. We
did not consider the last row of U since this contains only the determinant.
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Theorem 12 For random integers a, b, p ∈ Z the probability that the formula in Theorem 11 predicts a non-trivial
common factor is

P
( gcd(a, b)

gcd(p, a, b)
�= 1

)
= 6

ζ(3)

π2 ≈ 26.92%.

Proof The following calculation is due to Hare [13] and Winterhof [25]: First note that the probability that
gcd(a, b) = n is 1/n2 times the probability that gcd(a, b) = 1. Summing up all of these probabilities gives

∞∑
n=1

P
(
gcd(a, b) = n

) =
∞∑

n=1

1

n2 P
(
gcd(a, b) = 1

) = P
(
gcd(a, b) = 1

)π2

6
.

As this sum must be 1, this gives that the P
(
gcd(a, b) = 1

) = 6/π2, and the P
(
gcd(a, b) = n

) = 6/(π2n2). Given
that gcd(a, b) = n, the probability that n | c is 1/n. So the probability that gcd(a, b) = n and that gcd(p, a, b) = n
is 6/(π2n3). So P

(
gcd(a, b)/ gcd(p, a, b) = 1

)
is

∞∑
n=1

P
(
gcd(a, b) = n and gcd(p, a, b) = n

) =
∞∑

n=1

6

π2n3 = 6
ζ(3)

π2 .

��

There is another way in which common factors in integer matrices can arise. Let d be any number. Then for
random a, b the probability that d | a + b is 1/d. That means that if v,w ∈ Z

1×n are vectors, then d | v + w with a
probability of 1/dn . This effect is noticeable in particular for small numbers like d = 2, 3 and in the last iterations
of the L D−1U decomposition when the number of non-zero entries in the rows has shrunk. For instance, in the
second last iterations we only have three rows with at most three non-zero entries each. Moreover, we know that the
first non-zero entries of the rows cancel during cross-multiplication. Thus, a factor of 2 appears with a probability
of 25% in one of those rows, a factor of 3 with a probability of 11.11%. In the example above, the probability for
the factor 5 to appear in the fourth row was 4%.

5 Expected Number of Factors

In this section, we provide a detailed analysis of the expected number of common “statistical” factors in the rows
of U , in the case when the input matrix A has integer entries, that is, D = Z. We base our considerations on a
“uniform” distribution on Z, e.g., by imposing a uniform distribution on {−n, . . . , n} for very large n. However, the
only relevant property that we use is the assumption that the probability that a randomly chosen integer is divisible
by p is 1/p.

We consider a matrix A = (Ai, j )1≤i, j≤n ∈ Z
n×n of full rank. The assumption that A be square is made for the

sake of simplicity; the results shown below immediately generalize to rectangular matrices. As before, let U be the
upper triangular matrix from the L D−1U decomposition of A:

U =

⎛
⎜⎜⎜⎝

U1,1 U1,2 . . . U1,n

0 U2,2 . . . U2,n
...

. . .
...

0 . . . Un,n

⎞
⎟⎟⎟⎠ .
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Define

gk := gcd(Uk,k, Uk,k+1, . . . , Uk,n)

to be the greatest common divisor of all entries in the kth row of U . Counting (with multiplicities) all the prime
factors of g1, . . . , gn−1, one gets the plot that is shown in Fig. 1; gn is omitted as it contains only the single nonzero
entry Un,n = det(A). Our goal is to give a probabilistic explanation for the occurrence of these common factors,
whose number seems to grow linearly with the dimension of the matrix.

As we have seen in the proof of Theorem 8, the entries Uk,� can be expressed as minors of the original matrix A:

Uk,� = det

⎛
⎜⎜⎜⎝

A1,1 A1,2 . . . A1,k−1 A1,�

A2,1 A2,2 . . . A2,k−1 A2,�
...

...
...

...

Ak,1 Ak,2 . . . Ak,k−1 Ak,�

⎞
⎟⎟⎟⎠ .

Observe that the entries Uk,� in the kth row of U are all given as determinants of the same matrix, where only
the last column varies. For any integer q ≥ 2 we have that q | gk if q divides all these determinants. A sufficient
condition for the latter to happen is that the determinant

hk := det

⎛
⎜⎜⎜⎝

A1,1 . . . A1,k−1 1
A2,1 . . . A2,k−1 x
...

...
...

Ak,1 . . . Ak,k−1 xk−1

⎞
⎟⎟⎟⎠

is divisible by q as a polynomial inZ[x], i.e., if q divides the content of the polynomial hk .We now aim at computing
how likely it is that q | hk when q is fixed and when the matrix entries A1,1, . . . , Ak,k−1 are chosen randomly.
Since q is now fixed, we can equivalently study this problem over the finite ring Zq , which means that the matrix
entries are picked randomly and uniformly from the finite set {0, . . . , q − 1}. Moreover, it turns out that it suffices
to answer this question for prime powers q = p j .

The probability that all k × k-minors of a randomly chosen k × (k + 1)-matrix are divisible by p j , where p is a
prime number and j ≥ 1 is an integer, is given by

Pp, j,k := 1 −
(
1 + p1− j−k pk − 1

p − 1

) k−1∏
i=0

(
1 − p− j−i ),

which is a special case of Brent and McKay [3, Thm. 2.1]. Note that this is exactly the probability that hk+1 is
divisible by p j . Recalling the definition of the q-Pochhammer symbol

(a; q)k :=
k−1∏
i=0

(1 − aqi ), (a; q)0 := 1,

the above formula can be written more succinctly as

Pp, j,k := 1 −
(
1 + p1− j−k pk − 1

p − 1

)( 1

p j
; 1

p

)
k
.
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Table 1 Behavior of the sequence
(
Pp, j,k

)
k∈N for some small values of p j

p j k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = ∞
2 0.25000 0.34375 0.38477 0.40399 0.41330 0.41789 0.42242

3 0.11111 0.14403 0.15460 0.15808 0.15923 0.15962 0.15981

4 0.06250 0.09766 0.11560 0.12461 0.12912 0.13138 0.13364

5 0.04000 0.04768 0.04920 0.04951 0.04957 0.04958 0.04958

7 0.02041 0.02326 0.02367 0.02373 0.02374 0.02374 0.02374

8 0.01563 0.02588 0.03149 0.03440 0.03588 0.03662 0.03737

Now, an interesting observation is that this probability does not, as one could expect, tend to zero as k goes to
infinity. Instead, it approaches a nonzero constant that depends on p and j (see Table 1):

Pp, j,∞ := lim
k→∞ Pp, j,k = 1 −

(
1 + p1− j

p − 1

)( 1

p j
; 1

p

)
∞

Using the probability Pp, j,k , one can write down the expected number of factors in the determinant hk+1, i.e.,
the number of prime factors in the content of the polynomial hk+1, counted with multiplicities:

∑
p∈P

∞∑
j=1

Pp, j,k,

where P = {2, 3, 5, . . . } denotes the set of prime numbers. The inner sum can be simplified as follows, yielding
the expected multiplicity Mp,k of a prime factor p in hk+1:

Mp,k :=
∞∑
j=1

Pp, j,k =
∞∑
j=1

(
1 −

(
1 + p1− j−k pk − 1

p − 1

)( 1

p j
; 1

p

)
k

)

= −
∞∑
j=1

(( 1

p j
; 1

p

)
k
− 1

)
− p1−k pk − 1

p − 1

∞∑
j=1

1

p j

( 1

p j
; 1

p

)
k

= −
∞∑
j=1

k∑
i=1

(−1)i p−i j−i(i−1)/2
[

k
i

]

1/p
− p1−k pk − 1

p − 1

pk

pk+1 − 1

=
k∑

i=1

(−1)i−1

pi(i−1)/2(pi − 1)

[
k
i

]

1/p
+ 1

pk+1 − 1
− 1

p − 1

In this derivation we have used the expansion formula of the q-Pochhammer symbol in terms of the q-binomial
coefficient

[
n
k

]

q
:=

(
1 − qn

)(
1 − qn−1

) · · · (1 − qn−k+1
)

(
1 − qk

)(
1 − qk−1

) · · · (1 − q
) ,

evaluated at q = 1/p. Moreover, the identity that is used in the third step,

∞∑
j=1

1

p j

( 1

p j
; 1

p

)
k

= pk

pk+1 − 1
,
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Fig. 1 Number of factors
depending on the size n of
the matrix. The curve shows
the function F(n), while the
dots represent experimental
data: for each dimension n,
1000 matrices were
generated with random
integer entries between 0
and 109

is certified by rewriting the summand as

1

p j

( 1

p j
; 1

p

)
k

= t j+1 − t j with t j = pk(p1− j − 1)

pk+1 − 1

( 1

p j
; 1

p

)
k

and by applying a telescoping argument.
Hence, when we let k go to infinity, we obtain

Mp,∞ = lim
k→∞

∞∑
j=1

Pp, j,k =
∞∑

i=1

(−1)i−1

pi(i−1)/2(pi − 1)

(
p−i−1; p−1

)
∞(

p−1; p−1
)
∞

− 1

p − 1
.

Note that the sum converges quickly, so that one can use the above formula to compute an approximation for the
expected number of factors in hk+1 when k tends to infinity

∑
p∈P

Mp,∞ ≈ 0.89764,

which gives the asymptotic slope of the function plotted in Figure 1.
As discussed before, the divisibility of hk by some number q ≥ 2 implies that the greatest common divisor gk

of the kth row is divisible by q, but this is not a necessary condition. It may happen that hk is not divisible by q, but
nevertheless q divides each Uk,� for k ≤ � ≤ n. The probability for this to happen is the same as the probability
that the greatest common divisor of n − k + 1 randomly chosen integers is divisible by q. The latter obviously is
q−(n−k+1). Thus, in addition to the factors coming from hk , one can expect

∑
p∈P

∞∑
j=1

1

p j (n−k+1)
=

∑
p∈P

1

pn−k+1 − 1

many prime factors in gk .
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Summarizing, the expected number of prime factors in the rows of the matrix U is

F(n) =
n−1∑
k=2

∑
p∈P

Mp,k−1 +
n−1∑
k=1

∑
p∈P

1

pn−k+1 − 1

=
∑
p∈P

(n−2∑
k=0

Mp,k +
n−2∑
k=0

1

pk+2 − 1

)

=
∑
p∈P

n−2∑
k=0

( k∑
i=1

(−1)i−1

pi(i−1)/2(pi − 1)

[
k
i

]

1/p
+ 1

pk+2 − 1
+ 1

pk+1 − 1
− 1

p − 1

)
.

From the discussion above, it follows that for large n this expected number can be approximated by a linear function
as follows:

F(n) ≈ 0.89764 n − 1.53206.

6 QR Decomposition

The Q R decomposition of a matrix A is defined by A = Q R, where Q is an orthonormal matrix and R is an upper
triangular matrix. In its standard form, this decomposition requires algebraic extensions to the domain of A, but a
fraction-free form is possible. The modified form given in [26] is Q D−1R, and is proved below in Theorem 15.
In [10], an exact-division algorithm for a fraction-free Gram-Schmidt orthogonal basis for the columns of a matrix
A was given, but a complete fraction-free decomposition was not considered. We now show that the algorithms in
[10] and in [26] both lead to a systematic common factor in their results. We begin by considering a fraction-free
form of the Cholesky decomposition of a symmetric matrix. See [23, Eqn (3.70)] for a description of the standard
form, which requires algebraic extensions to allow for square roots, but which are avoided here.

This section assumes that D has characteristic 0; this assumption is needed in order to ensure that At A has full
rank.

Lemma 13 Let A ∈ D
n×n be a symmetric matrix such that its L D−1U decomposition can be computed without

permutations; then we have U = Lt , that is,

A = L D−1Lt .

Proof Compute the decomposition A = L D−1U as in Theorem 1. If we do not execute item 4 of Algorithm 4, we
obtain the decomposition

A = L̃ D̃−1Ũ =
( L 0
M 1

) (
D 0
0 1

)−1 (U V
0 0

)
.

Then because A is symmetric, we obtain

L̃ D̃−1Ũ = A = At = Ũ t D̃−1 L̃ t

The matrices L̃ and D̃ have full rank which implies

Ũ (L̃ t )−1 D̃ = D̃ L̃−1Ũ t .
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Examination of the matrices on the left hand side reveals that they are all upper triangular. Therefore also their
product is an upper triangular matrix. Similarly, the right hand side is a lower triangular matrix and the equality of
the two implies that they must both be diagonal. Cancelling D̃ and rearranging the equation yields Ũ = (L̃−1Ũ t )L̃ t

where L̃−1Ũ t is diagonal. This shows that the rows of Ũ are just multiples of the rows of L̃ t . However, we know
that the first r diagonal entries of Ũ and L̃ are the same, where r is the rank of Ũ . This yields

L̃−1Ũ t =
(
1r 0
0 0

)
,

and hence, when we remove the unnecessary last n − r rows of Ũ and the last n − r columns of L̃ (as suggested in
Jeffrey [15]), we remain with U = Lt . ��

As another preliminary to the main theorem, we need to delve briefly into matrices over ordered rings. Following,
for example, the definition in [6, Sect. 8.6] an ordered ring is a (commutative) ringDwith a strict total order> such
that x > x ′ together with y > y′ implies x + y > x ′ + y′ and also x > 0 together with y > 0 implies xy > 0 for
all x, x ′, y, y′ ∈ D. As Cohn [6, Prop. 8.6.1] shows, such a ring must always be a domain, and squares of non-zero
elements are always positive. Thus, the inner product of two vectors a, b ∈ D

m defined by (a, b) �→ at b must be
positive definite. This implies that given a matrix A ∈ D

m×n the Gram matrix At A is positive semi-definite. If we
additionally require the columns of A to be linearly independent, then At A becomes positive definite.

Lemma 14 Let D be an ordered domain and let A ∈ D
n×n be a symmetric and positive definite matrix. Then the

L D−1U decomposition of A can be computed without using permutations.

Proof By Sylvester’s criterion (see Theorem 22 in the “Appendix”) a symmetric matrix is positive definite if and
only if its leading principal minors are positive. However, by Remark 2 and Equation 2.1, these are precisely the
pivots that are used during Bareiss’s algorithm. Hence, permutations are not necessary. ��

If we consider domains which are not ordered, then the L D−1U decomposition of At A will usually require
permutations: Consider, for example, the Gaussian integers D = Z[i] and the matrix

A =
(
1 i
i 0

)
.

Then

At A =
(
0 i
i −1

)
;

and Bareiss’s algorithm must begin with a row or column permutation5.
We are now ready to discuss the fraction-free Q R decomposition. The theorem below makes two major changes

to Zhou and Jeffrey [26, Thm. 8]: first, we add that �t� is not just any diagonal matrix but actually equal to D.
Secondly, the original theorem did not require the domainD to be ordered, which means that the proof cannot work.

Theorem 15 Let A ∈ D
m×n with n ≤ m and with full column rank where D is an ordered domain. Then the

partitioned matrix (At A | At ) has L D−1U decomposition

(At A | At ) = Rt D−1(R | �t ),

where �t� = D and A = �D−1R.

5 We thank the anonymous referee for pointing this fact out to us, and providing us with the example.
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Proof By Lemma 14, we can compute an L D−1U decomposition of At A without using permutations; and by
Theorem 13, the decomposition must have the shape

At A = Rt D−1R.

Applying the same row transformations to At yields a matrix �t , that is, we obtain (At A | At ) = Rt D−1(R |
�t ). As in the proof of Zhou and Jeffrey [26, Thm. 8], we easily compute that A = �D−1R and that �t� =
Dt (R−1)t At AR−1D = Dt (R−1)t Rt D−1R R−1D = D. ��

For example, let A ∈ Z[x]3×3 be the matrix

A =
⎛
⎝

x 1 2
2 0 −x
x 1 x + 1

⎞
⎠ .

Then the L D−1U decomposition of At A = Rt D−1R is given by

R =
⎛
⎝
2(x2 + 2) 2x x(x + 1)

0 8 4(x2 + x + 3)
0 0 4(x − 1)2

⎞
⎠ ,

D =
⎛
⎝
2(x2 + 2) 0 0

0 16(x2 + 2) 0
0 0 32(x − 1)2

⎞
⎠ ,

and we obtain for the Q R decomposition A = �D−1R:

� =
⎛
⎝

x 4 −4(x − 1)
2 −4x 0
x 4 4(x − 1)

⎞
⎠ .

We see that the �D−1R decomposition has some common factor in the last column of �. This observation is
explained by the following theorem.

Theorem 16 With full-rank A ∈ D
n×n and � as in Theorem 15, we have for all i = 1, . . . , n that

�in = (−1)n+i det
i,n

A · det A

where deti,n A is the (i, n) minor of A.

Proof We use the notation from the proof of Theorem 15. From �D−1R = A and �t� = D we obtain

�t A = �t�D−1R = R.

Thus, since A has full rank, �t = R A−1 or, equivalently,

� = (R A−1)t = (A−1)t Rt = (det A)−1(adj A)t Rt

where adj A is the adjoint matrix of A. Since Rt is a lower triangular matrix with det At A = (det A)2 at position
(n, n), the claim follows. ��

For the other columns of � we can state the following.

Theorem 17 The kth determinantal divisor d∗
k of A divides the kth column of � and the kth row of R. Moreover,

d∗
k−1d∗

k divides Dk,k for k ≥ 2.
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Proof We first show that the kth determinantal divisor δ∗
k of (At A | At ) is the same as d∗

k . Obviously, δ
∗
k | d∗

k since
all minors of A are also minors of the right block At of (At A | At ). Consider now the left block At A. We have by
the Cauchy–Binet theorem [4, § 4.6]

det
I,J

(At A) =
∑

K⊆{1,...,n}
|K |=q

(det
K ,I

A)(det
K ,J

A)

where I, J ⊆ {1, . . . , n} with |I | = |J | = q ≥ 1 are two index sets and det I,J M denotes the minor for these index
sets of a matrix M . Thus, (d∗

k )2 divides any minor of At A since it divides every summand on the right hand side;
and we see that d∗

k | δ∗
k .

Now, we use Theorems 15 and 8 to conclude that d∗
k divides the kth row of (R | �t ) and hence the kth row of R

and the kth column of �. Moreover, Dk,k = Rk−1,k−1Rk,k for k ≥ 2 by Theorem 1 which implies d∗
k−1d∗

k | Dk,k . ��

Knowing that there is always a common factor, we can cancel it, which leads to a fraction-free Q R decomposition
of smaller size.

Theorem 18 For a square matrix A, a reduced fraction-free Q R decomposition is A = �̂D̂−1 R̂, where S =
diag(1, 1, . . . , det A) and �̂ = �S−1, and R̂ = S−1R. In addition, D̂ = S−1DS−1 = �̂t�̂.

Proof By Theorem 16, �S−1 is an exact division. The statement of the theorem then follows from A =
�S−1SD−1SS−1R. ��

If we apply Theorem 18 to our previous example, we obtain the simpler Q R decomposition, where the factor
det A = −2(x − 1) has been removed.

⎛
⎝

x 4 2
2 −4x 0
x 4 −2

⎞
⎠

⎛
⎝
2(x2 + 2) 0 0

0 16(x2 + 2) 0
0 0 8

⎞
⎠

−1 ⎛
⎝
2(x2 + 2) 2x x(x + 1)

0 8 4(x2 + x + 3)
0 0 −2(x − 1)

⎞
⎠ .

The properties of the Q R-decomposition are strong enough to guarantee a certain uniqueness of the output.

Theorem 19 Let A ∈ D
n×n have full rank. Let A = �D−1R the decomposition from Theorem 15; and let

A = �̃D̃−1 R̃ be another decomposition where �̃, D̃, R̃ ∈ D
n×n are such that D̃ is a diagonal matrix, R̃ is an upper

triangular matrix and � = �̃t�̃ is a diagonal matrix. Then �t�̃ is also a diagonal matrix and R̃ = (�t�̃)−1 D̃R.

Proof We have

�̃D̃−1 R̃ = �D−1R and thus �t�̃D̃−1 R̃ = �t�D−1R = R.

Since R and R̃ have full rank, this is equivalent to

�t�̃ = R R̃−1 D̃.

Note that all the matrices on the right hand side are upper triangular. Similarly, we can compute that

�̃t�D−1R = �̃t�̃D̃−1 R̃ = �D̃−1 R̃

which implies �̃t� = �D̃−1 R̃ R−1D. Hence, also �̃t� = (�t�̃)t is upper triangular and consequently �̃t� = T
for some diagonal matrix T with entries from D. We obtain R = T D̃−1 R̃ and thus R̃ = T −1 D̃R. ��



606 J. Middeke et al.

Acknowledgements We would like to thank Kevin G. Hare and Arne Winterhof for helpful comments and discussions. We would
also like to thank James Allen Morrow for allowing us to use his proof for Sylvester’s criterion. We are grateful to the anonymous
referees whose insightful remarks improved this paper considerably. In particular, the statements of Corollary 10 and Theorem 17 were
pointed out by one of the referees of an earlier version of this paper.

Funding Open access funding provided by Johannes Kepler University Linz.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s)
and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material.
If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit
http://creativecommons.org/licenses/by/4.0/.

Appendix: Sylvester’s Criterion

We include a version of Sylvester’s Criterion for ordered domains D. The proof is by Morrow [19]; but we repeat
it for the convenience of the reader. We note that by Cohn [6, Thm. 8.6.2], the ordering of D can be extended to an
ordering of the field of fractions F of D in just one way. Thus, we are able to use F in the proof. Of course, if we
can show that the result holds over F, then it will in particular also hold over D.

We preface the proof of Sylvester’s criterion with two easy lemmata.

Lemma 20 Let A ∈ F
n×n and Q ∈ GLn(F). Then A is positive definite if and only if Q AQt is positive definite.

Proof For any vector v ∈ F
n we have v �= 0 if and only if Qtv �= 0. Thus, vt Av > 0 for all v ∈ F

n \ {0} if and
only if vt (Q AQt )v > 0 for all v ∈ F

n \ {0}. ��
Lemma 21 Let A ∈ F

n×n be any matrix, and let Q ∈ GLn(F) be a lower triangular matrix with only 1’s on the
main diagonal. Then the leading principal minors of A and Q AQt are the same.

Proof For arbitrary 1 ≤ k ≤ n, partition

A =
(

A11 A12

A21 A22

)
and Q =

(
Q11 0
Q21 Q22

)

such that A11, Q11 ∈ F
k×k and the other submatrices are of the according dimensions. Note that det Q11 = 1 since

Q is lower triangular with only 1’s on the main diagonal. Then

Q AQt =
(

Q11 0
Q21 Q22

) (
A11 A12

A21 A22

) (
Qt

11 Qt
21

0 Qt
22

)
=

(
Q11A11Qt

11 ∗
∗ ∗

)
;

and the kth principal minor of Q AQt is det(Q11A11Qt
11) = det A11 and thus the same as the kth principal minor

of A. ��
Now we can give the version of Sylvester’s criterion for ordered rings.

Theorem 22 (Sylvester’s Criterion) Let D be an ordered domain, and let A ∈ D
n×n be a symmetric matrix. Then

A is positive definite if and only if the principal minors of A are positive.

Proof Let F be the field of fractions over D. We are going to show Sylvester’s criterion for F. This implies that it
holds over D as well.

http://creativecommons.org/licenses/by/4.0/
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Write A = (ai j )i j . If A is positive definite, we must have a11 = et
1Ae1 > 0 where e1 = (1, 0, . . . , 0)t is the

first unit vector. Thus, we can use Gaussian elimination with a11 as a pivot in order to eliminate all other entries in
the first column. We collect these elementary transformations into the matrix E ∈ GLn(F). Since A is symmetric,
AEt = (E A)t and thus multiplication by Et on the right will eliminate the entries from the first row of A except
for a11. The matrix

E AEt =
(

a11 0
0 Ã

)

is still positive definite by Lemma 20 and has the same principal minors as A. Since also in particular Ã must be
semi-definite, we can inductively apply similar transformations to bring A into a diagonal shape. We can collect all
these elementary transformations into a matrix Q ∈ GLn(F) which will be lower triangular and with only 1’s on
the main diagonal. We have Q AQt = diag(b1, . . . , bn) = B with b1, . . . , bn ∈ F. Now, Lemma 20 means that B is
positive definite and Lemma 21 implies that the principal minors of A and B are the same. For any 1 ≤ k ≤ n, we
have thus et

k Bek = bk > 0 where ek is the kth unit vector. Hence, the kth principal minor b1 · · · bk of B is positive;
and so is the kth principal minor of A.

For the other direction, assume now that the principal minors of A are positive. Then in particular the first
principal minor a11 is non-zero and as before we may transform A into

E AEt =
(

a11 0
0 Ã

)

with E ∈ GLn(F) as before. Since this preserves the principal minors, we can conclude that the kth principal minor
of A is the (k − 1)th minor of Ã times a11 for all k = 2, . . . , n. In particular, we see that the principal minors
of Ã must be positive (since a−1

11 is positive); which allows us once more to apply the same elimination process
inductively to Ã. As before, we end up with a matrix Q ∈ GLn(F) such that Q AQt = diag(b1, . . . , bn) = B and
b1, . . . , bn ∈ F are positive since the principal minors of A are positive. Let v ∈ F

n \ {0}. Then u = (Qt )−1v �= 0
and

vAvt = ut Q AQt u = ut diag(b1, . . . , bn)u =
n∑

k=0

bku2
k > 0

since u2
1, . . . , u2

n ≥ 0 and u2
k > 0 for at least one k = 1, . . . , n (by Cohn [6, Prop. 8.6.1]). Hence, A is positive

definite. ��
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