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Abstract In this paper we consider the Voronoï Diagram of a finite family of parallel half-lines, with the
same orientation, constrained to a compact domain D0 ⊂ R3, with respect to the Euclidean distance. We
present an efficient approximation algorithm for computing such VD, using a subdivision process, which
produces a mesh representing the topology of the VD in D0. The computed topology may not be correct for
degenerate configurations or configurations close to degenerate. In this case, the output is a valid partition,
which is close to the exact partition in Voronoï cells if the input data were given with no error. We also
present the result of an implementation in Julia language with visualization using Axl software (axl.inria.fr)
of the algorithm. Some examples and analysis are shown.

Keywords Voronoï Diagram · Parallel Half-Lines · Subdivision algorithm · kd-tree structure · Algebraic
curves and surfaces · Topology

Mathematics Subject Classification (2010) 65D17 · 65D18

1 Introduction

The Voronoï diagram (VD) is a fundamental data structure in computational geometry with many and very
diverse applications in theoretical and practical areas, such as proximity queries, high-clearance placements,
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motion planning problems, classification problems, and many more (see [5,13,21,30,35]). For a given dis-
crete set of geometric objets (called sites) S = {s1, . . . ,sn} in a metric space (E ,d), the VD subdivides E
in regions (called cells), where each region associated to one site si consists of the points closer to the site
si than to any other site in S , for the distance d. Generally, the VD can be defined as Minimization Diagram
(MD) of a finite set of continuous functions { f1, . . . , fn}, each function fi is defined as the distance function
to a site si. The corresponding VD gives an identical subdivision of E into cells (see [11]), i.e:

V D(s1, . . . ,sn)≡MD( f1, . . . , fn) .

Different types of sites and distance functions have been proposed for different kinds of applications de-
pending on the context. Note that in the space R2 the VDs have been studied extensively, the structure and
computation are nowadays thoroughly well understood. Many robust and efficient algorithms have been pro-
posed by several authors such as [16,17,20,25,37]. However, in three and higher dimension spaces, the VD
have been much less studied, and many basic problems are still widely open. Some recent works for linear,
quadrics, and semi-algebraic sites have been developed (see [5,9,15,19,23,26,29–31,33,35]).

In this paper, we consider the VD of a set of n parallel half-lines {h1, . . . ,hn} with the same orientation
u = (a,b,c) 6= (0,0,0), with ‖u‖= 1.

hi = Ai + tu, t > 0, Ai = (xi,yi,zi) ∈ R3, i = 1 . . .n, (1)

where

〈−→OAi,n〉 6= 〈
−−→
OA j,n〉,∀ i 6= j and n ∈ Span(u)⊥

constrained to a compact domain of the form

D0 = [a0,1,b0,1]× [a0,2,b0,2]× [a0,3,b0,3]⊂ R3, (2)

with respect to the Euclidean distance.
The Euclidean distance from a point Q = (x,y,z) ∈ R3 to a site hi is defined by:

gi(x,y,z) =

{
d(Q,Ai) if 〈−−→AiQ,u〉< 0√

d(Q,Ai)
2−〈−−→AiQ,u〉2 else,

(3)

where d(·, ·) denotes the Euclidean distance.
The VD of this new kind of sites, could be used to provide an efficient solution to some theoretical

and practical problems in the drilling industry (mining, offshore drilling, hydraulics, etc.), in particular for
exploring drilling-deepwater closest ground, well collision and identifying unplanned ground avoidance (see
[7,22,24,32,40,41,43]).

Two general classes of algorithms are available for computing VD: exact and approximate. Some of the
exact algorithms require the manipulation of an exact representation of VD boundaries, dealing with high-
degree curves and surfaces, and their intersection, which lead very often to algorithms, which are complex
and difficult to implement (see [38]).

In Hemmer et al. [26] a complete exact algorithm is presented for computing the Voronoi Diagram of
general configurations of lines in Three-Dimensional Space. The algorithm uses lower envelope algorithm
and requires running time and space complexity O(n3+ε), and the data structures allows to respond for
point-location queries in O(log2 n) time.

Approximation algorithms are often used to overcome the difficulties of exact representation, but the
topology of the resulting approximation is not accurate in many cases (see [9]). In this family of approaches,
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subdivision methods have been employed successfully to compute Approximate Voronoï Diagrams see e.g.
[14]. Boada et al. [9,10] use a subdivision approach to compute approximate VDs for distinct site shapes and
different distance functions but restricted to diagrams with connected Voronoï regions. Etzion and Rappoport
[18] used a space subdivision algorithm to compute the Voronoï diagram for the sites that are polyhedra, and
the algorithm is simple to implement. The benefit of fast graphics hardware has also been used in recent years
for computing the approximate VDs for different types of sites see e.g. [12,25,27]. Two specific algorithms
are presented in [39,42] for computing the VDs of convex sites using adaptive subdivision approaches. It
turns out that the algorithms are expensive.

The use of approximation algorithms is particularly well suited from a practical point of view, where it
usually involves approximate numerical inputs, inaccurate measurements, etc.

In Aurenhammer et al.[4,6] an important contribution on the same subject is made, with an extension
to the cases of parallel line segments that could be used in the problem studied in [15]. They presented an
exact method for the computation of this type of VD by using space-sweep by a perpendicular plane to the
half-lines direction and making use of the relationship with the properly established planar power diagrams.
The presented algorithm is easily implemented without requiring any manipulation of the involved three
dimensional elements and provides an exact VD with logarithmic cost per diagram face.
In comparison, our approach uses approximate input data and computes an ε-approximation of the Voronoi-
cells, with a running time in O( 1

ε3 ). We observe an experimental quasi-linear dependency in the number of
sites in our tests.

The method that we propose is based on a subdivision algorithm following a kd-tree structure to compute
an approximate VD for a family of n parallel half-lines constrained to a compact domain D0 ∈ R3 with
respect to the Euclidean distance. Our algorithm considers the VD as minimization diagram and uses the
lower envelope of squared distance functions to the sites, since the VD can be constructed from its projection.
It produces a mesh representing an approximate VD which is topologically equivalent to the exact one in
D0 when no degenerate configurations occur. We estimate the complexity estimation of our algorithm from
the experimentation. The execution time and the number of boxes produced evolve linearly in the number of
sites. The first version of this work is presented in [1].

Our approach consists in subdividing the initial domain D0 into subdomains until the topology for the
boundary of the VD cells in each subdomain is fully determined from its intersection with the boundary of
the subdomain, or if the size of the subdomain is smaller than a constant threshold initially fixed. Then the
boundaries of the VD cell contained in each subdomain are meshed. The implementation of the method in
Julia Language ([28]) is complete, and the experimentation shows accurate results with good timing.

The rest of the paper is organized as follows: We give the basic notion and algebraic description of the
VD components in the section 2, in the section 3 we introduce the regularity criteria for the algebraic curve
and surface and the computation of the topology in section 4. The description of the algorithm is presented
in the section 5 and the implementation of the method is explained in the section 6 and finally the last section
is devoted to conclusions.

2 Voronoï diagram of a family of parallel half-lines

Let {h1, . . . ,hn} be a family of n parallel half-lines in the same orientation u and D0 be a compact domain
of R3 defined respectively in (1) and (2). We are interested in computing the VD of {h1, . . . ,hn} constrained
to D0, with respect to the Euclidean distance, by minimization diagram.
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In the following we consider the orientation vector u = (0,0,1) (i.e: in the z-direction), then the sites and
associated distance function can be respectively defined as follows:

hi = (xi,yi,zi + t), t > 0, i = 1 . . .n, (4)

where
(xi,yi) 6= (x j,y j),∀ i 6= j,

gi(x,y,z) =

{√
(x− xi)2 +(y− yi)2 +(z− zi)2 if z < zi,√
(x− xi)2 +(y− yi)2 if z > zi,

(5)

Associating each site hi, defined by (4), the distance function gi, defined by (5), we have (see [11,13]):

– The VD of a family of parallel half-lines {h1, . . . ,hn} constrained to a domain D0 for the Euclidean
distance is defined by the minimization diagram of the family of distance function {g1, . . . ,gn} in D0 ,
i.e:

V D(h1, . . . ,hn) = MD(g1, . . . ,gn), (6)

where the Voronoï cell associated to a site hi is defined by:

V D(i) = {Q ∈D0 : gi(Q)6 g j(Q), j = 1 . . .n}.

– Furthermore, since the distance functions gi are Euclidean, then minimizing gi and g2
i over i are equiva-

lent, therefore
V D(h1, . . . ,hn)≡MD(g2

1, . . . ,g
2
n).

In the following, instead of the distance defined by (5), we consider the squared distances, i.e.:

gi(x,y,z) =

{
(x− xi)

2 +(y− yi)
2 +(z− zi)

2 if z < zi,

(x− xi)
2 +(y− yi)

2 if z > zi,
(7)

such that gi ∈ R[x,y,z] (piecewise).

2.1 Bisectors, Trisectors and Quadrisectors of sites

Let introduce an algebraic description of the VD cell components.

2.1.1 Bisector of two sites

Let hi and h j be two sites with their respective associated distance functions gi and g j. Let Ai =(xi,yi,zi), A j =
(x j,y j,z j), and `i, ` j be their respective endpoints and supporting lines.

The bisector surface of two sites hi and h j, is the equidistant surface from the two sites. It determines,
locally, a VD face and it is defined by :

bi, j = {(x,y,z) ∈ R3 : gi(x,y,z)−g j(x,y,z) = 0}.

Expanding the expression
gi(x,y,z)−g j(x,y,z) = (gi−g j)(x,y,z)
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for zi 6 z j, we obtain:

(gi−g j)(x,y,z) =


pi, j(z)+ `i, j(x,y) if z < zi,
qi, j(z)+ `i, j(x,y) if zi 6 z < z j,
`i, j(x,y) if z > z j .

(8)

where

pi, j(z) = 2z(z j− zi)+ z2
i − z2

j , (9)

qi, j(z) = (z− z j)
2, (10)

`i, j(x,y) = 2x(x j− xi)+ xi
2− x j

2 +2y(y j− yi)+ yi
2− y j

2. (11)

For zi 6= z j, the bisector surface consists of three connected pieces of surfaces:

– A half-plane (for z < zi) : supported by bisector-plane of the two endpoints Ai and A j ;
– A half-parabolic-cylinder piece (for zi 6 z < z j) : supported by bisector-surface of endpoint A j and

supporting line `i (since zi < z j);
– A half-plane ( for z > z j) : supported by bisector-plane of the two supporting line `i and ` j .

For zi = z j, the bisector surface consists of one plane (bisector plane of Ai and A j).

2.1.2 Trisector of three sites

Let hi, h j and hk be three sites with their respective distance functions gi, g j and gk;
Let Ai = (xi,yi,zi), A j = (x j,y j,z j), Ak = (xk,yk,zk), and `i, ` j, `k be their respective endpoints and sup-

porting lines.
The trisector of the three sites hi,h j and hk is the equidistant curve from the three sites. It determines

locally, VD edge and it is given by the common intersection curve of the three (3 =
(3

2

)
) bisectors of the 3

sites (2 by 2):
Ti, j,k = bi, j ∩bi,k ∩b j,k, (12)

or
Ti, j,k = {(x,y,z) ∈ R3,(gi−g j)(x,y,z) = (gi−gk)(x,y,z) = (g j−gk)(x,y,z) = 0}.

Any equidistant portion of curve from more than three sites is called a degenerate edge portion. This can
occur, for example if there are more than three neighbour parallel half-lines which intersect a circle in the
xy-plane.

For zi 6= z j 6= zk (for example zi < z j < zk), the trisector Ti, j,k consists of four connected components of
rational curves, and it is parametrized as follows :

Ti, j,k(z) =



[
a2,1+a3,1z

c0
,− a0,1+a1,1z

c0
,z
]T

if z < zi,[
a3,2+a4,2z+a5,2z2

c0
,− a0,2+a1,2z+a2,2z2

c0
,z
]T

if zi 6 z < z j,

[
− a3,3+a4,3z+a5,3z2

c0
,

a0,3+a1,3z+a2,3z2

c0
,z
]T

if z j 6 z < zk,[
− a1,4

c0
,

a0,4
c0

,z
]T

if z > zk,

(13)
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where: c0,al,l′ are constant expressions in terms of xi,yi,zi,x j,y j,z j,xk,yk,zk.
The four components of the trisector are:

– A half-line (for z < zi) supported by the trisector line (the intersection of three bisector-planes) of the
corresponding endpoints Ai, A j and Ak.

– A piece of half-parabola (for zi 6 z < z j) supported by the intersection of the bisector-plane of the
endpoints A j and Ak, a parabolic-cylinder (bisector of A j and `i) and a parabolic-cylinder (bisector of Ak
and `i).

– A piece of half-parabola ( for z j 6 z < zk) supported by the intersection of the bisector-plane of `i and
` j, a parabolic-cylinder (bisector of Ak and `i) and a parabolic-cylinder (bisector of Ak and ` j).

– A half-line parallel to the z−direction (for z > zk) supported by the trisector line (the intersection of the
three bisector-planes) of the corresponding lines `i, ` j and `k.

The trisector Ti, j,k consists of three connected components of rational curves if zi 6= z j = zk or zi = z j < zk,
and it consists of one line if zi = z j = zk.

2.1.3 Quadrisector of four sites

The quadrisector is the equidistant point from four sites hi,h j,hk, and hl . It determines the VD vertex and it
is defined by the common intersecting point of four (4 =

(4
3

)
) trisectors spanned by the four sites (3 by 3):

Qi, j,k,l = Ti, j,k ∩Ti, j,l ∩Ti,l,k ∩T j,l,k (14)

Any equidistant point from more than four sites is called a degenerate vertex.

3 Regularity criteria for the topology of algebraic curves and surfaces

Let’s introduce some definitions and the notion of regularity criteria for the topology of algebraic curves
and surfaces from [3] and [34] which can be applied to the trisector curve and the bisector surface case to
compute their topology in a compact domain.

Definition 1 Let {g1, . . . ,gn} be a family of distance functions associated to a family of sites {h1, . . . ,hn}
and D a compact domain of the form (2).

– A distance gi0 is said to be active in D if it contributes, locally, to the lower envelope of the family of
distance functions {g1, . . . ,gn},

i.e. : ∃(x0,y0,z0) ∈D , gi0(x0,y0,z0)6 min{gi(x0,y0,z0), i = 1 . . . ,n}

and the site hi0 is said active in the domain D .
– For a domain D ⊂ R3, we call d-list a list of distance functions that are held for D denoted by B(D) =
{g1|D , . . . ,gp|D } and |B(D)|= p.

Remark 1 In practice, interval arithmetic is used on the distance functions to compute a set containing the
corresponding active sites.

Definition 2 An algebraic curve C (or surface S ) is said t-regular (for topological regularity) in a compact
domain D if its topology is uniquely determined from its intersection with the boundary of D .
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Definition 3 An algebraic surface S is t-z-regular (resp. t-y-regular, t-z-regular) in the domain D
if:

– S has no tangent line parallel to the z-direction (reps. x, y-direction),
– S∩F is t-regular, for F a z-facet (resp. x, y-facet) of D .

Definition 4 A d-list B(D) is said to be b-regular if the corresponding bisectors and trisectors are t-
regular in D .

Definition 5 A generic intersection with a domain D is made as follows:

– For a bisector bi, j of two sites:
1. if its intersection with the faces of D is of dimension 1, i.e: dim(bi, j ∩F (D)) = 1, (F (D) denotes

the faces of D);
2. if its intersection with the edges of D is of dimension 0 i.e: dim(bi, j ∩E (D)) = 0, ( E (D) denotes

the edges of D) with at most one intersection point on each edge;
3. and if the part of the bisector delimited by the intersection points with the edges of D is strictly

contained in the domain D .
– For the trisector Ti, j,k of three sites:

1. if its intersection with the boundary of D is of dimension 0 with exactly two intersection points the
boundary, i.e: Ti, j,k ∩∂D =

{
P1, P2

}
;

2. and if the curve segment delimited by the two points is strictly contained in D , i.e: Ti, j,k ∩D =
[P1, P2]⊂D .

– For the quadrisector of four sites: if it is strictly contained in domain D .

The generic intersection allows to determine, during the subdivision process, the subdomains in which
the topology of the bisectors and trisectors is easily determined from their intersection points with the bound-
ary of domain D .

However the degenerate intersections could be avoided during the subdivision either by subdividing the
domain not quite in the middle of the direction, or by shifting position of the domain slightly.

The bisector surface and trisector curve are monotonous w.r.t. (oz) orientation and we have following

Proposition 1 Let D ∈ R3 be a compact domain.

1. The bisector surface bi, j with generic intersection with the domain D is t-regular in D .
2. The trisector curve Ti, j,k with generic intersection with the domain D is t-regular in D .

Proof 1. Prove that the bisector surface is t-regular in the domain D :
Differentiating the algebraic equation (8) of the bisector we obtain:

∇(gi−g j)(x,y,z) =


(2 (x j− xi) , 2 (y j− yi) , 2 (z j− zi)) if z < zi

(2 (x j− xi) , 2 (y j− yi) , 2 (z− z j)) zi 6 z < z j

(2 (x j− xi) , 2 (y j− yi) , 0) if z > z j

(15)

(a) Since (xi,yi) 6= (x j,y j), from (15) we can verify easily one of the conditions:

∂x(gi−g j) 6= 0, ∂y(gi−g j) 6= 0 or ∂z(gi−g j) 6= 0;
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(b) The bisector surface bi, j consists of three connected pieces of surfaces: (two half-planes and a half-
parabolic-cylinder piece). Since bi, j has a generic intersection with D its intersection with the face
F (D)x,F (D)y or F (D)z is a line segment , parabolic segment or a junction of two, which are
t-regular on the faces; its intersection with each edge D is at most one point; and the part of bi, j
delimited by the intersection points with the edges is contained in D .

From (1a) and (1b) we can conclude that the bisector surface bi, j is t-regular in D and its topology is
determined by a polyhedra delimited in D by the intersection points with the edges.

2. Prove that the trisector curve is t-regular in the domain D : The trisector curve is piecewise smooth, and
its tangent vector is given by:

T ′
i, j,k(z) =



[
a3,1
c0

,− a1,1
c0

,1
]T

if z < zi,[
a4,2+2a5,2z

c0
,− a1,2+2a2,2z

c0
,1
]T

if zi 6 z < z j,

[
− a4,3+2a5,3z

c0
,

a1,3+2a2,3z
c0

,1
]T

if z j 6 z < zk,

[0,0,1]T if z > zk,

For z ∈ R,T ′
i, j,k(z) 6= (0,0,0).

For z0 ∈ R, the plane (z = z0) intersects the trisector curve at exactly a unique point then taking into
account the Proposition 4.1 in [3] and since Ti, j,k has generic intersection with D we can conclude that
the trisector curve is t-regular in D and its topology determined by the segment delimited in D by the
two intersections points with faces, and the proof is complete.

Since in our context we are interested in computing the topology of VD faces (bisectors), VD edges
(trisectors) and VD vertices (quadrisectors) in a domain D , any d-list B(D) with more than four distance
functions is naturally not b-regular, hence the b-regularity is effectively checked for a d-list of at most
four distance functions as follows:

Regularity Criterion 1 Let D ⊂D0 and B(D) = {gi|D , i = 1, . . . , |B(D)|}

– A d-list B(D) with one active distance gi (i.e: D ⊂ V D(i)) is trivially b-regular.
– A d-list B(D) of two active distances gi and g j is b-regular if the bisector bi, j is t-regular in D .
– A d-list B(D) of three active distances gi, g j and gk is b-regular if:

1. each one of the three bisectors bi, j,bi,k and b j,k, taken individually, is t-regular in D ;
2. the trisector Ti, j,k is t-regular in D .

– A d-list B(D) of four active distances gi, g j, gk and gl , is b-regular if:
1. each one of the six bisectors bm,n, m < n ∈ {i, j,k, l}, taken individually, is t-regular in D ;
2. each one of the four trisectors Tm,n,p, m < n < p ∈ {i, j,k, l}, taken individually, is t-regular in D ;
3. the corresponding quadrisector Qi, j,k,l has a generic intersection D , i.e: Qi, j,k,l is strictly inside D .

– Any B(D) such that |B(D)|> 4, is not b-regular.
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4 Computing the Topology of Bisector and Trisector in a domain D

4.1 Meshing a domain D with two active sites

For a domain D with two active sites hi and h j, such that B(D) is b-regular, the topology of the corresponding
bisector will be computed as follows:

– Compute the intersection points of bisectors with the edges E (D) of the domain D : Bi, j = bi, j ∩E (D) ,
and its barycentric point B.

– Then connect the points Bi, j in a star-shaped set of triangles centered at the point B.

We obtain a mesh which is isotopic to the bisector bi, j in the domain D . An illustration is given in Fig. 1.

Fig. 1 The bisector surface of two sites and it topology in a domain D , respectively in the first and second pictures.
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4.2 Meshing a domain D with three actives sites

For a domain D with three active sites hi, h j and hk, such that B(D) is b-regular, the topology of the corre-
sponding involved parts of the three bisectors and trisector will be computed as follows:

– Compute the two intersection points of the trisector with the faces F (D) of the domain D :
{T1,T2}= Ti, j,k ∩F (D) , T1 = Ti, j,k(t1), T2 = Ti, j,k(t2) ,
and their middle point T = Ti, j,k(

t1+t2
2 ).

– Compute the intersection points of the three bisectors with the edges E (D) of the domain D :

for α 6 β ∈ {i, j,k}:


Bα,β = bα,β ∩E (D)

such that:
∀κ 6= α,β ∈ {i, j,k}, gκ

(
Bα,β

)
> gα

(
Bα,β

)
= gβ

(
Bα,β

)
– Then connect the points Bα,β , T1 and T2 in a star-shaped set of triangles centered at the point T .

We obtain a mesh which is isotopic to the part of three bisectors involved the VD in the domain D . An
illustration is given in Fig. 2.

Fig. 2 The three bisector surfaces and the topology of corresponding part of the VD in a domain D , respectively in the first and second
pictures.

4.3 Meshing a domain D with four active sites

For a domain D with four active sites hi, h j, hk and hl , such that B(D) is b-regular, the topology of the
corresponding involved parts of six bisectors and three trisectors will be computed as follows:

– Compute the quadrisector point: Qi, j,k, l = Ti, j,k ∩Ti, j,l ∩T j,k,l ∩Ti,k,l (VD Vertex in D)
– Compute the intersection points of the trisectors with the faces F (D) of the domain D :

for α 6 β 6 γ ∈ {i, j,k, l}


Pα,β ,γ := Tα,β ,γ ∩F (D)

such that:
∀κ 6= α,β ,γ, gκ|D

(Pα,β ,γ)> gα|D
(Pα,β ,γ) = gβ|D

(Pα,β ,γ) = gγ|D
(Pα,β ,γ)
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– Compute the intersection points of the bisectors with the edges E (D) of D :

for α 6 β ∈ {i, j,k, l}


Bα,β := bα,β ∩E (D)

such that:
∀κ 6= α,β , gκ|D

(Bα,β )> gα|D
(Bα,β ) = gβ|D

(Bα,β )

– Then connect the points Pα,β ,γ and Bα,β in a star-shaped set of triangles centered at the point Qi, j,k,l .

We obtain a mesh which is isotopic to the part of six bisectors involved the VD in the domain D . An illus-
tration is given in Fig. 3.

Fig. 3 The six bisector surfaces , the four trisector curves and the topology corresponding part of the VD in a domain D , respectively
in the first, second and first pictures.

5 Algorithm

The approach consists of two main parts: the subdivision phase of the initial domain D0 and the reconstruc-
tion phase of VD cells constrained to D0:

– During the subdivision phase, using the regularity criteria (section 3) for the topology of algebraic curves
and surfaces, the initial domain D0 will be subdivided into subdomains following kd-trees structure ([8]),
i.e. D0 will be, firstly, subdivided in two subdomains by a bisector plane which is perpendicular to one
of the directions of the coordinate system (O,

−→
i
−→
, j ,
−→
k ). Then, each one of the two subdomains is subdi-

vided recursively in a different direction. An adjacency graph G of the subdomains spanning VD cells
is computed. The graph G is constructed using similar method used in the Dual Marching Cube Method
(see [36]) and it ensures the connectivity of triangles in each subdomain during the reconstruction phase.

– The reconstruction phase is performed by traversing the adjacency graph G while meshing all involved
parts of the bisector surfaces and trisectors curves in each subdomain.

Subdivision Let D0 = [a1,b1]× [a2,b2]× [a3,b3] a domain in which the Voronoï diagram of the n sites
h1, . . .hn, will be computed and a threshold ε > 0.
The domain D0 will be subdivided into subdomains, and all subdomains spanning VD cells (i.e: subdo-
main for which the d-list is b-regular) will be identified and the corresponding lists of the bisectors and
trisectors, will be computed and sorted into adjacency graph. We use interval arithmetic to compute the
upper-d-list B̃(D) containing B(D), i.e. B(D)⊂ B̃(D).
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1. The process begin with the initial d-list B̃(D0) := {g1|D0
, . . . ,gn|D0

}: the domain D0 carrying all associ-

ated distance functions of the n sites.
2. Then we initialize

– a stack P by the d-list B̃(D0) and
– the adjacency graph G with empty graph, between the subdomains.

3. The principal step starts with a loop by taking a d-list B̃(D) from the stack P , using interval arithmetic,
the distance functions are bounded over the subdomain D , i.e.:

mi
D 6 gi|D

6 Mi
D , i = 1, . . . , |B̃(D)|.

All distance functions which are not active in D are filtered out, i.e.: all distance gi0|D
verifying

mi0
D > min{Mi

D , i = 1, . . . , |B̃(D)|},

will be eliminated from the d-list B̃(D):

B̃(D) := B̃(D)�{gi0 |D
}.

The regularity test is applied to the resulting d-list:
– If the d-list B̃(D) is b-regular or if the threshold size on the subdomain is reached (i.e.: |D | =

max16i63(|bi−ai|)< ε), the d-list is transformed to a list of the corresponding bisectors and trisec-
tors in D :

Bvd(D) :=
{

bi, j,Ti, j,k,∀i < j < k ∈ {1, . . . , |B(D)|}
}
,

and it will be placed in the graph G .
– Else, the domain D will be subdivided in two subdomains D1 and D2 by a bisector plane which

is perpendicular to the direction of longest edge of D . The adjacency graph G will be updated by
replacing the d-list B̃(D) by the two new corresponding d-lists B̃(D1) and B̃(D2), by adding an
adjacency edge between them and connecting them with their neighbour d-lists. Finally they are
returned back to the stack P , and the process continues until the stack is empty.

The Algorithm is summarized as follows:

Algorithm 1 Subdivision

Input D0 a domain, g1, . . .gn ∈ R[x,y,z] the associated distances to h1, . . . ,hn and
ε > 0 a threshold.

Output G the adjacency graph of the domains spanning the MD cell of {g1, . . . ,gn}
in D0.

1. B̃(D0) := {g1|D0
, . . . ,gn|D0

}

2. Initialize a stack P := {B̃(D0)}; a graph G := /0;
3. While P 6= /0 do

(a) pick B̃(D) from P
(b) filter B̃(D):
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i. compute MD := min{max(gi|D
), i = 1 . . . , |B̃(D)|};

ii. for i = 1 . . . |B̃(D)| do
if min(gi|D

)> MD

then B̃(D) := B̃(D)�{gi|D
};

end if;
iii. end for;

(c) if B̃(D) IsRegular or |D |< ε

then compute Bvd(D) := {bi, j,Ti, j,k, bi, j = g j|D
−gi|D

,∀i 6 j 6 k ∈ {1, . . . , |B(D)|}}
and add it to G ;

(d) else
i. subdivise D into D1 and D2;

ii. update G with B̃(D1) and B̃(D2);
iii. P ←−P ∪

{
B̃(D1), B̃(D2)

}
;

(e) end if ;
4. End While;
5. Return G ;

At the end of the subdivision process, we obtain an adjacency graph G of the identified subdomains D
with their corresponding lists of bisectors and trisectors, and the adjacencies are represented by the edges.
These subdomains D could contain none, one bisector or three bisectors and one trisector, six bisectors and
four trisectors and one quadrisector, in which the topology will be easily determined from the intersection
points with the boundary. However the d-lists encountered when the threshold size is reached for D , might
span degenerate VD edges and/or degenerate VD vertices.

Reconstruction VD cells In this last part, we describe the reconstruction of the VD cells by traversing the
adjacency graph G and meshing all lists of bisectors and trisectors in the corresponding identified subdo-
mains from the subdivision.

– The construction of the graph G is similar to the one used in the Dual Marching Cube method (see
[36]). It identifies the faces ( of subdomains) that are adjacent. it ensures connectivity of triangles in each
subdomain and avoiding blunders at the end of the mesh.

– The list of bisectors and trisectors is meshed in the corresponding subdomain using the method developed
in the section 4.

The topology of bisectors and trisectors is thus correctly determined not only within, but also between (i.e:
on faces and edges of) the adjacent subdomains traversed. All open VD cells are completed by the boundary
pieces ∂D0 such that the reconstruction will be constrained in the domain D0. At the end we obtain a
polyhedral approximation of each VD cell, which is isotopic to VD cell in the domain D0.

Remark 2 The approximate VD computed is topologically equivalent to exact VD when the d-list list B̃(D)
is regular or when |D |< ε and the corresponding d-list B̃(D) spans exactly unique VD edge or unique VD
vertex. This happen for ε > 0 suitably. In the other case the topology is unknown.

The same process for computing the topology of VD faces and VD edge in the regular case can be used
in the case of degenerate VD edge and degenerate VD vertex.

As analyzed in [2], the number of boxes produced to cover the boundary of the Voronoï cells is in O( 1
ε2 ).



14 Ibrahim Adamou, Bernard Mourrain

6 Implementation

The preliminary step of the implementation consists in implementing the function called closest-site which
for each domain, it computes the minimum distance from each of its corners to the different sites h1, . . . ,hn
and assigns to corners of a domain the index of the site which is closer to it than to any other, i.e: the active
sites in the domain. This function is very efficient and allows us very quickly and easily to identify, during
the subdivision, the b-regular d-lists B(D) from the number of active sites in a domain. It is thus possible
to detect the edges and and the faces of a domain which intersect the equidistant points respectively of
two and three sites which will be used for the mesh of the VD cells. This is how the subdivision phase is
performed by the function subdivision, and the reconstruction by the functions mesher. The code of the
different functions established for this implementation is developed in Julia language and follows the same
structure as the theoretical part and it is available at https://github.com/ibradam/Voronoi.jl.

6.1 Examples

1. Let D0 = [−5,10]× [−5,10]× [−5,10] and four sites: h1 = (−2.0,3.0,5.0+ t), h2 = (4.0,−4.0,−5.0+
t), h3 = (3.0,4.0,5.0+ t), h4 = (0.0,0.0,5.0+ t), t > 0

2. Let D0 = [−10,10]×[−10,10]×[−10,20] and ten sites: h1 =(4.0,−4.0,−3.0+t), h2 =(−2.0,3.0,−5.0+
t), h3 = (2.0,2.0,5.0+ t), h4 = (0.0,0.0,0.0+ t),h5 = (1.0,1.0,6.0+ t), h6 = (−1.0,0.0,8.0+ t), h7 =
(−3.0,−7.0,1.0+ t), h8 = (−5.0,7.0,−1.0+ t),h9 = (3.0,7.0,−2.0+ t), h10 = (3.0,4.0,3.0+ t), t > 0.

Applying the algorithm, we have successively:

1. For example 1
(a) The subdivision phase is given in Figure 4. There is certain concentration of subdomains between

the sites, spanning the Voronoï diagram cells.
(b) The meshing result is shown in Figure 5. All bisectors and trisectors are meshed in subdomains

spanning the Voronoï diagram cells. We have a red-colored polyhedric structure which represents the
topology of the Voronoï diagram of the four sites in D0.

(c) The topology of the VD of h1, h2, h3, h4 in D0 is given in Figure 6. The topology of the Voronoï
diagram is obtained by eliminating the trace of the subdomains resulting from the subdivision and
leaving only the mesh and sites, which gives the partition of D0 into four (4) cells.

2. For example 2
(a) The subdivision phase is given in Figure 7. There is certain concentration of subdomains concentra-

tion between the sites, thus spanning the Voronoï diagram cells.
(b) The meshing phase is given in Figure 8. All bisectors and trisectors are meshed in subdomains span-

ning the Voronoï diagram cells. We, thus, have a red-colored polyhedric structure which represents
the topology of the Voronoï diagram of the ten sites in D0.

(c) The the topology of the VD of h1, h2, h3, h4, h5, h6, h7, h8, h9, h10 in D0 is given in Figure 9. The
topology of the Voronoï diagram is obtained by eliminating the trace of the subdomains resulting
from the subdivision and leaving only the mesh and sites, which gives the partition of D0 into ten
(10) cells.
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Fig. 4 Subdivision process for the domain D0 for the example 1.

Fig. 5 Meshing process of bisectors and trisectors in (in red color) subdomain spanning VD for the example 1.

Sites Regular boxes Singular boxes Times (secs)
10 863 25 0.07
20 1362 86 0.12
40 1810 309 0.23
60 1720 629 0.29
120 2282 1345 0.63

Table 1 D = [−2,2]× [−2,2]× [−3,3] , σ = 0.1

6.2 Experimentations of algorithm

We give the experimentations of the algorithm for a number of random of inputs 10 up to 120 parallel half-
lines with endpoints strictly in the domain D = [−2,2]× [−2,2]× [−3,3] under Fedora 27 System intel
CORE i7 7th Gen. The execution time and the numbers of boxes identified during subdivision process is
respectively given in Table 1 and Table 2 for σ = 0.1 and σ = 0.01, where σ is the maximal relative size of
the domains at the end of the subdivision process. It corresponds roughtly to the relative size of the triangles
in the output mesh. The threshold ε used to determine the singular domains is ε = σ

2 .
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Fig. 6 The topology of the VD h1, h2, h3, h4 in D0 for the example 1

Fig. 7 Subdivision process for the domain D0 for the example 2.

Sites Regular boxes Singular boxes Times (secs)
10 84226 7 103.42
20 126557 31 252.04
40 163193 206 427.45
60 179887 127 593.05
120 267794 556 1620.21

Table 2 D = [−2,2]× [−2,2]× [−3,3] , σ = 0.01

The analysis of the timing for different sizes of the input (number of sites) allows to estimate the pratical
complexity of the algorithm. The execution time and the number of boxes produced evolve linearly in the
number of sites. Moreover, for a given number of sites, the number of produced boxes and the execution
time evolve according to σ , more precisely they varie respectively in O

(
1

σ2

)
and O

(
1

σ3

)
.
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Fig. 8 Meshing process of bisectors and trisectors in (in red color) subdomain spanning VD for in the example 2

Fig. 9 The topology of the VD h1, h2, h3, h4, h5, h6, h7, h8, h9, h10 in D0 for the example 2

Note that scaling to much larger input can be envisaged by exploiting parallel computation, since the
subdivision and meshing process can be parallelized easily.

7 Conclusion and Future Work

We presented a new algorithmic approach, based on subdivision process and meshing algebraic curves and
surfaces for computing an approximative Voronoï diagram of parallel half-lines, constrained to a compact
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domain D0 ⊂ R3, with respect to the Euclidean distance. The algorithm developped uses some tolerance
for computing an approximation of the VD, which is topologically equivalent to the exact one in D0 when
the size of all subdomain D is not smaller than the subdivision threshold ε (i.e.: |D | > ε) or when |D | < ε

and the corresponding list B(D) spans exactly unique VD edge or unique VD vertex, for ε > 0 suitably
choose. In other cases, an advanced method have to be developed for guarantying correct topology of the
VD. The approach can be applied to a compact domain of any metric space, in which, the distance function
is transformable in a polynomial expression. We also described its implementation in Julia Language and
the experimentation allows an effective analysis of the approach.

In the future, we plan to extend the approach to the case of non-Euclidean distance, non parallel half-
lines, or some specific rational curves (such as rational curves with rational offsets) which will have very
interesting applications such as motion planning, collision avoiding in minning industry, in robotic, etc.

Acknowledgements Most of the implementation part of the work was done during research visits at the research center INRIA Sophia
Antipolis with partial funding from the Simons Foundation and INRIA.
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