Skip to main content
Log in

What is a Logic Translation?

  • Published:
Logica Universalis Aims and scope Submit manuscript

Abstract

We study logic translations from an abstract perspective, without any commitment to the structure of sentences and the nature of logical entailment, which also means that we cover both proof- theoretic and model-theoretic entailment. We show how logic translations induce notions of logical expressiveness, consistency strength and sublogic, leading to an explanation of paradoxes that have been described in the literature. Connectives and quantifiers, although not present in the definition of logic and logic translation, can be recovered by their abstract properties and are preserved and reflected by translations under suitable conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adámek J., Herrlich H., Strecker G.: Abstract and Concrete Categories. Wiley, New York (1990)

    MATH  Google Scholar 

  2. Avron A.: Simple consequence relations. Inf. Comput. 92(1), 105–140 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  3. Avron A., Lev I.: Canonical propositional Gentzen-type systems. In: Goré, R., Leitsch, A., Nipkow, T. (eds) IJCAR. Lecture Notes in Computer Science, vol. 2083, pp. 529–544. Springer, Heidelberg (2001)

    Google Scholar 

  4. Béziau J.-Y.: Classical negation can be expressed by one of its halves. Logic J. IGPL 7(2), 145–151 (1999)

    Article  MATH  Google Scholar 

  5. Blackburn P., de Rijke M., Venema Y.: Modal Logic. Cambridge University Press, Cambridge (2001)

    MATH  Google Scholar 

  6. Blok, W.J., Pigozzi, D.: Abstract algebraic logic and the deduction theorem. Bull. Symb. Logic (to appear)

  7. Borceux F.: Handbook of Categorical Algebra I–III. Cambridge University Press, Cambridge (1994)

    Google Scholar 

  8. Brown D.J., Suszko R.: Abstract logics. Diss. Math. 102, 9–41 (1973)

    MathSciNet  Google Scholar 

  9. Caleiro C., Gonçalves R.: Equipollent logical systems. In: Béziau, J.-Y. (eds) Logica Universalis, pp. 99–112. Birkhäuser Verlag, Basel (2005)

    Chapter  Google Scholar 

  10. Carnielli W.A., D’Ottaviano I.M.L.: Translations between logical systems: A manifesto. Log. Anal. 157, 67–82 (1997)

    MathSciNet  Google Scholar 

  11. Cerioli M., Meseguer J.: May I borrow your logic? (transporting logical structures along maps). Theor. Comput. Sci. 173, 311–347 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  12. da Silva J.J., D’Ottaviano I.M.L., Sette A.M.: Translations between logics. In: Caicedo, X., Montenegro, C.H. (eds) Models, Algebras and Proofs. Lecture Notes in Pure and Applied Mathematics, vol. 203, pp. 435–448. Marcel Dekker, New York (1999)

    Google Scholar 

  13. Diaconescu R.: Institution-independent ultraproducts. Fundam. Inform. 55, 321–348 (2003)

    MATH  MathSciNet  Google Scholar 

  14. Diaconescu R.: Herbrand theorems in arbitrary institutions. Inf. Process. Lett. 90, 29–37 (2004)

    Article  MathSciNet  Google Scholar 

  15. Diaconescu R.: Institution-Independent Model Theory. Birkhäuser, Basel (2008)

    MATH  Google Scholar 

  16. Epstein R.L.: The Semantic Foundations of Logic. Volume 1: Propositional Logics, volume 35 of Nijhoff International Philosophy Series. Kluwer, Dordrecht (1990)

    Google Scholar 

  17. Feitosa H.A., D’Ottaviano I.M.L.: Conservative translations. Ann. Pure Appl. Logic 108(1–3), 205–227 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  18. Fiadeiro J., Sernadas A.: Structuring theories on consequence. In: Sannella, D., Tarlecki, A. (eds) Fifth WADT. Lecture Notes in Computer Science, vol. 332, pp. 44–72. Springer, Heidelberg (1988)

    Google Scholar 

  19. Futatsugi, K., Jouannaud, J.-P., Meseguer, J. (eds): Algebra, Meaning, and Computation, Essays Dedicated to Joseph A. Goguen on the Occasion of His 65th Birthday. Lecture Notes in Computer Science, vol. 4060. Springer, Heidelberg (2006)

    Google Scholar 

  20. Gabbay D.M.: Semantical Investigations in Heyting’s Intuitionistic Logic. Reidel, Dordrecht (1981)

    MATH  Google Scholar 

  21. Gentzen G.: On the relation between intuitionist and classical arithmetic. In: Szabo, M.E. (eds) The Collected Papers of Gerhard Gentzen, 1944, pp. 53–67. North–Holland, Amsterdam (1969)

    Google Scholar 

  22. Gentzen G.: Investigations into logical deduction. In: Szabo, M.E. (eds) The Collected Papers of Gerhard Gentzen, pp. 68–213. North–Holland, Amsterdam (1969)

    Google Scholar 

  23. Glivenko V.: Sur quelques points de la logique de M. Brouwer. Acad. R. Belg. Bull. Cl. Sci. 15(5), 183–188 (1929)

    Google Scholar 

  24. Gödel K.: Eine Interpretation des intuitionistischen Aussagenkalküls. Ergeb. Math. Kolloquiums 4, 34–40 (1933)

    Google Scholar 

  25. Gödel K.: On intuitionistic arithmetic and number theory. In: Feferman, S. et al. (eds) K. Gödel. Collected Works, 1933, pp. 287–295. Oxford University Press, Oxford (1986)

    Google Scholar 

  26. Gödel K.: The consistency of the axiom of choice and of the generalized continuum hypothesis. Proc. Natl. Acad. Sci. USA 24, 556–557 (1938)

    Article  Google Scholar 

  27. Goguen J.A., Burstall R.M.: A study in the foundations of programming methodology: Specifications, institutions, charters and parchments. In: Pitt, D. et al. (eds) Category Theory and Computer Programming, Lecture Notes in Computer Science, vol. 240, pp. 313–333. Springer, Heidelberg (1985)

    Google Scholar 

  28. Goguen, J.A., Burstall, R.M.: Institutions: abstract model theory for specification and programming. J. Assoc. Comput. Mach. 39, 95–146, 1992, Predecessor in Lecture Notes in Computer Science 164, 221–256 (1984)

  29. Goguen J.A., Roşu G.: Institution morphisms. Form. Asp. Comput. 13, 274–307 (2002)

    Article  MATH  Google Scholar 

  30. Humberstone L.: Béziau’s translation paradox. Theoria 2, 138–181 (2005)

    MathSciNet  Google Scholar 

  31. Humberstone L.: Logical discrimination. In: Beziau, J.-Y. (eds) Logica Universalis, pp. 207–228. Birkhäuser, Switzerland (2005)

    Chapter  Google Scholar 

  32. Kolmogorov A.N.: On the principle of excluded middle. In: Heijenoort, J. (eds) From Frege to Gödel: a source book in mathematical logic 1879–1931, 1925, pp. 414–437. Harvard University Press, Cambridge (1977)

    Google Scholar 

  33. Kreowski H.-J., Mossakowski T.: Equivalence and difference of institutions: simulating Horn clause logic with based algebras. Math. Struct. Comput. Sci. 5, 189–215 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  34. Lambek J., Scott P.J.: Introduction to Higher Order Categorical Logic. Cambridge University Press, Cambridge (1986)

    MATH  Google Scholar 

  35. Mac Lane S.: Categories for the Working Mathematician, 2nd edn. Springer, Heidelberg (1998)

    MATH  Google Scholar 

  36. Lawvere, F.W.: Functional Semantics of Algebraic Theories. PhD thesis, Columbia University (1963)

  37. Lawvere F.W.: Functorial semantics of elementary theories. J. Symb. Log. 31, 294–295 (1966)

    Google Scholar 

  38. Meseguer, J.: General logics. In: Logic Colloquium 87, pp. 275–329. North– Holland, Amsterdam (1989)

  39. Mossakowski T.: Relating Casl with other specification languages: the institution level. Theor. Comput. Sci. 286, 367–475 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  40. Mossakowski T., Goguen J.A., Diaconescu R., Tarlecki A.: What is a logic?. In: Beziau, J.-Y. (eds) Logica Universalis, 2nd edn, pp. 111–134. Birkhäuser, Basel (2007)

    Google Scholar 

  41. Mosses, P.D. (eds): CASL Reference Manual, The Complete Documentation of the Common Algebraic Specification Language. Lecture Notes in Computer Science, vol. 2960. Springer, Heidelberg (2004)

    Google Scholar 

  42. Peirce, C.S.: Collected Papers. Harvard (1965). In: 6 volumes; see especially Volume 2: Elements of Logic

  43. Prawitz D., Malmnäs P.E.: A survey of some connections between classical, intuitionistic and minimal logic. In: Schmidt, H. et al. (eds) Contributions to Mathematical Logic, pp. 215–229. North–Holland, Amsterdam (1968)

    Chapter  Google Scholar 

  44. Rasiowa H., Sikorski R.: The Mathematics of Metamathematics. Polish Scientific Publishers, Warszawa (1963)

    MATH  Google Scholar 

  45. Scott, D.: Rules and derived rules. In: Stenlund, S. (ed.) Logical Theory and Semantic Analysis, pp. 147–161. Reidel (1974)

  46. Shoenfield J.R.: Mathematical Logic. Addison-Wesley, Reading (1967)

    MATH  Google Scholar 

  47. Tarlecki A.: Quasi-varieties in abstract algebraic institutions. J. Comput. Syst. Sci. 33, 333–360 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  48. Wojcicki R.: On reconstructability of the classical propositional logic into intuitionistic logic. Bull. Acad. Pol. Sci. Sér. Sci. Math. Astronomy. Phys. 18, 421–424 (1970)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Till Mossakowski.

Additional information

In memoriam Joseph Goguen

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mossakowski, T., Diaconescu, R. & Tarlecki, A. What is a Logic Translation?. Log. Univers. 3, 95–124 (2009). https://doi.org/10.1007/s11787-009-0005-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11787-009-0005-2

Mathematics Subject Classification (2000)

Navigation